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Performance Metrics for Fault Detection and Isolation Filters
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Abstract—Fault detection and isolation (FDI) filters are
typically synthesized for open-loop or closed-loop systems. The
controller affects the FDI filter performance in the closed-loop.
Performance metrics for FDI filters are proposed to assess filter
performance and controller-filter interaction in the presence of
uncertain dynamics in the closed-loop. The role of controller’s
robustness to plant uncertainty in FDI filter performance is
examined.

I. INTRODUCTION

Safety critical systems like flight control system (FCS)
require redundancy to guarantee fail-operational or fail-safe
functionality. Model-based fault diagnosis filters make use of
a dynamic model of the system to identify and isolate faults.
A survey of the model-based fault diagnosis methods can
be found in [4], [9], [11]. Commonly, engineers synthesize
feedback controllers independent of the fault detection filters.
The model used for fault detection and isolation (FDI) filter
design is often based on the open-loop system. The drawback
of the independent filter/controller synthesis approach is
the assumption that plant dynamics are precisely known,
which is seldom the case in practical applications. FDI filters
designed independently may suffer from poor performance,
missed detections, false alarms, etc, due to coupling of the
plant, controller and model errors of the system. Stoustrup
et al., [22] showed that in the presence of plant uncertainty
the controller and FDI filter design are coupled, hence the
design of the filter depends on the controller. An optimal
design cannot be obtained without considering the controller
and FDI filter design problem simultaneously. This approach
is known as the integrated FDI filter design problem. Uncer-
tainty in the system model is inevitable in real-world control
engineering problems including aircraft flight control. It is
unknown how close to optimal the FDI filter can achieve
when it is designed separately from the flight control system.
Hence, it is imperative to better understand the interaction
between the closed-loop system and the FDI filter in the
presence of uncertainty.

Irrespective of the technique used to design an FDI filter,
the basic requirements are typically the following - Capa-
bility to isolate faults that occur simultaneously, sensitivity
to a particular fault and insensitivity to other faults, robust-
ness to modeling uncertainty, good attenuation of external
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disturbances and noise at the FDI filter output, asymptotic
convergence of the FDI filter output to a non-zero steady-
state in response to a non-zero fault, zero output otherwise.

The term metric is used in the sense of a quantitative
measure of the figure-of-merit or goodness of FDI filter per-
formance. The goal of this paper is to present an engineering
application of the FDI metrics described in [21]. To show
the versatility of the metrics, two FDI filters are synthesized
using different techniques for comparison. The proposed
metrics are used to assess the benefits of the individual FDI
filters on the closed-loop systems with model uncertainty.
The key component used to assess the influence of the
closed-loop controller on filter performance is the output
sensitivity function (S) and helps to illustrate the design
trade-offs between the filter and the controller.

The FDI performance metrics are applied to a flight control
example associated with the NASA Generic Transport Model
(GTM), [5], [14] longitudinal axis dynamics. FDI filters are
synthesized to estimate a sensor and an actuator fault using
two approaches, the H ., model matching and the geometric
design technique. The H., model matching design, [6],
[13], [17], [21], [23], is a closed-loop design problem in
which knowledge of the tracking controller is exploited in
filter synthesis. The geometric filter design technique, [3],
[18], is an open-loop filter design technique that exploits the
invariant subspaces of the state-space.

The paper is organized as follows, the first section revisits
development of the closed-loop FDI filter performance met-
rics provided in [21]. The NASA GTM aircraft longitudinal
dynamics are described, including the dynamic uncertainty
model used. The sensor and actuator faults used in the
problem are explained. The FDI performance metrics are
applied to the two dissimilar FDI filters synthesized for this
uncertain plant. The results obtained using the metrics are
discussed. The positive influence controller robustness on
FDI filter performance is highlighted.

II. PROBLEM STATEMENT AND ANALYSIS

Input-output properties of the FDI filter and closed-loop
system are derived in this section. The plant model is
assumed to be a linear time-invariant (LTI) system and
described by a state-space model,

#(t) =
y(t) =

where, x € R", u € RP, y € R™ are the states, controls
and measurements, respectively, and A, B,C' and D are
real matrices of the corresponding dimension. Let G(s) =

Ax(t) + Bu(t)
Cz(t) + Du(t)

(1a)
(1b)
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C(sI — A)"'B + D be the transfer function representation
of the linear plant model.

Model uncertainty is captured through a general class
of uncertain plants, Ga(s), where A(s) := {A : A €
Crixm,d(A) < 1}, is a complex norm bounded uncer-
tainty with arbitrary phase. This general description can in-
clude multiplicative, additive, linear fractional transformation
(LFT) or other types of uncertain plant models, [8].

The fault estimation and tracking control problem is
formulated as shown in Fig. 1(a). Sensor faults, f; and
actuator faults, f, are assumed to enter in an additive
manner. Weights, W, (s) and Ws(s), describe the frequency
content of actuator and sensor faults respectively and are
in general block diagonal matrices for multi-input/multi-
output (MIMO) systems. W, (s) and W;(s) are assumed to
be known functions derived from fault modeling, and their
development is not discussed in this paper. See [2], [15]
for information regarding the development of fault weight-
ing functions. Weighting functions W), (s) and W), (s) are
design parameters used to shape the desired controller and
FDI filter performance objectives.

A standard model matching H., synthesis technique is
used to design a filter and controller. The design objective
is to minimize the gain of the transfer function matrix
from faults (f = [ fa fS]T) and tracking reference (y.) to
weighted fault estimation error (€¢) and weighted reference
tracking error (€.), respectively, measured in terms of the
H oo norm of the closed-loop system. The synthesis problem
is convex and many algorithms are available in the literature
to solve for the optimal H ., controllers [7], [10].

The Ho, problem formulation feeds the measurements
(m x 1) and tracking reference vector (¢ x 1) separately
to the controller-filter K (s) which is to be designed. The
outputs of K(s) are the control inputs, u., and the fault
estimation vector, uy = [f, fS]T. f. and f, are estimates
of actuator and sensor faults, respectively. The input-output
topology allows K (s) to be partitioned into four components
as shown in Eq. 2. This is known as the four-parameter
controller-filter problem in the literature, [12], [19], [22]. The
controller-filter partitions are,

Kle) = {Kfl Kfz } @

and the input-output signals for K (s) are,

uC ym,
= K(s
(o) =0 (32)
The elements K, (s) and Ky, (s) are the feedback com-
ponents of the tracking controller and the filter, respectively,

which act on the measurements, y,,. The elements K., (s)

and Ky, (s) are the feed-forward elements, respectively.
Consider the open-loop equations for the interconnection
shown in Fig. 1(a),

Ec = Wy (8)[ye — Ga(s)(uc + Wa(s)fa) — Ws(s) fs(3a)
e = Wy (ur - | W2 ]) .
U = —(Ca(8)[te + Wa(s)fa] + Wa(s)f) (3e)

___________ Ts)
eC 4:* <—E— yC
P
Ef . G P , f
f < |
: ym‘ Uc :
Ye K ufg :

(b) The LFT structure

Fig. 1. Fault estimation filter and tracking control problem

The system of equations in Eq. 3 (a)-(c) describing the
?pen loop input-output signals can be rewritten in a matrix
orm as,

~ W, —Wp, [GAW"' Wg} —Wp.Ga 0
ce Wa 0 Ye
erl=| O ~Woy [ 0 Wg] 0 W s f
Y - Ue
ytl ? - [GAV[E)Q W@} ‘ 7(CJ;A 8 u;
G(s)

T )

where, f = [ fa fs } , is the augmented fault vector.

Introducing the controller-filter K (s) to form the lower LFT
structure as shown in Fig. 1(b) and simplifying system
equations, the closed-loop transfer matrix, 7T'(s), can be

obtained,
Glemly]

where T'(s) is block partitioned as,

7 Ty T
T(s) = |+ = 6
(s) {Tm T22} ©

and the elements of matrix 7'(s) are given as follows,

T = Wyl —SaGaKe,) (7a)
Tis = —Wp.(I-Ta)[ GaWa W, | (7b)
T = —-W, (K SAGAK., — Ky,) (7c)
Ty = —Wy, (Kfl Sa [GaWa W] — [Vga Vgs}) (7d)
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where, the output complementary sensitivity and the output
sensitivity function are given by,

Ta = GaKe, (I +GaK.,) ™, Sa = (I +GaK.,)™" (8

The Hoo controller and filter synthesis, is carried out,
either simultaneously or independently, by minimizing the
maximum singular value of the transfer function matrix 7'(s)
over the set of permissible controllers/filters.

ITII. METRICS FOR FDI FILTER AND
CONTROLLER INTERACTION

The transfer function matrices obtained in Eq. 7 (a)-(d)
offer valuable insights into the closed-loop behavior of FDI
filters [21]. These transfer matrices can also be used to define
performance metrics for FDI filters. Consider Eq. 7(d), based
on problem setup shown in Fig. 1(a) and Eq. 5. The filter
parameter Ks, (s) can be further block partitioned as,

1= i )

Eq. 7(d) is the transfer function matrix from faults (f) to
weighted fault estimation error (€y),

{Z] = Taa(s) U”a}

Using Eq. 7(d) and Eq. 9, and removing the weighting
functions,

€))

€fa ) _ K?ISAGA—I K%SA fa (10)
E€f, chlsAGA K]‘ilsA—I fs

Thus, given the closed-loop controller, K.(s), the un-
certain plant model, Ga(s) and the FDI filter, K;(s), the
transfer matrix in Eq. 10 is completely known. A closer look
at each term in this transfer matrix reveals

o The diagonal terms in Eq. 10 are the fault signals to fault
estimation error transfer functions. The transfer function
(K$,SaGa —I) maps the actuator fault to the actuator
fault estimation error. Similarly, (K7 Sa —I) maps the
sensor fault to the senor fault estimation error. For an
ideal FDI filter, it is expected that the gain of these two
transfer functions is zero, implying that the FDI filter
can perfectly estimate fault signals across frequency.

o The off-diagonal terms in Eq. 10 represent fault cross-
coupling, that is, an actuator fault showing up in sensor
fault estimate signal/residual, and vice-versa. Ideally,
the two transfer functions, K J‘%l Sa and K Jscl SAGA
should be as close to zero as possible, a property
referred to in the literature as fault-isolation.

The worst-case fault estimation error of the FDI filter
in the presence of A(s) uncertainty can be founded by
evaluating the worst-case gain of each of the four blocks
of the transfer function matrix in Eq. 10. These form the
basis for the metrics to assess FDI filter performance. A
large worst-case gain would indicate degradation of the FDI
filter closed-loop performance in the presence of model

uncertainty. Packard et al., [20] describe a method to compute
the worst-case gain of any uncertain transfer function. The
worst-case gain function, wcgain, in the MATLAB Robust
Control Toolbox, [1] exploits this method and is used in the
examples presented in later sections to compute the metrics.
The actuator fault estimation metric can be computed as,

(an

max

max K 5aGa ~ I

and the corresponding sensor fault estimation metric as,

max K3 S8 — Il (12)
IV. APPLICATION OF FAULT DETECTION
METRICS

Application of the metrics proposed in Sec. III to a
flight control example problem is presented in this section.
Two FDI filters are designed, one based on the geometric
technique, [3], [18] and one H., FDI filter, [16], [21] to
provide a distinct pair of test-filters. An identical pitch
command tracking controller, K.(s), is used with both the
test filters as a benchmark.

A. NASA GTM closed-loop longitudinal dynamics

The NASA Generic Transport Model (GTM) is a 5.5%
scale model replica of a typical twin turbofan powered
commercial airliner, which was designed as a platform for
flight safety related research and experiments, [5], [14].The
GTM nonlinear model is trimmed in a straight-and-level
flight condition at True Airspeed (TAS) = 90 knots. A
linearized longitudinal model is obtained at this equilibrium.

Uncertainty Modeling:

An input multiplicative uncertainty model is proposed to
over-bound the set of plant models at different equilibrium
states in the flight envelope. A model of the form Ga(s) =
G(s)(I + A(s)Wy(s)), a(A(s)) < 1 is obtained, where
W.(s) is the uncertainty weighting function.

A pitch attitude command/reference tracking controller is
designed using H ., model-matching techniques. The GTM
plant outputs used for feedback are: pitch attitude (6, rad),
pitch-rate (g, rad/s), airspeed (TAS, knots) and angle-of-
attack (a, rad). The control input is elevator deflection (e,
rad).

B. Sensor and actuator fault description

Two faults are selected for the synthesis of FDI filter, one
sensor and one actuator fault. The pitch-rate gyro is chosen
as a faulted sensor. The GTM longitudinal model has only
one input, the elevator, which is selected as the actuator fault
channel.

In general, multiple failure modes exist for the pitch-rate
gyro and the elevator, for example, a fault in the pitch-rate
gyro can manifest itself as a null-shift, zero-output (dead-
sensor) or scale-factor error. Similarly, the elevator fault
can manifest itself as a locked-elevator, a hard-over failure,
floating elevator, etc. Two failure modes are considered in
this work, the null-shift and the floating failure mode. The
null-shift is classified as a change in zero position of the
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sensor/actuator. The floating failure implies that the output
(sensor output or actuator position) floats (oscillates) between
two arbitrary values.

C. Application of filter performance metrics

In the example, two FDI filters are compared with respect
to each other using the proposed filter metrics. The GTM
longitudinal model with multiplicative input uncertainty and
the Hoo pitch controller described in previous section com-
prise the set of closed-loop systems. The FDI filter designs
considered are:

1) Filter 1: Geometric filter design, [3], [18] with five in-
puts, namely, the four measured states, airspeed, angle-
of-attack, pitch-rate and pitch angle, and one plant
input, the elevator deflection. The filter is designed
to have stable residual dynamics, i.e., filter output
(residual) asymptotically converges to zero when no
fault is present.

2) Filter 2: Ho, fault estimation filter design with the
same five measurements as above.

The worst-case actuator and sensor fault estimation met-
rics given in Sec. III are computed using wcgain which
computes the worst-case gain of an uncertain transfer func-
tion (performance metrics in this case) at each frequency
point as shown in Fig. 2 and also returns the corresponding
A(s) uncertainty that results in the worst gain, at each
frequency. The metrics predict the filters will have very good
steady-state performance, indicated by a small value (close
to zero) of the metric in the low frequency range. Also, at
high frequency both sensor and actuator fault metrics settle
at unity gain. As seen from the sensor and actuator fault
metrics obtained in Sec. III, unity gain of the two metrics
at high frequency is a consequence of K7} (s)Sa(s) — 0,
K$ (s)Sa(s)Ga(s) — 0, as s — oo, respectively. This
is due to the filter roll-off which results in its inability to
detect/estimate high frequency sensor and actuator faults.

Consider the worst-case filter performance as predicted
by the metrics in Fig. 2 (a),(b) at the frequency of 1 rad/s.
Both the filters are compared at that specific frequency
point using the worst-case linear time-domain simulation in
Fig. 3 and 4. The time domain simulation is obtained by
first substituting the worst-case A(s) uncertainty obtained
from the worst-case gain computation of the two metrics,
respectively, into the multiplicative uncertainty model of
GTM longitudinal dynamics, Ga(s). Two test cases are
investigated, one compares the sensor fault estimation per-
formance in which a 1 deg/s peak amplitude sinusoidal gyro
fault is injected at 1 rad/s, Fig. 3. Note the measurement unit
of angular rotation rate is deg/s. This may be confused with
the frequency of fault variation, given in rad/s . The other
compares actuator fault estimation performance by injecting
a sinusoidal elevator fault of 1 deg peak magnitude at 1 rad/s
frequency as shown in Fig. 4.

The actuator fault metric at 1 rad/s for the two filters is
close to zero in Fig. 2(a), indicating that both the filters
should perform equally well for a 1 deg elevator fault. This
is consistent with the time-domain simulation results seen in

2.5

0.5

Actuator fault estimation error metric
o

107 10° 10' 10
freq [rad/s] .
(a) Actuator fault metric

1.8 — Filter 2
16 - - -Filter 1

Sensor fault estimation error metric

10 10' 10 10
freq [rad/s] .
(b) Sensor fault metric

Fig. 2. Comparison of fault estimation error metrics for four different FDI
filters

Fig. 3 where both the filters are able to track a 1 deg peak
elevator fault with very little error. Similarly, comparing the
sensor fault metric at 1 rad/s for the two filters in Fig. 2(b)
it may be noted that the value of the metric for the Filter
1 is much higher than that for Filter 2, hence Filter 2 is
expected to perform better in this test. This assessment is
also consistent with the worst-case time-domain simulation
seen in Fig. 4, in which the worst-case performance for Filter
1 is seen to have much larger steady state error in gyro fault
estimate compared to Filter 2. This is an example of how
the proposed metrics can be used to efficiently compare the
worst-case performance of various FDI filters for a closed-
loop system.

elev. tault
residual [deg]

—_— L ITETTTTTTT T T !
@ Of -~
2 j vy
D-05 ST S T S SRR
=5 | Filter-2 residual v Ne
== —fault B AP
S® 45 ) - TR SN Lo A
5 —1.9] - - - Filter-1 residual|| CTeels 1
°5 I — 3 o S e ]
@ P —
Q ok I T SNSRI ITITT CHRITURIIIRON
26 28 30 . 32 34 36
time[s]

Fig. 3. FDI Filter-comparison: Worst-case performance to 1 rad/s sinusoidal
elevator fault

1393



KS) - _ N : :
= @ 1.5[|---Filter—1 residual| rv s SRR [RERRERRE
35 O . . oo :
&= B IRl Filter—2 residual| L1 fv 1% rv 5 o o o o
> g —fault :l' I::III-“-"-‘\,T:-\"—“, ’: il
O O = - [ M B B
—_— = O05F B Y «TEAE LAREEL R SESEIEIERETRNEN FCEIERERENRRREE
g ; N : :

S B n

[t —— = ==l S o
10 12 14 16 18 20

&
-
5 O o5t
S .
@ S,
o® Of
;‘3
@% -0.5

o 4t

L

Fig. 4. FDI Filter-comparison: Worst-case performance to 1 rad/s sinusoidal
gyro fault

D. The role of closed-loop controller in FDI filter perfor-
mance: The output sensitivity function

As stated before, its important to understand the role
played by a closed-loop controller in FDI filter performance.
Consider the example presented above. The geometric filter
(Filter 1), achieves a worst-case actuator performance metric
value close to zero, Fig. 2(a) at 0.5 rad/s, thus the actuator
fault detection filter is expected to perform very well at
this frequency. The time-domain linear simulation with the
elevator fault entering the system at 0.5 rad/s and worst-case
uncertainty perturbation obtained from computation of the
metric, is shown in Fig. 5. As expected, the filter is able
to estimate elevator fault almost perfectly. Also notice that
elevator demand is very close to steady-state and does not
reflect the fault signal entering the system. This is due to the
robustness property of the controller allowing it to compen-
sate for the elevator fault and maintain tracking performance
(see pitch command response in Fig. 5). For comparison, the
identical filter and fault scenario is simulated, but this time
in open-loop, yielding the time-response presented in Fig. 6.
Immediately, it becomes apparent that

e The elevator demand reflects the sinusoidal fault enter-
ing the system. Unlike the closed-loop case, there is no
controller to compensate for the actuator fault.

o The elevator fault estimate of the geometric filter in
open-loop is slightly worse than that seen in the closed-
loop case (Fig. 5). This example shows that a closed-
loop controller does not adversely affect FDI filter, but
in fact a robust controller may improve the FDI filter
performance in the presence of uncertainty.

To understand why the FDI filter performance differs when
implemented in the open-loop or the closed-loop, consider
the FDI filter performance metrics given in Sec. III. The

actuator performance metric is,
max K¢ SAGA — 1
max K} SaGa — Il

The output sensitivity function is equal to identity () in
the open-loop case (because K., (s) = 0, Eq. 8). Hence,

o o

[—Piten
- - = Command

ATAS [knots]
A6 [deg]
(4

| | O=NWhOIO
o

™= Aa [deg]

|
o

15 20 25 30

4 o a

Elev. fault
residual [deg]

Gyro fault
residual [deg]
I

15 20 25 30
time[s] time[s]

Fig. 5. Filter 1: Closed-loop time response with 0.5 rad/s elevator fault

ATAS [knots]
x 107"

Elev. fault
residual [deg]
Lo o

|
N

Gyro fault
residual [deg]
I

15 20 25 30
time[s]

time[s]

Fig. 6. Filter 1: Open-loop time response with 0.5 rad/s elevator fault

the term in the actuator test metric indicating the interaction
between filter and controller, K} (s)Sa(s)Ga(s) reduces to
K¢ (s)Ga(s) in the open-loop case. A magnitude plot of
the upper and lower bound for the uncertain set, A(s) of
transfer functions Sa(s)Ga(s) and Gal(s) is presented in
Fig. 7. The spread of gain around the nominal is significantly
less in the case of the closed-loop system (Fig. 7(a)). This
analysis shows that a robust controller may actually help
enhance FDI filter performance for an uncertain system by
minimizing the plant perturbation around the nominal model,
under the influence of uncertainty. Note that the integrated
filter-controller design has be advocated by many in the
literature, [19], [22], but not enough has been said about
the importance of robustness property of the controller in
the FDI filter problem. It is important to state that in the
absence of any uncertainty A(s), the term S(s)G(s) as well
as G(s) have a unique magnitude plot, hence, the open-loop
and closed-loop filter performance with the nominal plant,
G(s), will be identical as expected.

V. CONCLUSION

In light of the preceding material, it is clear that FDI filter
design deserves more attention in the presence of uncertain
plant dynamics.
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(a) Magnitude plot, Sa (s)Ga(s)
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(b) Magnitude plot, Ga (s)

Fig. 7. The magnitude plot comparison of open-loop and closed-loop filter
influence

VI. SUMMARY

Closed-loop worst-case FDI performance metrics are ap-
plied to FDI filters designed using dissimilar techniques
for the NASA GTM plant. The metrics are shown to be
agnostic to the design technique used for FDI filter synthesis.
The influence of a closed-loop controller on FDI filter
performance is discussed. It is shown how a robust controller
may help enhance FDI filter performance in the presence of
uncertain dynamics.
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