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Abstract— In this paper, we review the recent results on
stability and control for time-varying sets of nonlinear time-
varying dynamical systems and utilize them for the problem
of multi-vehicle coordinated motion in the context of obstacle
avoidance where obstacles are approximated and enclosed by
elliptic shapes. Specifically, we design distributed controllers
for individual vehicles moving in a specified formation in the
presence of such obstacles. The obstacle avoidance algorithm
that we propose is based on transitional trajectories which
are defined by a set of ordinary differential equations that
exhibit a stable elliptical limit cycle. The control framework is

implemented on the system of double integrators and is shown
to globally exponentially stabilize moving formation of the
agents in pursuit of a leader while ensuring obstacle avoidance.

I. INTRODUCTION

Multi-vehicle systems present a class of interconnected
dynamical systems where vehicles are often coupled through
the common task that they need to accomplish, but otherwise
dynamically decoupled, meaning that the motion of one does
not directly affect the others. The complexity of multi-vehicle
cooperative manoeuvres as well as environmental conditions
often necessitate the design of feedback control algorithms
that use information about current position and velocity of
each vehicle to steer them while maintaining a specified
formation. For example, for mobile agents operating in foggy
environment or located far from each other, open-loop visual
control for coordinated motion becomes impractical. In this
case, feedback control algorithms are required for individual
vehicle steering which determine how a given vehicle ma-
neuvers based on positions and velocities of nearby vehicles
and/or on those of a formation leader.

Analysis and control design for networks of mobile
agents has received considerable attention in the literature.
A number of recent papers propose rigorous mathematical
techniques for the analysis of networks of agents [1], [2],
[3], [4], [5]. Distributed control of robotic networks has been
extensively studied in [6], [5] where the authors develop
a variety of control algorithms for network consensus. A
survey of recent research results in cooperative control of
multi-vehicle systems was performed in [7].

It was shown in [8] that a specified formation of multiple
vehicles can be characterized by a time-varying set in the
state space, and hence, the problem of control design for
multi-vehicle coordinated motion is equivalent to design
of stabilizing controllers for time-varying sets of nonlinear
dynamical systems. Authors in [8] developed stability anal-
ysis and control design framework for time-varying sets of
nonlinear time-varying dynamical systems using vector Lya-
punov functions. Specifically, distributed control algorithms
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were designed for multi-vehicle coordination and are shown
to globally exponentially stabilize multi-vehicle formations.

Some obstacle avoidance strategies for multi-vehicle prob-
lems include decentralized control approaches where local
control laws are defined for each agent based on local
information [9], [10] and behavior-based methods presented
in [11], [12]. Perhaps, the most promising approach to
obstacle avoidance is the potential field method which has
been extensively utilized for mobile robots with static and
dynamic obstacles implemented in real time experiments
[13], [14], [15] and applied with robust controllers such as
sliding mode control law [16].

Another more recent, rarely employed approach to ob-
stacle avoidance is the limit cycle based method. Authors
in [17] use limit cycles to generate trajectories for robot
manipulators while avoiding obstacles. They define unstable
limit cycles as objects of finite size and shape as a way of
modeling complex obstacles to be avoided. The use of stable
limit cycles as a navigation method has been introduced
for obstacle avoidance of mobile robots in [18], [19]. The
approach only considers circular limit cycles for mobile
robots which are suitable for shapes with approximately the
same length and width.

In this paper, we present an obstacle avoidance strategy
that involves transitional trajectories defined as solutions to
a set of ordinary differential equations possessing a stable
limit cycle of elliptical shape. The obstacle is encircled
by such ellipse and once detected, the trajectory of an
agent is replanned in such a way so that the new trajectory
follows a solution to the above system of ODEs. As soon
as the obstacle is cleared, the trajectory of the agent is
set back to the original trajectory the agent was following
before encountering an obstacle. We combine this obstacle
avoidance strategy with the distributed control algorithms for
multi-vehicle coordinated motion developed in [8] to achieve
stable coordination in the presence of obstacles.

II. STABILITY AND STABILIZATION OF

TIME-VARYING SETS

In this section, we review the recent results developed in
[8] on stability and stabilization of time-varying sets for time-
varying nonlinear dynamical systems using vector Lyapunov
functions [20], [21], [22]. To elucidate this, consider the
time-varying nonlinear dynamical system given by

ẋ(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, (1)

where x(t) ∈ D ⊆ R
n, t ≥ t0, is the solution to (1), t0 ∈

[0,∞), D is an open set, 0 ∈ D, f(t, 0) = 0, t ≥ t0, and
f(·, ·) is Lipschitz continuous on [0,∞)×D.

The following definition introduces several types of stabil-
ity for time-varying sets of nonlinear time-varying dynamical
systems. For this definition, Dt

0 , D0(t), t ≥ t0, is a
time-varying set such that, at each instant of time t ≥ t0,
D0(t) is a compact set and Oε(D0(t)) , {x ∈ D :
dist(x,D0(t)) < ε}, t ≥ t0, defines the ε-neighborhood of
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D0(t) at each instant of time t ≥ t0, where dist(x,D0(t)) ,
infy∈D0(t) ‖y − x‖, t ≥ t0.

Definition 2.1 ([8]): Consider the nonlinear time-varying
dynamical system (1). Let Dt

0 be a time-varying set such
that Dt

0 is positively invariant with respect to (1) and at each
instant of time t ∈ [t0,∞), D0(t) is a compact set.

i) Dt
0 is uniformly Lyapunov stable if for every ε > 0,

there exists δ = δ(ε) > 0 such that x0 ∈ Oδ(D0(t0))
implies that x(t) ∈ Oε(D0(t)) for all t ≥ t0 and for all
t0 ∈ [0,∞).

ii) Dt
0 is uniformly asymptotically stable if it is uniformly

Lyapunov stable and there exists δ > 0 such that x0 ∈
Oδ(D0(t0)) implies that limt→∞ dist(x(t),D0(t)) = 0
uniformly in t0 and x0 for all t0 ∈ [0,∞).

iii) Dt
0 is globally uniformly asymptotically stable if it

is uniformly Lyapunov stable and limt→∞ dist(x(t),
D0(t)) = 0 uniformly in t0 and x0 for all x0 ∈ R

n

and t0 ∈ [0,∞).
iv) Dt

0 is uniformly exponentially stable if there ex-
ist scalars α > 0, β > 0, δ > 0 such that
x0 ∈ Oδ(D0(t0)) implies that dist(x(t),D0(t)) ≤
α dist(x0,D0(t0))e

−β(t−t0), t ≥ t0, for all t0 ∈ [0,∞).
v) Dt

0 is globally uniformly exponentially stable if there
exist scalars α > 0, β > 0 such that dist(x(t),D0(t)) ≤
α dist(x0,D0(t0))e

−β(t−t0), t ≥ t0, for all x0 ∈ R
n

and t0 ∈ [0,∞).

The following definition introduces the notion of class W
functions involving quasimonotone increasing functions.

Definition 2.2 ([22]): A function w = [w1, ..., wq]
T :

[0,∞)×R
q → R

q is of class W if, for every fixed t ∈ [0,∞),
each component wi(·, ·), i = 1, ..., q, of w(·, ·) satisfies
wi(t, z

′) ≤ wi(t, z
′′) for all z′, z′′ ∈ R

q such that z′j ≤ z′′j ,

j = 1, ..., q, j 6= i, and z′i = z′′i , where zi denotes the ith
component of z.

Theorem 2.1 ([8]): Consider the nonlinear time-varying
dynamical system (1). Assume there exists a continuously
differentiable vector function V (t, x) = [V1, . . . , Vq]

T :
[0,∞) × D → Q ∩ R

q

+, where Q ⊂ R
q and 0 ∈ Q; a

continuous function w = [w1, . . . , wq]
T : [0,∞)×Q → R

q;
and class K functions α(·), β(·) such that Vi(t, x) = 0,
x ∈ Di(t), t ≥ t0, where Di(t) ⊂ D, t ≥ t0; Vi(t, x) > 0,

x ∈ D\Di(t), t ≥ t0, i = 1, . . . , q; Dt
0 = D0(t) ,

∩q
i=1Di(t) 6= Ø is a positively invariant time-varying set

with respect to (1) which is compact at each instant of time
t ≥ t0; w(t, ·) ∈ W ; w(t, 0) = 0, t ≥ 0;

α(dist(x,D0(t))) ≤ e
TV (t, x) ≤ β(dist(x,D0(t))),

(x, t) ∈ D × [0,∞), (2)

and

∂Vi(t,x)
∂t

+ V ′
i (t, x)f(t, x) ≤ wi(t, V (t, x)),

(x, t) ∈ D × [0,∞), i = 1, . . . , q. (3)

In addition, assume that the vector comparison system

ż(t) = w(t, z(t)), z(0) = z0, t ≥ t0, (4)

has a unique solution z(t), t ≥ t0, forward in time. Then the
following statements hold:

i) If the zero solution to (4) is uniformly Lyapunov stable,
then Dt

0 is uniformly Lyapunov stable with respect to
(1).

ii) If the zero solution to (4) is uniformly asymptotically
stable, then Dt

0 is uniformly asymptotically stable with
respect to (1).

iii) If D = R
n, Q = R

q , α(·) and β(·) are class K∞
functions, and the zero solution to (4) is globally
uniformly asymptotically stable, then Dt

0 is globally
uniformly asymptotically stable with respect to (1).

iv) If there exist constants ν ≥ 1, α > 0, β > 0 such that,
instead of (2), the following inequality holds

α [dist(x,D0(t))]
ν ≤ e

TV (t, x) ≤ β [dist(x,D0(t))]
ν
,

(x, t) ∈ D × [0,∞), (5)

and the zero solution to (4) is uniformly exponentially
stable, then Dt

0 is uniformly exponentially stable with
respect to (1).

v) If D = R
n, Q = R

q and there exist constants ν ≥ 1,
α > 0, β > 0 such that (5) holds and the zero solution to
(4) is globally uniformly exponentially stable, then Dt

0
is globally uniformly exponentially stable with respect
to (1).

Next, we use the result of Theorem 2.1 to design stabiliz-
ing controllers for time-varying sets of multi-agent dynami-
cal systems composed of q agents whose dynamics are given
by

ẋi(t) = fi(t, x(t)) +Gi(t, x(t))ui(t), t ≥ t0,

i = 1, . . . , q, (6)

where x(t) = [xT
1 (t) . . . , x

T
q (t)]

T, xi(t) ∈ R
ni , t ≥ 0, fi :

[0,∞) × R
n → R

ni and Gi : [0,∞) × R
n → R

ni×mi are
continuous functions for all i = 1, . . . , q. Consider the time-
varying sets given by Di(t) , {x ∈ R

n : Xi(t, xi) = 0}, t ≥
t0, where Xi : [0,∞)×R

ni → R
si are continuous functions

for all i = 1, . . . , q. Define the motion of the ith agent on
the set Di(·) as xei(t), t ≥ t0, and note that Xi(t, xei(t)) ≡
0. Assume there exist vector functions uei(t), t ≥ t0, i =
1, . . . , q, such that

Gi(t, xe(t))uei(t) = ẋei(t)− fi(t, xe(t)), t ≥ t0,

i = 1, . . . , q, (7)

where xe(t) ,
[

xT
e1(t), . . . , x

T
eq(t)

]T
, t ≥ t0.

The next result presents a controller design that guaran-
tees stabilization of a time-varying set for the time-varying
nonlinear dynamical system (6) using vector Lyapunov func-
tions.

Theorem 2.2 ([8]): Consider the multi-agent dynamical
system given by (6). Assume there exist a continu-
ously differentiable, component decoupled vector func-

tion V : [0,∞) × R
n → R

q

+, that is, V (t, x) =
[V1(t, x1), . . . , Vq(t, xq)]

T, (x, t) ∈ R
n × [0,∞); a continu-

ous function w = [w1, . . . , wq]
T : [0,∞) × R

q

+ → R
q, and

class K functions α : [0,∞) → [0,∞) and β : [0,∞) →
[0,∞) such that Vi(t, xi) = 0, x ∈ Di(t) ⊂ R

n, t ≥ t0,
i = 1, . . . , q; Vi(t, xi) > 0, x ∈ R

n\Di(t), t ≥ t0,

i = 1, . . . , q; Dt
0 = D0(t) , ∩q

i=1Di(t) 6= Ø, t ≥ t0, is
a compact set at each t ≥ t0; w(t, ·) ∈ W ; w(t, 0) = 0,
t ≥ 0;

α(dist(x,D0(t))) ≤ e
TV (t, x) ≤ β(dist(x,D0(t))),

(x, t) ∈ R
n × [0,∞), (8)

and, for all i = 1, . . . , q,

∂Vi(t, xi)

∂t
+ V ′

i (t, xi)fi(t, x) ≤ wi(t, V (t, x)),

(x, t) ∈ Ri, (9)
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where Ri , {(x, t) ∈ R
n × [0,∞) : V ′

i (t, xi)Gi(t, x) =
0}, i = 1, . . . , q. In addition, assume that the zero solution
z(t) ≡ 0 to

ż(t) = w(t, z(t)), z(0) = z0, t ≥ t0, (10)

is uniformly asymptotically stable. Then Dt
0 is uniformly

asymptotically stable with respect to the nonlinear dynamical
system (6) with the feedback control law u = φ(t, x) =
[φT

1 (t, x), . . . , φ
T
q (t, x)]

T, x ∈ R
n, t ∈ [0,∞), given by

φi(t, x) =















uei(t)−
(

c0i +
µi(t,x)+

√
λi(t,x)

σT

i
(t,x)σi(t,x)

)

σi(t, x),

if σi(t, x) 6= 0;
uei(t), if σi(t, x) = 0,

(11)

where uei(t), t ≥ t0, satisfies (7), λi(t, x) , µ2
i (t, x) +

(σT
i (t, x)σi(t, x))

2, µi(t, x) , ρi(t, x) − wi(t, V (t, x)) +
∂Vi(t,xi)

∂t
+ σT

i (t, x)uei(t), ρi(t, x) , V ′
i (t, xi)fi(t, x),

σi(t, x) , GT
i (t, x)V

′T
i (t, xi), and c0i > 0, i = 1, . . . , q.

If, in addition, α(·) and β(·) are class K∞ functions and
the zero solution z(t) ≡ 0 to (10) is globally uniformly
asymptotically stable, then Dt

0 is globally uniformly asymp-
totically stable with respect to (6) with the feedback control
law u = φ(t, x) given by (11). Furthermore, if there exist
constants ν ≥ 1, α > 0 and β > 0 such that, instead of (8),
the following inequality holds

α [dist(x,D0(t))]
ν ≤ e

TV (t, x) ≤ β [dist(x,D0(t))]
ν
,

(x, t) ∈ R
n × [0,∞), (12)

and the zero solution to (10) is uniformly exponentially
stable, then Dt

0 is uniformly exponentially stable with respect
to (6) with the feedback control law (11). Finally, if (12)
holds and the zero solution to (10) is globally uniformly
exponentially stable, then Dt

0 is globally uniformly expo-
nentially stable with respect to (6) with the feedback control
law (11).

III. OBSTACLE AVOIDANCE STRATEGY

In this section, we consider planar motion of the agents.
Our obstacle avoidance strategy is based on approximating
obstacles as continuously differentiable shapes that can be
represented as the limit cycle solution of the planar system
of ordinary differential equations. Specifically, we encircle an
obstacle by an ellipse which serves as a limit cycle orbit of
a certain two dimensional dynamical system. As soon as the
obstacle is detected, the trajectory of an agent is replanned so
as to follow a solution of the above system until the obstacle
is cleared. To elucidate this approach, introduce the state
variables of the transitional trajectory as

{

x̃ = x− xc,
ỹ = y − yc,

(13)

where x, y denote horizontal and vertical displacements of
an agent and xc, yc denote the location of the limit cycle
origin. We consider limit cycles of elliptical form given by
the zero level set of the following function

l(x̃, ỹ) =

[

x̃ cosφ+ ỹ sinφ

a

]2

+

[−x̃ sinφ+ ỹ cosφ

b

]2

− 1, (14)

where x̃ and ỹ are defined in (13), a and b are semi-major and
semi-minor axes, respectively, and φ is the angle representing

the orientation of the ellipse’s semi-major axis relative to the
horizontal axis. Thus,

l(x̃, ỹ) ≡ 0 (15)

defines an ellipse centered at (xc, yc) with semi-major and
semi-minor axes a and b, respectively, and with the semi-
major axis forming angle φ relative to the horizontal axis.

Next, we consider a planar dynamical system that exhibits
a limit cycle of the form (15) and that is given by

{

˙̃x = h1(x̃, ỹ)− x̃l(x̃, ỹ),
˙̃y = h2(x̃, ỹ)− ỹl(x̃, ỹ),

(16)

where h1(x̃, ỹ) and h2(x̃, ỹ) represent the agent dynamics
on the limit cycle, that is, when l(x̃, ỹ) = 0. The dynamics
of (16) must ensure that a trajectory starting from any point
outside of the limit cycle, that is, when l(x̃, ỹ) > 0, will
converge to the limit cycle without crossing it.

The motion of a particle along the ellipse given by (15)
with the angular speed ω is given by

{

x̃ = a cosφ cosωt− b sinφ sinωt,
ỹ = a sinφ cosωt+ b cosφ sinωt.

(17)

Thus, the time derivative of (17) can be written as
{

˙̃x = −ω(a cosφ sinωt− b sinφ cosωt),
˙̃y = ω(−a sinφ sinωt+ b cosφ cosωt).

(18)

Note that, ω > 0 and ω < 0 represent counterclockwise
(CCW) and clockwise (CW) rotation of the particle, respec-
tively. Eliminating cosωt and sinωt from (17) and (18), we
obtain

{

˙̃x = ω
ab
(he11x̃− he12ỹ),

˙̃y = ω
ab
(he21x̃− he11ỹ),

(19)

which represents particle dynamics on the limit cycle, where






he11 = (a2 − b2) sinφ cosφ,
he12 = a2 cos2 φ+ b2 sin2 φ,
he21 = b2 cos2 φ+ a2 sin2 φ.

Thus, h1(x̃, ỹ) and h2(x̃, ỹ) in (16) are given by
{

h1(x̃, ỹ) =
ω
ab
(he11x̃− he12ỹ),

h2(x̃, ỹ) =
ω
ab
(he21x̃− he11ỹ).

(20)

Lemma 3.1: The trajectories defined by (16) asymptoti-
cally converge to the elliptical limit cycle given by (15) for
all initial conditions in N = {(x̃, ỹ) ∈ R

2 : l(x̃, ỹ) > 0}.

Proof. Consider the following Lyapunov function candi-
date given by

V (x̃, ỹ) =
a2b2

2
l(x̃, ỹ), (x̃, ỹ) ∈ N . (21)

Note that V (x̃, ỹ) > 0 for all (x̃, ỹ) ∈ N . Furthermore, the
Lyapunov derivative along trajectories of (16) is given by

V̇ (x̃, ỹ) = −l(x̃, ỹ)[a2(−x̃ sinφ+ ỹ cosφ)2

+b2(x̃ cosφ+ ỹ sinφ)2] < 0, (x̃, ỹ) ∈ N ,

(22)

which implies asymptotic convergence of the trajectories of
(16) to the ellipse (15) for all initial conditions in N .

Note that an agent is only required to remain on the
trajectory converging to a limit cycle for a finite period of
time until an obstacle is cleared. As soon as the obstacle is
cleared the agent returns back to its original trajectory.
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IV. CONTROL DESIGN FOR MULTI-VEHICLE

COORDINATED MOTION

In this section, we apply the results of Sections II and III
to a problem of coordinated motion of multiple vehicles in
pursuit of a (virtual) leader while the vehicles and the leader
encounter obstacles. Since a specified formation of multiple
vehicles can be characterized by a time-varying set in the
state space, the problem of control design for multi-vehicle
coordinated motion is equivalent to design of stabilizing con-
trollers for time-varying sets of nonlinear dynamical system.
Thus, using the stability and control results developed for
time-varying sets, we design distributed control algorithms
for stabilization of a multi-vehicle formation. Specifically,
we design a distributed feedback control law that drives
individual vehicles to a configuration with specified distance
and orientation with respect to a leader while maintaining
this configuration throughout the motion of the leader. To
elucidate the control design, consider planar motion of q
agents with the individual agent dynamics given by

ẍi(t) = uxi(t), xi(0) = xi0, ẋi(0) = ẋi0, t ≥ 0,

(23)

ÿi(t) = uyi(t), yi(0) = yi0, ẏi(0) = ẏi0, (24)

where xi : [0,∞) → R and yi : [0,∞) → R, i =
1, . . . , q, are the displacements of the ith agent in the
horizontal and vertical directions, respectively, and uxi and
uyi are the control forces acting on the ith agent in the
horizontal and vertical directions, respectively. Next, define
ηi , [xi, yi, ẋi, ẏi]

T, i = 1, . . . , q, and η , [ηT1 , . . . , η
T
q ]

T.
Then the generalized dynamics (23), (24) for q agents can
be written in the state space form as

η̇(t) = (Iq ⊗A)η(t) + (Iq ⊗B)u(t), η(0) = η0,

t ≥ 0, (25)

where η0 = [ηT10, . . . , η
T
q0]

T, ηi0 = [xi0, yi0, ẋi0, ẏi0]
T,

u , [uT
1 , . . . , u

T
q ]

T, ui , [uxi, uyi]
T, “⊗” is the Kronecker

product, Iq ∈ R
q×q is the identity matrix, and A, B are given

by

A =









0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0









, B =









0 0
0 0
1 0
0 1









. (26)

Furthermore, we define the time-varying sets

Di(t) , {η ∈ R
4q : ηi − pi(t) = 0}, t ≥ 0,

i = 1, . . . , q, (27)

where

pi(t) ,









xL(t) + lxiL
yL(t) + lyiL

ẋL(t)
ẏL(t)









, t ≥ 0, i = 1, . . . , q, (28)

xL(t), yL(t), t ≥ 0, are, respectively, horizontal and ver-
tical positions of the leader, ẋL(t), ẏL(t), t ≥ 0, are,
respectively, horizontal and vertical velocities of the leader,
and lxiL, lyiL ∈ R are, respectively, desired horizontal and
vertical distances between the ith agent and the leader. Note
that each set Di(t), t ≥ 0, i = 1, . . . , q, defines relative
position and velocity of the ith agent with respect to the
leader. In order to construct the set Di(t), t ≥ 0, i = 1, . . . , q,
only the local information about the relative position and

velocity of the ith agent with respect to the leader is needed.
Furthermore, the intersection of the sets (27) given by

Dt
0 = D0(t) ,

⋂

i=1,...,q

Di(t), t ≥ 0, (29)

characterizes the desired formation of agents with respect to
the leader where all agents maintain specified distances and
velocities with respect to the leader.

Next, we define the component decoupled vector func-
tion V : [0,∞) × R

4q → R
q such that V (t, η) =

[V1(t, η1), . . . , Vq(t, ηq)]
T, where

Vi(t, ηi) = (ηi − pi(t))
TP (ηi − pi(t)), ηi ∈ R

4,

t ≥ 0, i = 1, . . . , q, (30)

where

P =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









> 0. (31)

Note that Vi(t, ηi) = 0, η ∈ Di(t), t ≥ 0, and Vi(t, ηi) >
0, η ∈ R

4q \ Di(t), t ≥ 0, i = 1, . . . , q. In addition,
since λmin(P ) = λmax(P ) = 1, condition (12) is sat-

isfied with α = 1
2 , β = 2, ν = 2, dist(η,D0(t)) ,

[

(η − p(t))T(η − p(t))
]

1

2 , η ∈ R
4q , t ≥ 0, where p(t) ,

[pT1 (t), . . . , p
T
q (t)]

T. Furthermore, it can be shown that, for

Ri , {(η, t) ∈ R
4q×[0,∞) : V ′

i (t, ηi)B = 0}, i = 1, . . . , q,
condition (9) is satisfied with

∂Vi(t, ηi(t))

∂t
+ V ′

i (t, ηi(t))Aηi(t) ≤ −γiVi(t, ηi(t)),

(η, t) ∈ Ri, i = 1, . . . , q, (32)

for γi ∈ (0, 1], i = 1, . . . , q. In this case, the zero solution
to (10) is globally exponentially stable with

w(z) = [−γ1z1, . . . ,−γqzq]
T. (33)

Hence, it follows from Theorem 2.2 that the time-varying
set Dt

0 defined by (29) is globally uniformly exponen-
tially stable with respect to (25) with the feedback con-
trol law ui = φi(t, ηi), i = 1, . . . , q, given by (11)

with µi(t, ηi) , ρi(t, ηi) − wi(Vi(t, ηi)) + ∂Vi(t,ηi)
∂t

+

σT
i (t, ηi)uei(t), ρi(t, ηi) , V ′

i (t, ηi)Aηi, σi(t, ηi) ,

BTV ′T
i (t, ηi), uei(t) = [ẍL(t), ÿL(t)]

T, and w(V (t, η))
given by (33). Note that the feedback control law ui =
φi(t, ηi), i = 1, . . . , q, is a distributed control algorithm [5],
[6] which uses only local information about relative position
and velocity of the ith agent with respect to the leader.
This allows to reproduce this controller without changing
its structure as many times as the number of agents in
order to steer individual agent while maintaining a specified
formation with respect to the leader.

Now, according to our obstacle avoidance strategy, when
obstacles are detected, they are approximated by ellipses as
shown in Section III. In this case, the dynamics of the ith
agent is forced to obey

{

˙̃xi = h1(x̃i, ỹi)− x̃il(x̃i, ỹi),
˙̃yi = h2(x̃i, ỹi)− ỹil(x̃i, ỹi),

(34)

where x̃i = xi − xci, ỹi = yi − yci, (xci, yci) is the position
of the center of an ellipse, and h1(·, ·), h2(·, ·), and l(·, ·) are
given by (20) and (14).
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Next, consider the case when an obstacle is detected on
the way of a formation leader. In this case, in addition to the
elliptical limit cycle that encircles an obstacle, we define an
elliptical region surrounding the obstacle as a safety measure.
This region includes all points in R

2 satisfying l(x̃L, ỹL) >
k, where k is a safety factor which specifies the size of the
elliptical region. Introduction of such elliptical region as a
safety zone ensures that the leader will not collide with the
obstacle and will have enough time to change its trajectory
and converge to the elliptical limit cycle. When an obstacle
is detected in the elliptical region, the leader is scheduled
to change its path from the original one to the one that is
given by a solution to (34). In order to make this transition
smooth, we define an intermediate path for the leader given
by the fifth-order polynomial. Specifically, as soon as the
leader reaches the boundary of the elliptical region given by
l(x̃L, ỹL) = k at time t = t0, the trajectory of the leader is
forced to follow

x(t) = a5∆t5 + a4∆t4 + a3∆t3 + a2∆t2 + a1∆t+ a0,

y(t) = b5∆t5 + b4∆t4 + b3∆t3 + b2∆t2 + b1∆t+ b0.

(35)

where ∆t , t− t0 and coefficients ai, bi, i = 1, . . . , 5, are
determined from the boundary conditions for the position,
velocity, and acceleration of the leader at times t0 and t1
with t1 being the end time of the transitional path (35).
After the transitional phase given by (35), the motion of the
leader switches to obey the dynamics given by (34). The
control algorithm developed in Section II guarantees that
while the leader is bypassing the obstacle on its new path,
the agents will follow the leader in a specified formation due
to exponential stability of the time-varying set describing the
formation. As soon as the obstacle is cleared, the formation
leader will switch its trajectory back to the original one. In
order to find the proper point of diverging from the motion
given by (34) to the motion on the original path, a line-
drawing method has been used. In this method, a line is
drawn between the current leader’s position and its (virtual)
position as if there were no obstacle. As long as there is
an intersection between this line and the ellipse l(x̃, ỹ) = 0,
the leader’s dynamics will remain obeying (34) and as soon
as there is no intersection between the line and the ellipse,
the leader will switch back to its original path and the
obstacle avoidance is guaranteed. The transition phase when
the leader is diverging from the motion according to (34)
to its original trajectory is again described by the fifth-order
polynomials given by (35).

Now, consider the case when the kth agent in the formation
encounters an obstacle on its way. Recall that we design
a stabilizing controller for the time-varying set (27) for
each agent to ensure that the agent will be on the specified
formation while following the formation leader. Now, as soon
as the kth agent detects an obstacle on its way, the time-
varying set (27) for this agent is redefined to be

D̃k(t) , {η ∈ R
4q : ηk − p̃k(t) = 0}, t ≥ 0, (36)

where

p̃k(t) ,









x̃k(t) + xck

ỹk(t) + yck
˙̃xk(t)
˙̃yk(t)









, t ≥ 0, (37)

where x̃k(t), ỹk(t), t ≥ 0, are solutions to (34). Furthermore,
the intersection of sets (27) and (36) given by

D̃t
0 = D̃0(t) ,

⋂

i=1,...,q, i6=k

Di(t)
⋂

D̃k(t), t ≥ 0, (38)
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Fig. 1. Position phase portrait of two agents following the leader.
Black solid line represents trajectory of the leader.
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Fig. 2. Position phase portrait of two agents following the leader
and the moving formation. Black solid line represents trajectory of
the leader.

characterizes the temporary desired formation of agents with
respect to the leader until the obstacle is cleared by the kth
agent. Specifically, when the kth agent encounters an obsta-
cle on its path, the time-varying set describing the desired
formation will switch from (27) to (36). Then, as soon as
the obstacle is cleared, the time-varying set describing the
desired formation will switch back to the original set (27). By
switching between the above time-varying sets, we guarantee
the obstacle avoidance for each agent while maintaining the
desired formation at the steady state.

In the following simulation, we consider two agents pur-
suing a leader in a triangular formation, while there is an
obstacle on the way of each agent as well as the leader.
For this, we set lx1L = −5, ly1L = 7, lx2L = −12,
ly2L = 0, c0i = 0.2, i = 1, 2, γi = 1

5 , i = 1, 2,

η10 = [−20,−2,−1,−2]T, and η20 = [−1,−10, 3,−2]T.
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Fig. 3. Control forces in horizontal and vertical directions versus
time.

With this choice of the parameters lxiL and lyiL, i = 1, 2,
the agents will form a configuration of an equilateral triangle
with respect to the leader. Furthermore, the leader is set to
be moving on a sinusoidal path according to xL(t) = t,
yL(t) = 2 sin(0.3t), t ≥ 0. We define an obstacle for
the first agent encircled by an ellipse with the parameters
xc = −15, yc = 0, a = 2, b = 4, φ = −0.8(rad),
and ω = −0.75(rad/s) and we define an obstacle for the
second agent encircled by an ellipse with the parameters
xc = −4, yc = −6, a = 2, b = 4, φ = 1.2(rad), and ω =
−0.32(rad/s). When the leader gets close to the obstacle, it
switches its path to the solution of (34) which possesses an
elliptical limit cycle with the parameters xc = 26, yc = 1.5,
a = 2, b = 4, φ = −0.8(rad), and ω = −0.22(rad/s).
Thus, the new xL(t) and yL(t) are determined by a solution
to (34). As soon as the obstacle is cleared, the leader switches
its path back to the original sinusoidal path.

For the feedback controller (11), Figure 1 shows position
phase portrait of two agents following the leader while each
agent and the leader avoid obstacles and Figure 2 shows
that the agents eventually converge to the desired triangular
formation after all obstacles are cleared. Finally, Figure 3
shows the time history of the control forces acting on each
agent.

V. CONCLUSION

In this paper, we reviewed stability analysis and control
design framework for time-varying sets of nonlinear time-
varying dynamical systems developed in [8] and introduced
an obstacle avoidance planning strategy based on approx-
imating obstacles as ellipses in order to plan and track
transitional trajectories around them until the obstacle is
cleared. The transitional trajectories are defined as solutions
to a set of planar ODE’s that exhibit stable elliptical limit
cycle approximating the obstacles. It was shown that for a
system of planar double integrators with a specified moving
formation with respect to the leader and with an obstacle on
the way of each agent as well as the leader, the developed
distributed control algorithm globally exponentially stabilizes
the moving formation, while obstacle collision is avoided

for leader as well as the follower agents. Finally, it should
be noted that the stability results for time-varying sets of
nonlinear dynamical systems developed in this paper can be
used to design various other control algorithms to achieve
stable coordinated motion of multi-vehicle systems including
obstacle avoidance.
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