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Abstract— False and nuisance alarms are major problems in
the process industry. Techniques like deadbands, delay-timers,
and filtering can significantly reduce these false and nuisance
alarms. The down-side, however, is that using these techniques
introduces some delay in raising the alarm (detection delay).
In this paper, detection delays caused by deadband and
delay-timer techniques are calculated using Markov processes.
A design procedure is also proposed that compromises between
detection delay, false alarm rate and missed alarm rate for an
optimal configuration.

Keywords:Alarm systems; Alarm management; Fault detec-
tion; Detection delay; Deadband; Delay-timer.

I. INTRODUCTION
Modern industries are monitored by hundreds and thou-

sands of sensors. These sensors are installed in different
areas and they communicate through a medium to monitor
physical or environmental conditions of the plant. Operators
are informed of any sensor measurement problem by alarms
indicating abnormal behavior of the plant. To ensure cost
efficiency, safety of the work force and plant, and quality of
products, faults must be identified promptly and appropriate
actions should be taken as soon as possible. There are
several ways for fault detection as discussed in [1], [2], [3].
These detection techniques can be broadly classified into
two categories: model-based, and signal processing based.
Compared to signal processing based, model-based fault
detection is a more active field in the area of control theory
and engineering [4]. However, for most practical systems
it is very difficult to obtain precisely known mathematical
models [1] or they are highly nonlinear and not feasible for
implementation from economic point of view. Therefore the
application of the model-based scheme is limited.

The most common and frequently used fault detection
method in industry is the simple limit checking method of
a directly measured variable [1], [5]. This method can be
referred to as signal processing based fault detection. This
method has the advantages of simplicity and easy imple-
mentability. However a problem with this simple technique
is to properly select the threshold which directly affects the
number of false and missed alarms. A false alarm is an
alarm that is raised without presence of any abnormality
in the process. A missed alarm is an alarm that is not
raised in the presence of a fault. Due to incorrect threshold
setting, normal fluctuations of measured variables may result
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in a large number of false alarms under fault-free operation
or increase the missed alarms significantly once fault has
occurred.

In case of a fault occurrence, alarms may not be raised
instantly due to different delays in the system. The delay can
be caused by various reasons including network delays, bad
implementation, hardware problems, sensor failure, and data
loss. Also the alarm configuration (deadband, delay-timer,
etc) can cause delay in raising the alarm. The difference
in time between the actual moment of fault occurrence and
the moment an alarm is activated is defined as the detection
delay. For a reliable and effective alarm system, the false
alarm rate, missed alarm rate and detection delay should be
considered as three performance specifications.

Since the limit checking technique is widely exercised in
industries, in this paper a major design constraint of this
technique namely detection delay will be analyzed and con-
sidering other constraints such as false alarm rate and missed
alarm rate [6], [7], a recommendation on tuning method
will be discussed. The detection delay has been discussed to
some extent in [8] for some change detection algorithms, e.g.
CUSUM-type algorithm. But in this work alarm attributes
(e.g. threshold limit, deadbands, delay-timers) described in
the ISA 18.2 [9] or EEMUA 191 [10] standards for basic
alarm design are considered only to analyze for detection
delay; these were not addressed elsewhere earlier. This
knowledge is important to include preventive measures in
system design to compensate for activation delay.

In deadbands, two different limits are used for alarm
raising and clearing. A higher threshold is set for raising the
alarm, and a lower one for clearing the alarm. Another very
effective technique in alarm systems is delay-timers. With
delay-timers configured, the system requires consecutive few
samples to cross the threshold before activating the alarm [7].
Both these technique (deadbands and delay-timers) introduce
some delay in triggering the alarm. Markov processes are
used in this paper to model the alarm system and estimate
activation delay for these two techniques.

In Section II, an overview of Markov processes with
assumptions presented in the paper are given. In Section III,
detection delays are discussed in simplest case of threshold
limit comparison. Section IV and V discuss detection delays
due to deadbands and delay-timers, respectively. Section VI
presents an analysis for finding the optimum set level of
threshold and a design procedure. In Section VII, concluding
remarks and future work are discussed.
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II. MARKOV PROCESS

A Markov process is an independent process where out-
come at any time instant depends only on the outcome
that precedes it and none before that [11]. In this paper
Markov processes are used to estimate the detection delay
for deadbands and delay-timers. Consider a Markov process
with a limited number of states. Assume that the transitional
probability, pij , is the probability of going from state ei at
time t to state ej at time t+ 1 and define

P =


p11 p12 · · · p1j · · ·
p21 p22 · · · p2j · · ·

...
...

...
...

...
pi1 pi2 · · · pij · · ·
· · · · · · · · · · · · · · ·

 ,

The matrix P is known as transition probability matrix.
A probability vector π is called invariant for the Markov
process if π = πP . In other words, π is a left eigenvector of
P with eigenvalue 1 [11]. It is a known fact that an invariant
vector π exists if the Markov process satisfies the following
two conditions:

1) The sum of all entries in each row of P is 1 (
∑
j pij =

1).
2) All the entries of P are non-negative (pij ≥ 0).
To satisfy these conditions and the definition of Markov

process, we make the following assumptions on the process
data:

1) Process data is independent and identically distributed
(I.I.D.), i.e. at each sampling instant, the process data
(random variable) has the same probability distribution
as the other instants and all are mutually independent.

2) Probability density functions of the fault free and faulty
data are known. These distributions can be estimated
from historical data.

III. DETECTION DELAY

If a process variable moves from fault-free region of
operation into faulty region of operation at time tf and alarm
is raised at time ta, then the detection delay (DD) is given
by the number of samples in the interval ta − tf . In the
ideal case fault should be detected instantly at the moment
of occurrence, which is hardly seen due to different delays.
In practical condition, the problem is to detect the occurrence
of the change as soon as possible [8]. Techniques like delay-
timers, deadbands, and filters are widely used in alarm
systems and enhance the effectiveness of limit checking
method but increase the detection delay. However, even if
no delay-timer, deadband and filter is configured, there may
still be some detection delays as it is directly related the
position of alarm threshold limit. In this section, we discuss
detection delay for the simple threshold comparison alarm
configuration.

In the fault free operating region assume the probability of
one sample exceeding alarm limit is p1 and the probability
of one sample falling within the alarm limit is p2. Similarly
under the faulty region of operation, q1 is the probability
of one sample falling within the alarm limit and q2 is the
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Fig. 1. Process data with threshold and fault occurrence instance [Left];
Corresponding probability density functions of fault-free and faulty data
[Right]

probability of one sample exceeding limit. Therefore p2 =
1− p1 and q2 = 1− q1 as shown in Fig. 1.

Probability of zero detection delay is given by the proba-
bility of an alarm being raised instantly at the time of fault;
probability of detection delay one means alarm activation is
delayed by one sample from the fault instance. Similarly
detection delay of z samples denotes alarm is raised z
samples later from the actual instance of fault. Assume that,
abnormality occurred at time t = tf , A denotes an alarm
state and NA denotes a no alarm state. Probability of
detection delays are
P (DD = 0) =P (A at t = tf ) = q2

P (DD = 1) =P (A at t = tf + 1 & NA at t = tf ) = q2.q1

...

P (DD = z) =P (A at t = tf + z & NA at t = tf + z − 1 & . . .

& NA at t = tf + 1 & NA at t = tf )

=q2.q
z
1

Here the detection delays are in terms of samples, though the
detection delay is normally known as a measure of time. But
it will not affect the real scenario as in practice the sampling
time is constant and these values can be converted to actual
time measurements.

From the above equations it can be seen that in the simple
case the probabilities of detection delay only depend on the
probabilistic distribution of the faulty data. Fault-free region
of operation does not have any effect on raising or clearing
of alarm. The expected value of detection delay is

E(DD) =
∞∑

z=0

z.P (DD = z) =
∞∑

z=0

z.q2.q
z
1 = q1/q2

Expected value of detection delay (or average detection
delay) is an important parameter in alarm design as it
indicates the average time it takes to raise an alarm once
there is an abnormality in the system. Therefore, it is always
desired to reduce average detection delay to ensure more
reliable operation of the plant. A method of threshold limit
design will be discussed in details in Section VI.

IV. DETECTION DELAY FOR DEADBANDS

Deadbands are widely used in industry to eliminate re-
peating oscillations or chattering alarms. With deadband
configured, alarms are raised and cleared according to two
different limits, instead of the same limit in regular cases. For
example, for high alarms a limit is set, as usual, for raising
the alarm. However, once an alarm is activated it will not
be cleared even if the variable falls below the limit. To clear
the alarm, the variable must go below a lower threshold.

787



When a variable transits from the fault-free state to the
faulty state, due to presence of noise, it crosses the alarm
limit a few times before settling in the abnormal state. This
oscillation results in subsequent raising and clearing of the
alarm causing the chattering effect. Using deadband (i.e.,
separating raising and clearing limits) is, then, helpful here
in preventing alarm chattering [12].

Deadbands should typically be configured based on the
normal operating range of the process variables, measure-
ment noise, and type of the process variables [9], [12]. There
are certain standards for setting deadbands, e.g. in ISA 18.2
[9] or EEMUA [10]. The correct configuration of a deadband
(setting limits appropriately) is essential in maximizing the
benefits of the deadband.

When deadband is configured, as it can be seen in Fig. 2,
the probabilities of one sample going over the raising limit
and below the clearing limit do not add up to one, i.e., p1 +
p2 6= 1, q1 + q2 6= 1; where p1, p2, q1, q2 are defined as
before in Section III.

To calculate the probabilities of false alarm and missed
alarm, notice that a process operating in either the fault-
free or faulty region, can be in two states from alarm
point of view: alarm state (A) and no alarm state (NA).
These states can be modeled with a Markov chain [7]. A
Markov process for deadband is shown in Fig. 3 for fault-
free operating region. The Markov model in faulty region
is similar. Transitional probabilities from one state to other
are represented by transition probability matrix Pn, in the
fault-free region of operation and by Pf in the faulty region
of operation:

Pn =

[
1 − p1 p1
p2 1 − p2

]
, Pf =

[
1 − q2 q2
q1 1 − q1

]
If the process remains in the fault-free operating region,

after a transient time the Markov process reaches its steady
state and the vector of state probabilities converges to the
invariant vector. The steady state vector of probabilities
(invariant vector) for Pn is [7]

πn =

[
p2

p1 + p2

p1

p1 + p2

]
When a fault occurs, the Markov process changes from

fault-free model (represented by Pn) to the faulty model
(represented by Pf ). Therefore, the steady-state probabilities
for the fault-free operation (i.e., πn) should be used as the
initial state probabilities for the faulty operation. The Markov
process considered here is an ergodic Markov process; ape-
riodic and positive recurrent. For an ergodic process, the
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Fig. 2. Process data with deadbands and fault occurrence instance [Left];
Corresponding probability density functions of fault-free and faulty data
[Right]
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Fig. 3. Markov diagram of a system with deadband in fault-free region of
operation

steady-state invariant vector is unique [11]. Therefore the
Markov process in the faulty operation always have this
unique steady-state invariant vector as initial condition.

If the system transfers from fault-free to faulty state at time
tf , using the forward Chapman-Kolmogorv equations [11],
probabilities of alarm and no-alarm states can be calculated
as

[PNA(tf ) PA(tf )] = [PNA(tf − 1) PA(tf − 1)] Pf

= πnPf =

[
p1q1 + p2(1 − q2)

p1 + p2

p2q2 + p1(1 − q1)

p1 + p2

]
Therefore the probability of detection delay zero (proba-

bility of alarm being raised immediately after transition from
normal to abnormal) is

P (DD = 0) = P (A at t = tf )

= PA(tf ) =
p2q2 + p1(1 − q1)

p1 + p2

Probabilities of higher detection delays can be expressed in
terms of conditional probabilities as

P (DD = 1) =P (A at t = tf + 1 & NA at t = tf ) =
p1q1 + p2(1 − q2)

p1 + p2
.q2

P (DD = 2) =P (A at t = tf + 2 & NA at t = tf + 1, NA at t = tf )

=
p1q1 + p2(1 − q2)

p1 + p2
.q2.(1 − q2)

...

P (DD = z) =P (A at t = tf + z & NA at t = tf + z − 1, ... ,

NA at t = tf )

=
p1q1 + p2(1 − q2)

p1 + p2
.q2.(1 − q2)

z−1
, z ≥ 1

The average detection delay (i.e., the expected value of
the detection delay) is then given by

E(DD) =

∞∑
z=0

z.P (DD = z)

=

∞∑
z=1

z.q2(1 − q2)
z−1

.
p1q1 + p2(1 − q2)

p1 + p2
=
p1q1 + p2(1 − q2)

q2(p1 + p2)

V. DETECTION DELAY FOR DELAY-TIMERS

A delay-timer is a simple yet effective technique that can
reduce the number of false and nuisance alarms significantly.
By their intuitive nature, human beings prefer to wait for a
while before reacting to an abnormality to avoid any tem-
porary overshoot or undershoot. Delay-timers use the same
concept in alarm generation. If a delay-timer is configured on
a variable, the alarm is raised if n consecutive samples cross
the alarm limit. This case is known as on-delay. Similarly,
once the alarm is raised, it will only be cleared if m
consecutive samples go below the limit, known as off-delay.
For on-delay, if the system goes back to normal operating
state during the intermediate states, alarm is not activated and
vice-versa for the off-delay case. Alarm standards (EEMUA
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[10] and ISA [9]) recommend some values for delay-timers
based on the nature of the process variable. Similar to the
deadband case, we can model the alarm/no-alarm states of
a process variable with delay-timers by Markov chains [7].
Fig. 4 shows the Markov model of a system in its fault-free
operation with n = 3 samples on-delay and m = 2 samples
off-delay. A similar Markov model with probabilities q1 and
q2 can be constructed for the faulty region of operation.

In Fig. 4, assuming NA or no alarm state is the initial
state for the process, 1 − p1 denotes the probability that it
will remain in the same state. If the next sample exceeds
alarm threshold with probability p1 then it moves to state
NA1, which is the first intermediate state for 3−samples
delay case before going to alarm state. Exceeding threshold
by consecutive 3−samples with probability p1 will take the
system to the alarm state. If in between the states NA
and NA2, any sample falls below threshold with probability
1 − p1, then system will go back to no alarm state. Only
consecutive 3-sample crossing over threshold can raise the
alarm, taking the system to the alarm state. Once the system
goes to alarm state, to clear the alarm same principal is
followed as raising. Consecutive 2 samples falling below
threshold with probability p2 (where p2 = 1 − p1) can
only clear the alarm. In intermediate states as output, the
system will always provide either alarm or no alarm, de-
pending on from where these intermediate states started.
Transitional probability matrices for n−samples on-delay
and m−samples off-delay for both the fault-free (Pn) and
faulty (Pf ) region of operations are given by

Pn =

[
Pn11 0n×(m−1)

Pn21 Pn22

]
, Pf =

[
Pf11 0n×(m−1)

Pf21 Pf22

]
where,

Pn11 =


1 − p1 p1 0 · · · 0
1 − p1 0 p1 · · · 0

...
...

...
. . .

...
1 − p1 0 0 · · · p1

 ,

Pn21 =


0 0 · · · 0

...
...

...
...

0 0 · · · 0
p2 0 · · · 0

 , Pn22 =


1 − p2 p2 0 · · · 0
1 − p2 0 p2 · · · 0

...
...

...
. . .

...
1 − p2 0 0 · · · p2
1 − p2 0 0 · · · 0

 ,

here, horizontal line in Pn is used to indicate, number of
columns in Pn11 and Pn21 or in 0n×(m−1) and Pn22 are
not equal. Same is true for Pf . Furthermore Pf11, Pf21
and Pf22 have the same structure as Pn11, Pn21 and Pn22
respectively, only p1, p2 are replaced by q2, q1. Pn11 and

Pf11 have dimension n× (n+1), Pn21 and Pf21 are m×n
and Pn22 and Pf22 are m × m. Hence, Pn and Pf are of
dimension (n+m)× (n+m).

Similar to the deadband case, at the moment of fault
occurrence, the Markov model of the system switches from
the fault-free model (represented by Pn) to the faulty model
(represented by Pf ). Therefore, to calculate the probabilities
of the state after fault occurrence, Pn is assumed to reach its
steady state; and the steady state probabilities of the fault-
free model, should be used as initial states for the faulty
model. The steady state vector of probabilities for the fault-
free state of operation (e.g., the invariant vector for Pn) is
[7]

πn =
1

pm2

n−1∑
i=0

p
i
1 + p

n
1

m−1∑
j=0

p
j
2

×

[
pm2 p1p

m
2 · · · pn−1

1 pm2 pn1 p2p
n
1 · · · pm−1

2 pn1
]

To calculate the detection delay for delay-timers, we use
the concept of hitting time [11]. In our context, hitting time
is the minimum time required for system currently in the
no-alarm state to switch to the alarm state for the first time.

We divide the whole state space into two subspaces.
The first subspace, denoted by D, contains all the no-alarm
state(s) (NA, ..., NAn−1). The second subspace contains all
the alarm state(s) (A, ..., Am−1) and is denoted by E . With
these definitions, the detection delay is the same as the hitting
time: the time required to switch to states E , assuming the
system is initially started in states D.

Let Q be the matrix of transitional probabilities from D to
itself in the faulty region. Q is obtained from Pf by keeping
all the probabilities corresponding to no-alarm states and
replacing all other probabilities with zero. For the Markov
process in Fig. 4, Q is

Q =

[
Pf11 0n×(m−1)

0m×n 0m×m

]
It can be shown that probability of z−sample detection

delay for delay-timer (e.g., hitting time for switching from
no-alarm states D, to alarm states E) is given by

P (DD = z) = πn.Pf .Q
z [0 · · · 0 1 · · · 1

]T
Here in the column vector there are n zeros and m ones.

The expected detection delay for delay-timer can then be
expressed as

E(DD) =
∞∑

z=0

z.P (DD = z) = πn.Pf .Q.(I −Q)
−2
.
[
0 · · · 0 1 · · · 1

]T

=

pm−1
2

pn1 q1 n−1∑
i=0

q
i
2 + p2

n−1∑
j=0

p
j
1

n−j−1∑
k=0

q
k
2 − q

n
2

n−1∑
i=0

p
i
1


qn2

(
p
m
2

n−1∑
i=0

p
i
1 + p

n
1

m−1∑
i=0

p
i
2

)
Since Q is a substochastic matrix, i.e. a matrix with

nonnegative entries whose row sums are less than or equal
to 1 and Qn → 0 as n → ∞; therefore, all eigenvalues of
Q have absolute values strictly less than 1; and the series in
the summation converges [11].

Detection delays for delay-timers are calculated so far for
n−samples on-delay and m−samples off-delay. When n = 1
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and m = 1, the expected detection delay is then simplified
to

E(DD) =
p1q1 + p2(1 − q2)

q2(p1 + p2)

which is consistent with the result we obtained in Section IV
for deadbands. Furthermore if we assume there is no dead-
band, then p2 = 1 − p1 and q2 = 1 − q1 and the result
is further simplified to E(DD) = q1(1− q1)−1, which is
again consistent with the result obtained in Section III for
the simple case (no deadband, no delay-timer).

In Fig. 5, Monte Carlo simulations to verify the expected
detection delay (EDD) expression are presented. The ex-
pected detection delay is plotted for different delay-timers
(assuming m = n) as a function of the threshold. Monte
Carlo simulation is shown for two different distributions,
Gaussian and Gamma. Fault-free data has mean 0 and
variance 1; faulty data has mean 2 and variance 2. The
threshold is changed from 0 to 1.4 with an increment of
0.1. The data was simulated for 2000 iterations and the
mean EDD was estimated for each value of the threshold.
The proposed EDD equation is also plotted with Monte
Carlo simulation. It can be seen that, there is very negligible
differences between the Monte Carlo simulations and the
calculated EDD by our formula.

VI. DESIGN OF ALARM SYSTEMS

An alarm design procedure is described in [7] based on
the receiver operating characteristic (ROC) curve. The ROC
curve is the plot of the probability of missed alarms versus
the probability of false alarms when the trip point changes
from -∞ to +∞. As it can be seen in Fig. 1, lowering the
trip point decreases the probability of false alarms, but the
probability of missed alarms will increase. The ROC curve
shows this trade-off between false alarm and missed alarm
rates when the trip point changes. A typical ROC curve is
shown in Fig. 6 [right] for the corresponding fault-free and
faulty data. However, setting the threshold merely based on
these two facts may not be desirable as it does not consider
detection delay. If the same weight is given to false alarm
and missed alarm rates, then the optimum point on the ROC
curve (corresponding to the optimum trip point) will be the
point closest to the origin. In that case, if the threshold is
set higher than the optimum point, false alarms will decrease
at the cost of increased missed alarms. On the other hand,

setting the threshold lower than the optimum point will result
in smaller number of missed alarms but more false alarms.
In the rest of this section, we focus our design on delay-
timers only. For a given set of fault-free and faulty data, the
design parameters are then the threshold (t), the number of
on-delay samples (n) and number of off-delay samples (m).
For simplicity we assume m = n. An acceptable design
should not only minimize false and missed alarm rates, but
also guarantee a small detection delay. Therefore, for design
of an alarm system, three performance specifications are to
be considered: false alarm rate (FAR), missed alarm rate
(MAR) and expected detection delay (EDD). For practical
design, however, the false and missed alarm rates are usually
combined in a function that measures how far a point on the
ROC curve is from the ideal point (zero false alarm and zero
missed alarm). In most cases the ROC curve is symmetrical,
and it can be assumed that at the optimal point FAR and
MAR are approximately equal. Therefore for simplicity we
assume the optimal point is approximately the point where
FAR = MAR in design. For simulations, assume the fault-
free part of the data has a Gaussian distribution with average
of 0 and variance 1. The faulty part of the data has also
Gaussian distribution with average 2 and variance 2. To
design a system with requirements FAR ≤ 4%, MAR ≤ 3%
and EDD ≤ 6 samples, a four-step procedure is followed.
In Fig. 6, delay timer is changed to different values and
corresponding ROC curves are plotted; it can be seen that
as the delay timer is increasing, the ROC curve is moving
closer to the origin [7]. On the other hand this increase
of delay timer increases the expected detection delay as
well. Fig. 8 shows expected detection delay for different
delay timers for the threshold where FAR = MAR; these
equal thresholds were estimated from Fig. 7, where FAR and
MAR are plotted with corresponding threshold limits and the
intersecting points provide the required estimations.
Step 1

In this step, alarm thresholds that satisfy the optimality
condition FAR = MAR are estimated. These thresholds
can be estimated from Fig. 7. For the given process data,
thresholds corresponding to the point of equal FAR and MAR
are shown by dots, for different values of delay timers. The
estimated thresholds are given in Table I.
Step 2

In step 2, the smallest delay-timer n1 is selected from
Fig. 7 or Table I such that FAR = MAR ≤ 3%; where

Fig. 6. Process data [Left]; ROC curve changing delay-timer [Right]
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n ≥ n1. The corresponding area for FAR and MAR (for
≤ 3%) is shown by the shaded area in Fig. 6. The smallest
delay-timer that satisfies the condition is n1 = 4. Though
design requirement was for FAR ≤ 4%, n1 is selected for
the one with lower percentage (≤ 3%) requirements among
FAR and MAR. Since n1 is selected for more conservative
range, the selected delay-timer does not violate the original
requirements and is expected to provide better performance.

Step 3

The EDD is taken into account in step 3 for the design of
delay-timer. The largest value of delay-timer n2 is selected
such that EDD ≤ 6; where n ≤ n2. From Fig. 8, n2 = 4.

Step 4

Once n1 and n2 are estimated, the next step is to select the
range of delay timers to finalize the design process. If n2 ≥
n1, any n satisfying n1 ≤ n ≤ n2 is a solution of the delay-
timer. Here the only delay-timer that satisfies the condition
is, n = 4; from Table I the shaded row is the solution of
given design problem. n = 3 satisfies the condition of EDD
but does not satisfy the requirement of FAR / MAR; other
delay-timers also do not satisfy requirements. The optimum
threshold of operation is 0.67 and delay-timer is 4 samples,
and it will take 5.04 samples to raise the alarm. If such a
range of delay-timer cannot be found; or in other words if no
such n exists to satisfy n1 ≤ n ≤ n2; design requirements
need adjustments. Less demanding design requirements are
recommended for such cases.

A Monte Carlo simulation is performed to check consis-
tency of the calculated values. Setting the threshold to 0.67,
associated false alarm rates, missed alarm rates and detection
delays were calculated. From a Monte Carlo simulation of
5000 iterations (for Gaussian distributed fault-free data with
mean 0, variance 1 and faulty data with mean 2 and variance
2), the calculated FAR is 2.58%, MAR is 2.84 %, and

Fig. 8. Effect on EDD for different delay-timers

TABLE I
DESIGN PARAMETERS SELECTION CHART

Delay-timer (n) Threshold (t) FAR = MAR (%) EDD
1 0.67 25.26 0.21
2 0.67 13.76 1.26
3 0.67 6.37 2.89
4 0.67 2.63 5.04
5 0.67 1.01 7.66

detection delay is 4.92 samples, which are consistent with
the calculated values.

VII. CONCLUSIONS AND FUTURE WORKS

The expected detection delay, as a measure of the time
it takes for the alarm system to respond to a fault, is an
important parameter in the design of alarm systems. In this
paper, the expected detection delay is calculated for two com-
mon techniques in alarm systems, namely, deadbands and
delay-timers. We also presented a simple design procedure,
based on three important performance measures of an alarm
system: false alarm rate, missed alarm rate and the expected
detection delay. As a future extension, a more systematic
approach to the design of parameters of the alarm system
(on-delay timer, off-delay timer and the trip-point) is under
investigation.
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