
Multi-Runway Aircraft Sequencing at Congested Airports

Luc Bojanowski, Dimitri Harikiopoulo and Natasha Neogi

Abstract—In this paper, we consider the airport landing
problem of scheduling aircraft on multiple runways in a
dynamic fashion. We attempt to modify the aircraft landing
sequence from the traditionally used ”First-Come-First-Served”
(FCFS) order to be able to land more aircraft in a given period
of time. Given a set of planes, the goal is to find a sequence such
that no plane can land before it is actually available for landing,
the minimum safety separation between two consecutive planes
is always satisfied, and that the total landing time (makespan)
is minimized. Based on the FAA partition of aircraft into
weight class, our algorithm, based on previous work, provides
a polynomial time feasibility condition for scheduling a set of
planes in a given time interval. This algorithm for the dynamic
scheduling of aircraft in a multi-runway scenario is factorial
in runway number and exponential in aircraft class, both of
which are fixed a priori, however it is polynomial in the number
of aircraft, which is the dominating factor in the problem. It
ensures that the Aircraft Sequencing Problem (ASP) presented
above is not NP-Complete and allows us to develop a practical
real time ATC execution policy.

I. INTRODUCTION AND MOTIVATION

The incessant increase in air traffic over the past few

decades in the face of limited resources and infrastructure

has lead to the proliferation of flight delays at major air-

ports, which cost the U.S. airline industry an estimated 5.5

billion dollars annually. It has been estimated by the FAA

that, by the year 2015, if the air traffic control (ATC)

infrastructure and operating procedure does not change, there

could be an aviation accident once every seven to ten days.

Hence, the need to develop improved ATC strategies at

over-saturated airports must necessarily be subject to safety

critical constraints that maintain current standards in aircraft

separation and controller workload. Therefore, any ATC

strategy should respect the minimum separation requirements

and provide results quickly enough to allow the controller to

make the right decisions at the right time.

A. First Come, First Serve Ordering

In order to prevent a trailing aircraft from losing aero-

dynamic stability because of turbulence (wake vortices)

generated by a leading aircraft, the Federal Aviation Admin-

istration (FAA) has fixed minimum separation requirements

between aircraft. Thus, to guarantee safety, the FAA has

generally partitioned aircraft into three weight classes: Small,

Luc Bojanowski is with Proctor and Gamble SAS, 163-5 quai Aulagnier,
92600 Asnieres Sur Seine, France, lbojanow@uiuc.edu

Dimitri Harikiopoulo is with the Thales Group, 45
Rue de Villiers, 92526 Neuilly-sur-Seine Cedex, France,
dimitri.harikiopoulo@thalesgroup.com

Natasha Neogi is with the National Institute for
Aerospace, 100 Exploration Way, Hampton, VA, 23666, USA,
NatashaNeogi@nianet.org

Large, Heavy; and fixed in-trail separation requirements. The

time separation requirements are then a function of the plane

speed and the length of the final approach path. An example

for a 6 miles long final approach path is given in Table I,

and was derived in Odoni [9],[5]. We use these numerical

values for time separation in our simulations.

Small Large Heavy Speed (kts)

Small 82 69 60 110

Large 131 69 60 130

Heavy 196 157 96 150

TABLE I

TIME SEPARATION REQUIREMENTS (IN S) AND CLASSES SPEED (IN

KNOTS)

If we consider one unique class, then the separation times

between all successive aircraft are equal, since all planes of

the same weight class should enter the Terminal Maneuver-

ing Area (TMA) at the same speed. In this case, the “First

Come, First Served” (FCFS) landing order (that is, ordering

with respect to Earliest Landing Time (ELT)), ensures an

optimal landing time for the whole set of planes. Now if we

consider several classes, the FCFS strategy, despite being

fair and easy to implement, is no longer optimal due to the

assymetry in the separation requirements, underlined above.

That said, if we consider a particular landing sequence,

applying the FCFS strategy within each class minimizes the

makespan, corresponding to this particular sequence.

B. Improving Upon FCFS

There are three ways to define the optimality of a schedul-

ing strategy:

1) Minimization of the sum of Landing Processing Times

(LPT)

2) Minimization of the overall Makespan

3) Minimization of the Last Aircraft of the sequence ’s

LST

For each aircraft, the LPT is the difference between its

Landing Completion Time (LCT) and its Landing Starting

Time (LST), i.e. the required separation time between the

considered aircraft and the following aircraft.

It is of note that minimizing the sum of LPTs is not

equivalent to minimizing the makespan nor equivalent to

minimizing the last aircraft’s LST. However, if there is no

idle time present, minimizing the makespan and the sum of

completion times become equivalent.

In this paper we develop an algorithm which solves the

dynamic scheduling problem for a multi runway airport for

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2752

an optimized makespan over a constrained interval. The al-

gorithm is a novel contribution in that while it is exponential

in aircraft class, it is merely factorial in runway number, and

polynomial in aircraft number. We place this result in context

of the current state of the art, in the next section.

II. PREVIOUS WORK

The Aircraft Sequencing Problem (ASP) has received a

great deal of attention and its static and dynamic versions

have been studied using various approaches and techniques

described in the literature [6], [7], [1], [9], [11]. Dear’s

paper [6], and the one written with Sheriff [7], introduced

the constrained position shifting (CPS) technique. This

technique schedules planes such that their final position does

not differ from the FCFS order by more than a pre specified

number, called Maximum Position Shifting (MPS). They

applied this technique to both the static and the dynamic

version of the Aircraft Scheduling Problem (ASP) through

an heuristic algorithm and presented computational results

involving up to 500 planes.

Psaraftis [1] considers the static problem where all the

planes are available at time t = 0 and the minimum

separation are sequence dependent only throughout the plane

classes. He solves it exactly with a dynamic programming

backward recursion .The algorithm is then improved by

adding a feasibility condition to his recursion such that

the CPS constraint is satisfied. Taking advantage of the

class repartition, this algorithm finds an optimal sequence

in polynomial time. This article is based on a previous one

[8], where Psaraftis also considers the two-runway problem.

Venkatakrishan, Barnett and Odoni [9] built a statistical

model for the time separation between landing based on

real data observed at Boston Logan Airport. They use this

model and a heuristic modification of Psaraftis algorithm

for time windows constraint (earliest and latest possible

landing times) to improve landing aircraft sequencing. Three

models are presented, one for the static case, two for the

dynamic case and their results, tested on real data, show

that sequencing improvements can reduce delays by 30 % in

some instances. Based on the same Psaraftis’ algorithm [1],

our work focuses more on the theoretical aspect and aims

at proving the aircraft landing problem with time window

constraint is not NP-hard.

A more generic instance of the static case of the aircraft

sequencing problem is explored by Beasley et al [10]. Instead

of dealing with planes partitioned into classes, they consider

all potentially different aircraft that are required not only to

land in a prescribed time window but also to satisfy com-

plete separation requirements. Complete separation means

the separation does not only apply to successive aircraft but

to all pairs of aircraft. They give a mixed integer zero-one

formulation of the problem for both the single and multiple

runway problem and provide some results involving up to

50 planes.

Another very interesting approach can be found in the

work of Bianco et al [11], where they solve a single-machine

scheduling problem with ”release times” equivalent to the

one runway aircraft landing problem. They formulate it using

a mixed integer zero-one formulation and solve it with both

a branching algorithm and a heuristic procedure. In some

later work, Bianco, Dell’Olmo and Giordani [4], [12], keep

this machine scheduling approach but try to minimize the

sum of completion time instead of the maximum completion

time. The problem is solved using dynamic programming,

lower bounds and heuristic algorithms. Computational results

are presented for sets of 30 and 44 planes. In these papers

the algorithms are derived considering that all planes are

potentially different and the class repartition is only used for

the numerical simulation. This differs from our approach,

where we exploit the class partition to simplify the theoretical

algorithm and then reduce its complexity.

All these papers model the landing problem as single

resource models since an arriving aircraft needs one runway

to land. In Bianco, Dell’Olmo and Giordani [13], the authors

present a job shop scheduling approach dividing the approach

path into discrete segments and representing each of them by

a machine. This TMA representation as a multiple resource

problem allows them to represent the evolution in time of

aircraft positions in the TMA. The problem is solved by

local search techniques, and results based on real data sets

from Rome Fiumicino TMA are provided.

Much work not directly related to our approach has also

been done. Queuing theory models [14] have been devel-

oped as well as decision aid software, like CTAS (Center

TRACON Automation System), currently in use in many

airports. For more references, an extended literature survey

can be found in Beasley et al [10] and a broad state of the art

compilation of research in Air Traffic Management is found

in Wu [15].

Harikiopoulo proposed an algorithm solving the ASP in

polynomial time in the case of a single runway airport and

suggested its generalization to the multiple runways case [2],

upon which the following work is based. We refer the reader

to [3] for the mathematical details of this algorithm.

A. Recursive Algorithm Extension for Multiple Runways

We consider the single runway state space to be described

by (m, k), where:

m Class of the plane currently landing on the runway

k Class repartition vector, i.e. the p-component vector

(p being the number of classes of aircraft) of the

number of aircraft of each class. For instance, if

k = (2, 1, 3), then it means there are two planes

of class 1, on plane of class 2 and three planes of

class 3 still remaining to land.

To incorporate M runways in the description of the prob-

lem state space, we replace m in the state vector by

(m1, . . . , mM), where mi is the class currently landing

on runway i. We denote V ((m1, . . . , mM), (k1, ..., kp))
as the minimum total landing time to land an aircraft

of class mi on runway i for i ∈ {1, . . . , M} with

kj aircraft of class j, for j ∈ {1, . . . , p}, still remain-

ing to be landed. Vectors V ((m1, . . . , mM), (k1, ..., kp))
and t((m1 , . . . , mM), (k1, ..., kp)) now have M components

2753

since they include the minimum landing times for all run-

ways. For example, for two runways and three planes, of

which two are Small and one is Large, where initially the

first runway has just landed a Small plane, and the second

has also landed a Small plane, the formulation for the initial

configuration is as follows:

M = 2 (number of runways)

m = (m1, m2), where m1, m2 ∈ {Small, Large, Heavy}
m0 = (Small, Small) (initial state)

k = (kSmall , kLarge, kHeavy)
k0 = (2, 1, 0)
V ((m1, m2), (kSmall, kLarge, kHeavy))

= V ((Small, Small), (2, 1, 0))
= V (m0, k0)

Note that the multi runway formulation increases the dimen-

sion of the problem by converting the scalar m from the

single runway formulation into a vector.

With all the aforementioned modifications, and defining

the infinite norm of a vector x = (x1, . . . , xn):

∀x ∈ Rn, ||x||∞ = max1≤i≤n|xi| (1)

the recursive relation of Harikiopoulo’s single runway

algorithm becomes:

V ((m1, . . . , mM), (k1, ..., kp))

=

{

t((m1 , . . . , mM), (k1, ..., kp)) if feas = 1
(+∞, . . . , +∞) if feas = 0

(2)

where

t((m1, . . . , mM), (k1, ..., kp))

=











(0, . . . , 0) if k1 = ... = kp = 0
minx∈X

y∈{1,...,M}
||f((m1, . . . , mM), x)

+V ((m′
1, . . . , m

′
M), (k′

1, ..., k
′
p))||∞ otherwise

(3)

f((m1, . . . , mM), x) = (0, . . . , 0, c(my, x), 0, . . . , 0) (4)

m′
i =

{

x, if y = i

mi otherwise
(5)

X = {x|kx > 0} (6)

and

k′
i =

{

ki − 1, if i = x

ki otherwise
(7)

feas = 1

⇔ D − t((m1 , . . . , mM), (k1, ..., kp)) ≥ ELT (my , k′′
my

)

(8)

where equation (8) defines the criterion for constructing a

feasible schedule.

However, it is now necessary to keep track of the number

of planes of each class remaining to land and their cor-

responding ELTs, on a per runway basis. We introduce a

class repartition vector for each runway, each of them being

updated when an aircraft lands on the corresponding runway.

The calculation of the LSTs of the planes of the sequence

then becomes:

S1 lands on R1: As no plane of class Small landed be-

fore, we set kR1 to kR1 = k0. S1 is then identified

by kR1(1). We have: LST (S1) = ELT (S1) =
ELT (Small, k(1)) = ELT (Small, 2).

S2 lands on R2: As one plane of class Small already

landed before, we remove one plane of class Small

from the class repartition vector k, so we set

kR2 to kR2 = (1, 1, 0). S2 is then identified

by kR2(1). We have LST (S2) = ELT (S2) =
ELT (Small, k(1)) = ELT (Small, 1).

L1 lands on R1: As there was a plane of class Small

on R1 before, then we have:

LST (L1) = max(ELT (L1), LST (Small, kR1(1))

+c(Small, Large))

= max(ELT (Large, kR1(2)),

ELT (Small, kR1(1))

+c(Small, Large))

= max(ELT (Large, 1), ELT (Small, 2)

+c(Small, Large))

= max(ELT (Large, 1), ELT (S1)

+c(Small, Large))

which is correct as it associates S1’s ELT to R1.

As a result, in equation (8), k′′
my

is not necessarily equal

to kmy
. Instead, with the aforementioned notations, we have:

k′′
my

= ky(my) (9)

B. Induction vs. Recursion

Our modifications to the outlined recursive approach is

motivated by the following key factors:

LST of initial aircraft: The standard single runway

algorithm considers that the initial plane (class m0) is

always available for landing and then sets LST (m, k0

m
) =

−∞ ∀m ∈ {1, . . . , p}. As a result, the first column of V

is filled with zeros only. We decide to take into account the

LST of the 0th plane on each runway for two main reasons:

1) This allows us to use the algorithm for the dynamic

case in which the optimal sequence will be built in

dynamics increments, where new aircraft with ever

greater ELTs are continuously arriving;

2) In the multiple runways case, all the 0th planes have

not necessarily begun landing at the exact same time.

Therefore, not considering the real values of the 0th

planes’ LSTs would introduce an offset in runway uti-

lization between runways, that could lead the algorithm

to return a sub-optimal sequence.

Initially free runways: In the single runway problem, we

consider the case where m0 ∈ {1, . . . , p} or where m0 = 0
(meaning that there is no plane in the previous sequence)

2754

simultaneously. In the multiple runways case, we always

consider an m0 vector where

m0(i) ∈ {1, . . . , p}∀i ∈ {1, . . . , M}

for the following reasons:

1) This is the simplest way to distinguish between two

configurations where the state and class repartition

vectors are the same but corresponds to different 0th

planes.

2) It is a way to easily eliminate the unreachable states

in the V array, thereby avoiding the calculation of

unnecessary values and the loss of calculation capacity.

If there are one (or more) initially free runways, we

select the requisite number of planes from those that

are available to land in order to fill the m0 vector.

This is supported by the introduction of the ELTs of

the 0th plane on each runway; as now we can consider

the subproblem of selecting m0 among the possible

combinations to yield the optimal schedule.

LSTs vs LCTs: The recursive algorithm fills the V array

with the completion times of the previous plane in the

constructed sequence; that is the earliest time at which the

runway is free for landing an aircraft. Thus, we fill the

elements of the V array with the vector of LSTs corre-

sponding to the last aircraft in the sequence constructed

to that point, on each runway. Thus, each element of V

has M components, and for each valid landing sequence,

there is a corresponding element of V. 1 We are interested

in minimizing the LST of the last plane of the sequence

(the maximum of the LSTs of the last aircraft landing on

each runway), and not the makespan. As a result, (3) now

becomes:

t((m1 , . . . , mM), (k1, ..., kp)) =


















(0, . . . , 0) if k1 = ... = kp = 0
minx∈X

y∈{1,...,M}
max(ELT (x, kx),

||f((m1 , . . . , mM), x)
+V ((m′

1, . . . , m
′
M), (k′

1, ..., k
′
p))||∞) otherwise

(10)

where ELT (x, kx) is the ELT of the plane we currently

want to land, i.e. the kth
x plane of class x and equations (2,

4, 5, 6, 7, 8) are still valid.

Dynamic Sequencing via Induction: We build the se-

quence inductively for several reasons:

1) Presence of unreachable configurations in the V array:

Some configurations of V are not reachable because

the state vector and the class repartition vector allocate

more planes of a given class than are actually present

in the initial state vector m0 and the initial class

repartition vector k0. These configurations are easy

to identify. But there exist other unreachable config-

urations, corresponding to state and class repartition

vectors satisfying the previous condition but for which

no predecessor is a reachable configuration. To identify

1Please refer to [2], section ’V.Example’ for an explicit example of how
to build the V array.

these configurations, we make a preliminary check of

the elements of V to identify all configurations that

do not allocate more planes than are initially present.

We then make a second check to prune out all valid

configurations that have no reachable predecessors. For

instance, if

m0 = (Small, Small)

k
0 = (2, 1, 0)

then the configuration V ((Small, Small), (2, 0, 0))
seems at first to be reachable because m =
(Small, Small) and k = (2, 0, 0), i.e. contains

four planes of class Small, not more than ini-

tially (four planes of class Small and one plane

of class Large). However, the only possible pre-

decessor class repartition vector is (3, 0, 0). That is

because the state vector m consists only of Small

aircraft remaining to land; thus on the predeces-

sor configuration, a Small plane must have landed,

requiring V ((Small, Small), (3, 0, 0)) to preceede

V ((Small, Small), (2, 0, 0)).
2) Lack of sufficient information to uniquely identify

(landed aircraft, landing runway) pairs:

When calculating a particular

V ((m1, . . . , mM), (k1, ..., kp)) using 2, 10, 4, 5,

6, 7 and 8, we need to consider the correct ELTs

of each (aircraft, runway) pair. This is not easy

because while building the V array recursively, as we

know how many aircraft of the same class have landed

previously but we cannot tell how many aircraft of the

same class have landed previously on a given runway.

This can lead to incorrect values in V or make the

algorithm more complicated.

C. Dynamic Optimality in the Multiple Runways Case

In reality, aircraft arrive dynamically to the TRACON.

Each aircraft is usually assigned to a particular runway a

significant time before it actually lands. This means that

once it has been assigned to a particular runway, it may not

land on another, but its ELT can still be subject to some

slight modification (either an advance or a delay). These

fluctuations can lead to a sequence that is no longer optimal.

To adhere as much as possible to the optimal sequence, we

apply several levels of optimization to the set of aircraft to

land, and divided it into three proper subsets:

• Aircraft not yet assigned to a particular runway

• Aircraft assigned to a particular runway but whose

position on the runway is still subject to modifications

• Aircraft that will no longer be resequenced.

Each time the algorithm is run, we then:

• Update the ELTs of the aircraft not belonging to the

third subset

• Apply the single runway algorithm to the aircraft of the

second subset

• Apply the multiple runways algorithm to the aircraft of

the first subset

2755

in this order.

This allows us to obtain a sub-optimal sequence in a

realistic way, taking into account the fact that the aircraft

must have prior knowledge of their landing runway, in order

to enter the TMA at the corresponding entry point.

III. DYNAMIC RUNWAY SCHEDULING PROBLEM

A. General Structure of the Inductive Algorithm

Using our inductive reformulation and introducing the

LSTs of the 0th planes, we obtain a pseudo-optimal landing

sequence, in term of the largest of the LSTs of the last aircraft

landing on each runway, of a set of planes, in four main steps.

Step 1: Benchmark the FCFS sequence: Calculate the

makespan of the FCFS sequence and then set B, the time

taken to land a feasible sequence, to:

B = LST of the last plane of the FCFS sequence

Step 2: Define a 0th plane:

• If an aircraft of class i is initially on the runway, set

m0 = (i) and then go to Step 3.

• If the runway is initially free, separate the search for the

optimal sequence into as many subproblems as classes

of aircraft. For each subproblem, the initial aircraft is

of a different class, and for each given subproblem, go

to Step 3.

Step 3: Finding a feasible sequence: Calculate a feasible

sequence within a time B for the given set of planes with the

class of the plane on the runway at t = 0s being given as m0,

by identifying all reachable configurations in V defined in

II and picking the optimal. We can iterate to find decreasing

values of B via the procedure explained in Step 4.

In case several configurations provide the same LST, we

choose the configuration according to the following priority

policy:

1) We give priority to the configuration minimizing the

difference between the ELT of the plane we want to

land on the runway and the LCT of the plane that

landed before on this runway.

2) We then give priority to the smaller class number, to

avoid incurring the worst future penalty.

Step 4: Obtaining the static optimal sequence: Two meth-

ods are used successively in order to find the optimal value

of B possessing a feasible sequence. These methods were

described in [2].

DICHOTOMY: An upper bound UB is given by LST of

the last plane of the FCFS sequence.A lower bound LB is

given by either the ELT of the last available aircraft or by the

LST of the last aircraft of the optimal sequence for all ELTs

equal to zero. We halt the dichotomous search, specified in

[2], when UB − LB ≤ ε, where ε is a pre-set threshold.

DECREMENTAL METHOD: Once UB − LB ≤ ε, we start

with the last UB of the dichotomy process which returned

a feasible sequence, and we decrement the upper bound by

a single unit until the algorithm can no longer provide a

feasible sequence. The method is detailed in [2].

Note: There can exist several different feasible sequences

for the optimal value of B. However, the algorithm returns

one unique solution based on the priority rules invoked in

Step 3.

IV. MULTIPLE RUNWAYS SCHEDULING PROBLEM

The single-runway algorithm presented in the previous

section is a restriction of our algorithm. This section shows

how considering several runways affects the algorithm and

its performances.

A. First Come, First Serve

For the multi-runway case, getting the FCFS sequence not

only means ordering all the aircraft according to their ELTs,

but also choosing for each aircraft the runway allowing it

to land as soon as possible, i.e. the runway minimizing its

LST. If each LST is minimized with respect to the FCFS

ordering, the LST of the last plane of the FCFS sequence is

also minimized.

As in the single runway case, if we impose a landing

sequence, optimality will be reached if the FCFS ordering is

respected within each class.

B. Improving upon FCFS

In the multiple runways case, we can distinguish the LST

of the last aircraft of each runway and the global LST of

the set of planes, i.e. the maximum of each runway’s LST.

As our goal is to land the maximum number of planes in a

minimum time, we are only interested in the latter and will

therefore call it simply the LST of the last plane hereon.

C. Algorithmic Approach

Considering several runways affects the general structure

of our algorithm as follows:

1) Step 1: FCFS sequence: As presented above, calculate

the optimal FCFS sequence (per one or M runways).

2) Step 2: Defining 0th planes: As we have several

runways, we can imagine three situations:

• All the runways are occupied with an aircraft at t = 0
• All the runways are free at t = 0
• Some runways are free and some others are occupied

at t = 0. As in the single runway case, we need to

consider all the possibilities for the first plane on each

runway and for each case go to Step 3.

3) Step 3: Finding a feasible sequence: Ambiguity arises

when we want to extend the feasibility algorithm to the

multiple runway problem: in the single runway problem,

an aircraft and its associated ELT is exactly determined by

the sole knowledge of its class m and the number km of

aircraft remaining to be landed within class m. This is true

because k0
m−km provides the arriving position of the aircraft

within its class. In the multiple runway problem, the aircraft

class, denoted m, and the number km of aircraft remaining

to be landed within this class, may not be sufficient to

exactly associate an aircraft and its corresponding ELT. In

order to be able to exactly retrieve the position of each

aircraft, we need to differentiate all the possible landing

2756

orders and include them in the state representation. This state

extension increases the Running Time Complexity (RTC) and

the Storage Complexity (SC). Harikiopoulo demonstrated in

[3] that:

RTC = M ∗ p ∗ F (p, M) ∗

p
∏

i=1

(1 + k0
i) (11)

and

SC = F (p, M) ∗

p
∏

i=1

(1 + k0
i) (12)

where F (p, M) is the number of possible values taken by

(m1, . . . , mm). If we do not consider the state extension

problem highlighted above:

F (p, M) = pM (13)

Now if we consider the state extension problem, we calcu-

lated that then:

F (p, M) = M !

M+1
∑

i1=1

i1
∑

i2=1

i2
∑

i3=1

. . .

ip−2
∑

ip−1=1

1 (14)

However, as said in I.I-A, we always follow a FCFS

strategy within each class. Thus, if the state vector m

contains several ELTs corresponding to the same class, we

know that among the corresponding aircraft, the aircraft

which landed first is the aircraft with the smallest ELT. As

a result, state explosion is mitigated.

Finally, we add a third priority rule for the choice of a fea-

sible sequence, in case B leads to several feasible sequences

with the same largest LST: Minimize the ordinality of the

runway identifier with the largest LST.

4) Step 4: Obtaining the pseudo-optimal sequence:

DICHOTOMY: We can easily evaluate a lower bound and

an upper bound for the optimal LST of the last plane of

the sequence, using the FCFS benchmark, and then use the

procedure outlined in Section III A, Step 4.

DECREMENTAL METHOD: Using the last UB of the di-

chotomy process that returned a feasible sequence, we decre-

ment the upper bound by a single unit until the algorithm

cannot provide a feasible sequence.

Formally, from equations (11),(12),(14) the algorithm is

factorial in the number of runways, i.e. O(M !), exponential

in the number of classes, i.e. O(NP), but polynomial in the

number of aircraft in each class, i.e. O(
∏p

i=1
(1+N)). It also

provides an optimal makespan for the constrained dynamic

interval over which the algorithm is iteratively run.

D. Example Simulation Scenarios and Algorithm Perfor-

mance

In this subsection, we consider the case of two classes of

aircraft, Small and Large, landing on three runways.

1) Simulation Parameters: In the following simulations,

we consider a three runway airport and generate the set

of planes and their ELTs according to a Poisson process

with a 165 planes/hour rate of arrival, which is a realistic

representation of a congested airport.

2) Time saved in comparison to a FCFS strategy: The

following results are the average results obtained with a

number of aircraft N = 30 over 25 simulations for each

case. When the number of classes p is strictly superior to 1,

any P =
(

p1 p2 . . . pp

)

, where pj is the proportion

of planes of class j, is considered as a different case. The

values presented in the tables below corresponds to the LST

of the last plane of the FCFS sequence divided by the LST

of the last plane of the optimal sequence. In all cases, we

have supposed

m0 =
(

Small Small Small
)

and

0
th

LST =
(

0 0 0
)

Single class: As expected, the FCFS is the optimal se-

quence.

Two classes: We consider the planes of class Large and

Heavy use the following separation time matrix C:

C =

(

69 60
157 96

)

and we modify the proportion of planes of class Large by

steps of 0.2. The proportion of planes of class Heavy is

pHeavy = 1 − pLarge .

pL Value

0.0 1.00

0.2 1.06

0.4 1.12

0.6 1.11

0.8 1.10

1.0 1.00

Three classes: We use the separation times given in I-

A and we modify the proportion of planes by steps of 0.2.

The rows of the matrix corresponds to the proportions of

planes of class Small and the columns to the proportions

of class Large. The proportion of planes of class Heavy is

pHeavy = 1 − pSmall − pLarge.

pS\pL 0.0 0.2 0.4 0.6 0.8 1.0

0.0 1.00 1.06 1.12 1.07 1.05 1.00

0.2 1.12 1.15 1.13 1.15 1.07

0.4 1.15 1.17 1.20 1.10

0.6 1.12 1.21 1.07

0.8 1.10 1.05

1.0 1.00

3) Computation Time and Resulting Trends: Harikiopoulo

proved in [2] that the multiple runway aircraft scheduling

problem is not NP-complete. However the run time can

be computationally prohibitive as the number of classes or

number of runways increases.

The computation times shown in the tables below were

obtained with the algorithm implemented in Matlab on a

Pentium IV. The results corresponds to average values over

25 simulations in each case, and in all cases:

m0 =
(

Small Large Heavy
)

and

2757

0
th

LST =
(

0 0 0
)

.

Influence of the number of aircraft: Using our scenario

parameters, with p=3 (three classes) and M=3 (three run-

ways), the following computation times were obtained for

the inductive algorithm:

Number of aircraft Calculation time in s

3 0.25

4 0.49

5 0.98

10 11.0

20 129

30 557

40 983

Influence of the number of classes: Using our scenario

parameters, with N=30 (thirty aircraft) and M=3 (three

runways), we observe the following influence of the number

of classes of aircraft on the computation time. We consider

the following matrix C’:

C
′ =













144 138 101 85 61
198 143 122 88 77
200 160 132 111 89
202 196 178 131 94
202 198 181 175 104













and suppose that for each number of classes p to consider

(with p ∈ {1, . . . , 5}), the seperation time matrix to consider

is the p∗p upper left part of C’. For instance, if p = 3, then:

C =





144 138 101
198 143 122
200 160 132





The following results were obtained:

Number of classes Calculation time in s

1 0.26

2 21.7

3 418

4 4003

5 ≥ 75 000

V. CONCLUSION

An inductive algorithm for scheduling N aircraft, all of

which are drawn from P classes of aircraft, onto M runways,

in both a static and dynamic fashion. Formally, the algorithm

is factorial in the number of runways, exponential in the

number of classes, but polynomial in the number of aircraft

in each class. It also provides an optimal makespan for the

constrained dynamic interval over which the algorithm is

iteratively run. Further work on mitigating the computational

complexity of the dynamic version of the algorithm for

multiple runways will involve creating lexically compact

representations of the over-all state space, and the initial

starting conditions of the algorithm.

REFERENCES

[1] H.N. Psaraftis, “A Dynamic Programming Approach for Sequencing

Groups of Identical Jobs,” Operations Research, vol. 28, 1980.
[2] D. Harikiopoulo and N. A. Neogi, “Polynomial Time Feasibility

Condition for Multi-Class Aircraft Sequencing on a Single Runway
Airport,” IEEE Transactions on Intelligent Systems, in press 2010.

[3] D. Harikiopoulo, “Class Dependent Sequencing Strategies for Landing

Aircraft at Congested Airports,” M.S. Thesis, University of Illinois,
Urbana-Champaign, 2004.

[4] L.Bianco, P. Dell’Olmo, and S. Giordani, “Scheduling Models

and Algorithms for TMA Traffic Management,” in Modelling and

Simulation for Air Traffic Management, L.Bianco, P. Dell’Olmo, and
A.R.Odoni, Eds. 1997, pp. 139–167, Springer.

[5] R. De Neufville and A.R.Odoni, Aiport Systems: Planning, Design,

and Management, Mc Graw-Hill, 2002.
[6] R.G. Dear, “The Dynamic Scheduling of Aircraft in the Near Terminal

Area,” FTL Report R76-9, Flight Transportation Laboratory, 1976.
[7] R.G. Dear and Y.S. Sherif, “An Algorithm for Computer Assisted

Sequencing and Scheduling of Terminal Area Operations,” Trans-

portation Research. Part A, Policy and Practise, vol. 25, pp. 129–139,
1991.

[8] H.N. Psaraftis, “A Dynamic Programming Approach to the Aircraft
Sequencing Problem,” FTL Report R78-4, Flight Transportation
Laboratory, 1978.

[9] C.S. Venkatakrishan, A. Barnett, and A.R.Odoni, “Landings at Logan
Airport: Describing and Increasing Airport Capacity,” Transportation

Sciences, vol. 27, pp. 211–217, 1993.

[10] J.E Beasley, M. Krishnamoorty, Y.M. Sharaiha, and D. Abramson,
“Scheduling Aircaft Landings - the Static Case,” Transportation

Sciences, vol. 34 (2), pp. 180–197, 2000.
[11] L. Bianco, S. Ricciardelli, G. Rinaldi, and A. Sassano, “Scheduling

Tasks with Sequence Dependent Processing Times,” Naval Research

Logistics, vol. 35, pp. 177–184, 1988.
[12] L.Bianco, P. Dell’Olmo, and S. Giordani, “Minimizing Total Com-

pletion Time Subject to Release Dates and Sequence Dependent

Processing Times,” Annals of Operations Research, vol. 86, pp. 393–
415, 1999.

[13] L.Bianco, P. Dell’Olmo, and S. Giordani, “Coordination of Traffic

Flows in the TMA,” in New Concepts and Methods in Air Traffic

Management, L.Bianco, P. Dell’Olmo, and A.R.Odoni, Eds. 1999, pp.
95–124, Springer.

[14] J. Milan, “The Flow Management Problem in Air Traffic Control: A
Model of Assigning Priorities at a Congested Airport,” Transp. Plan.

Technol., vol. 20, pp. 131–162, 1997.
[15] C. Wu and R.E. Caves, “Research Review of Air Traffic Management,”

Transport Reviews, vol. 22, pp. 115–132, 2002.

[16] M. R. Garey and D. S. Johnson, Computer and Intractability, a Guide

to the Theory of NP-Completeness, W.H.Freeman Company, 1979.

2758

