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Abstract— A key question in the design of engineered com-
petitive systems has been that of the efficiency of the associated
equilibria. Yet, there is little known in this regard in the context
of stochastic dynamic games in a large population regime. In
this paper, we revisit a class of noncooperative games, arising
from the synchronization of a large collection of homogeneous
oscillators. In [1], we derived a PDE model for analyzing the
associated equilibria in large population regimes through a
mean field approximation. Here, we examine the efficiency of the
associated mean-field equilibria with respect to a related welfare
optimization problem. We construct variational problems both
for the noncooperative game and its centralized counterpart
and employ these problems as a vehicle for conducting this
analysis. Using a bifurcation analysis, we analyze the variational
solutions and the associated efficiency loss. An expression for
the efficiency loss is obtained. Finally, our results are validated
through detailed numerics.

I. INTRODUCTION

Computation of optimal or approximate control laws in

large populations of coupled heterogeneous nonlinear sys-

tems is of interest in networked multiagent systems. Tradi-

tionally, the characterization of the aggregate behavior of a

large number of interacting particles is core to statistical me-

chanics. Through mean-field approximation techniques, the

interactions of an agent with the ensemble may be reduced

to that of the individual with the mass. The key to such an

approximation lies in assuming that the fluctuations of the

mass influence on the individual are “averaged out” when

the number of agents grow to be infinite and importantly this

mass-influence can effectively be viewed as a deterministic

function. Consequently, this allows for any agent to make

decisions based on on its state and the deterministic mass

influence. Together with a consistency requirement imposed

by the mass-influence, the resulting problem in an infinite

population setting can be reduced to a set of coupled PDEs.

Such avenues have been employed in modeling networked

resource allocation problems [2], industry dynamics [3],

amongst others.

In an effort to obtain distributed control laws, Huang et

al. [2] considered the associated game-theoretic problem

corresponding to the original multiagent control problem.

Crucial to such an approach is the need to quantify the

efficiency loss in considering the associated game. It may be
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recalled that if an equilibrium to this game leads to no loss

in social welfare, then this game is said to be efficient [4],

[5]. Huang et al. [2] address the efficiency question in the

context of mean-field games with linear dynamics. In [1],

we considered the large-population game associated with the

synchronization of a homogeneous population of oscillators,

a class of mean-field games with nonlinear dynamics. In

this paper, we study the efficiency of precisely such a class

of games. Our setting remains consistent with that of our

preceding work [1] in that we consider the synchronization

of a large population of oscillators and employ a mean-field

approximation that allows for examining the system when

the number of oscillators grows to infinity. An oblivious

control [3] strategy is obtained and represents an ε-Nash

equilibrium for the finite population game. It must be em-

phasized that our efficiency analysis is carried out in the large

population regime. Quantification of efficiency loss in finite

player games has been studied in the context of routing [5],

resource allocation [4] and congested markets [6].

In this paper, we construct two variational problems; of

these, the first provides a solution to the coupled set of PDEs

corresponding to the mean-field equilibrium while the second

provides a solution to the centralized welfare optimization

problem in the infinite-player regime. Through an examina-

tion of the associated nonlinear eigenvalue problems (Euler-

Lagrange equations) for the variational formulation, we relate

the solutions to the optimization problem and the game. An

expression for the efficiency loss associated with the game

is provided and its validity is supported through a numerical

example.

The second part of the paper pertains to the analysis

of phase transitions, a recurring characteristic of nonlinear

systems. These transitions are of relevance across a range of

applications; for example, in thalamocortical circuits in the

brain, transition to the synchronized state is associated with

diseased brain states such as epilepsy [7], [8]. We use the

method from bifurcation analysis to obtain the critical point

where phase transition starts. Additionally, this analysis leads

to locally valid bounds on the efficiency loss.

This paper is organized as follows. We provide a brief

background to our problem and define the game-theoretic

problem and its associated centralized optimization problem

in Sec. II. We present two variational problems in Sec. III

whose solutions provide us with system behavior in the infi-

nite population limit. This paves the way for investigating the

solutions to the two nonlinear eigenvalue problems through

the methods of bifurcation theory in Sec. IV. Finally, we

provide some numerical results in Sec. V.
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II. PRELIMINARIES & PROBLEM STATEMENT

We begin with a review of the game-theoretic problem and

the associated centralized or welfare optimization problem.

A. Game-theoretic problem

We consider a set of N homogeneous oscillators, denoted

by N := {1, . . . ,N}. The dynamics for the ith oscillator is

described by the stochastic differential equation (SDE):

dθi(t) = (1+ui(t))dt +σ dξi(t), (1)

where θi(t) is the phase of the ith oscillator at time t,

ui(t) is the control input, and {ξi(t), i ∈ N } are mutually

independent standard Wiener processes.

We consider an N−player noncooperative game, denoted

by GN , where we assume that the ith oscillator minimizes its

own performance objective, given the decisions of (compet-

ing) oscillators:

η (POP)

i (ui;u−i) = lim
T→∞

1

T

∫ T

0
[c(θi;θ−i)+ 1

2
Ru2

i ]ds, (2)

u−i = (u j) j 6=i, R > 0 denotes the control penalty, θ−i =
(θ j) j 6=i, c(·) is the cost function of the following separable

form:

c(θi;θ−i) :=
1

N
∑
j 6=i

c•(θi,θ j(t)), (3)

and the following assumption is made for c•:

Assumption (A1) The function c• introduced in (3) is as-

sumed to be a bounded function that is

1) spatially invariant, i.e., c•(ϑ ,θ) = c•(ϑ −θ),
2) 2π-periodic, i.e., c•(θ) = c•(θ +2π),
3) non-negative, i.e., c•(θ) ≥ 0,

4) even, i.e., c•(θ) = c•(−θ).

The form of the function c and the value of R are assumed

to be common to the entire population. A Nash equilibrium in

control policies is given by {u∗i }i∈N such that u∗i minimizes

η (POP)

i (ui;u∗−i) for i = 1, . . . ,N.
Our interest in this paper on the regime where N → ∞. We

refer to the infinite-player counterpart of the dynamic game

by G∞. As shown in [1], a mean-field approximation leads to

the following PDE-based characterization of the equilibria:

∂th+∂θ h =
1

2R
(∂θ h)2 − c̄(θ , t)+η∗− σ2

2
∂ 2

θθ h, (4)

∂t p+∂θ p =
1

R
∂θ [p(∂θ h)]+

σ2

2
∂ 2

θθ p, (5)

c̄(θ , t) =
∫ 2π

0
c•(θ ,ϑ)p(ϑ , t)dϑ , (6)

where h(θ , t) is the relative value function, p(θ , t) is intended

to approximate probability density of the random variable

θi(t), evolving according to the SDE (1) with the optimal

control law

ui = − 1

R
∂θ h(θi, t). (7)

The equation (6) represents the mean-field approximation:

c(θ ;θ−i) =
1

N
∑
j 6=i

c•(θ ,θ j(t)) ≈
∫ 2π

0
c•(θ ,ϑ)p(ϑ , t)dϑ .

We conclude this section by defining the mean field equilib-

rium, an equilibrium of G∞.

Definition 1: A triple (p∗,h∗,η∗) is said to be a mean-

field equilibrium (MFE) of G∞ if it is a solution of (4)–(6).

B. Welfare optimization problem

Given our interest in the efficiency of the equilibrium, we

consider the N−player social welfare optimization problem,

denoted by WN , given succinctly by a related centralized

optimization problem. Under the validity of the interchange,

this objective of this problem may be expressed as follows.

η (OPT)(u) :=
1

N

N

∑
i=1

η (POP)

i (ui;u−i)

= lim
T→∞

1

T

∫ T

0

1

N

N

∑
i=1

[

c(θi;θ−i)+ 1
2
Ru2

i

]

ds (8)

The welfare optimization problem requires the minimization

of η (OPT)(u) over the control input vector u = (ui)
N
i=1. If u

is an equilibrium of GN , then it is said to be efficient if

η (OPT)(u) = 1
N ∑

N
i=1 η (POP)

i ; if not, then the loss in efficiency is

captured by the difference. We emphasize that our interest

lies in examining the efficiency loss of equilibria to G∞ with

respect to the associated welfare optimization problem W∞.

C. Specific solutions

In this paper, we restrict our attention to solutions of the

following type:

p(θ , t) = p(θ − t), h(θ , t) = h(θ − t), (9)

giving us two special cases: If p(·),h(·) are constant func-

tions, we refer to the solution as an equilibrium solution; If

they are 2π-periodic, we refer to the solution as the traveling

wave solution with wave speed a = 1. The equilibrium and

traveling wave solutions are important in that they potentially

represent the incoherence and synchrony solutions described

in the coupled oscillators literature [9], [10].

Using the assumption that ui in (7) is 2π-periodic, the

control may be obtained in terms of the density function p

from FPK equation (5) through the following lemma.

Lemma 1: Suppose (p, h) is a 2π-periodic solution of the

type (9). Then the control input (see (7)) is given by

u =
σ2

2
∂θ ln(p). (10)

Proof: See the proof of Prop. 1 in Sec. III-A.

Next, we develop variational problems for characterizing

solutions of G∞ and W∞.

III. VARIATIONAL PROBLEMS AND EFFICIENCY LOSS

A. Variational formulation of G∞

Consider the following variational problem:

ηg(v; c̄) :=
∫ 2π

0
[c̄(θ)v2(θ)+

Rσ4

2
(∂θ v)2(θ)]dθ (11)

s.t. 1 =
∫ 2π

0
v2(θ)dθ . (12)
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The solutions of this problem are characterized by the

following:

Lemma 2: Suppose v is a critical point of (11)-(12). Then

v is a solution of

∂ 2
θθ v+

2

σ4R
(λ − c̄(θ))v = 0, (13)

∫

v2(θ)dθ −1 = 0, (14)

where λ is the Lagrange multiplier associated with the

constraint (12).

Proof: The result follows from consideration of the first

variation of (11)-(12).

Our interest lies in the constrained variational problem;

more specifically, we are interested in critical points to (11)–

(12) satisfying the additional requirement

c̄(θ) =
∫ 2π

0
c•(θ −ϑ)v2(ϑ)dϑ =: C (v)(θ). (15)

We refer to the constrained variational problem as (VG
∞ ).

Let X :=C2
2π([0,2π],R+), the space of twice continuously

differentiable nonnegative real-valued periodic functions on

[0,2π]. In the following definition, V denotes as the subspace

of functions v(∈ X) that satisfy the density constraint (12).

From Lemma 2, we obtain the necessary conditions of

optimality. Furthermore, the Lagrange multiplier is seen to be

exactly equal to the optimal value of the variational problem.

Lemma 3: Suppose (c̄∗,v∗) is a solution of (V G
∞ ), corre-

sponding to (11)-(12), and λ ∗ is the corresponding Lagrange

multiplier. Then (c̄∗,v∗,λ ∗) is a solution of the problem (13)-

(15) and λ ∗ = η∗
g := ηg(v∗; c̄∗) = minv ηg(v; c̄∗).

Proof: Omitted.

We first show that an MFE of G∞ is a solution to(VG
∞ ).

Theorem 1: Suppose ((v∗)2,h∗,η∗) is an MFE of the

dynamic game G∞, under the mean field approximation

and the traveling wave ansatz (9). c̄∗ is the corresponding

function given by (6). Then (c̄∗,v∗) is a solution to (V G
∞ ).

Proof: The two cost terms in the integrand of (16),

given by

η (POP)

i (ui;u−i) = lim
T→∞

1

T

∫ T

0
[c(θi;θ−i)+ 1

2
Ru2

i ]ds, (16)

can be simplified as follows:

(i) The cost function c(θi;θ−i) is replaced by its mean-field

approximation c̄(θ , t) as in (6).

(ii) We assume (p(θ , t),h(θ , t)) is a traveling wave solution

with wave speed 1. In this case,

c̄(θ , t) = c̄(θ − t), p(θ , t) = p(θ − t), h(θ , t) = h(θ − t).

From lemma 1, we have a relationship between the optimal

control ui and the density p: ui = σ2

2
∂θ ln(p).

Substituting this in (16), we obtain the approximation of
η (POP)

i as

ηi(p; c̄) = lim
T→∞

1

T

∫ T

0
[c̄(θi(s)− s)+

Rσ4

8
(∂θ ln(p))2(θi(s)− s)]ds.

(17)

Since θi(s) is an ergodic process (See Prop. 3.1 [11]), the
time average may be replaced by its expectation

lim
T→∞

1

T

∫ T

0
c̄(θi(s)− s)ds =

∫ 2π

0
[p(θ) · c̄(θ)]dθ ,

lim
T→∞

1

T

∫ T

0
(∂θ ln(p))2(θi(s)− s)ds =

∫ 2π

0
[p(θ) · (∂θ ln(p))2(θ)]dθ .

Substituting back in (17), we obtain

ηi(p; c̄) =
∫ 2π

0
p(θ)[c̄(θ)+

Rσ4

8
(∂θ ln(p))2(θ)]dθ . (18)

With a change of coordinate v2(θ) = p(θ), we arrive at

the formula for ηg(v; c̄) in (11). Since p = v2 and p is a

density function, we obtain the constraint (12). Finally, the

constraint (15) is the consistency requirement of the mean

field approximation.

The next result further clarifies the relationship and shows

how an MFE of G∞ may be constructed from a solution of

(VG
∞ ) and vice-versa.

Proposition 1: Suppose (v,λ ) is a solution of (VG
∞ ) satis-

fying (13)-(15). Then an MFE of G∞, satisfying the coupled

nonlinear PDEs (4)-(6), is given by

p(θ , t) = v2(θ − t),

h(θ , t) = −σ2R lnv(θ − t),
(19)

with average cost η∗ = λ . Conversely, suppose (p, h, η∗)
is an MFE of G∞ of the type (9) to (4)-(6). Then it is a

solution of (VG
∞ ) of the form (19) where (v, η∗) is a solution

of (13)-(15).

Proof: Suppose (p, h, η∗) is a solution of the type (9).

For such a solution, the left hand side of the FPK and the

HJB PDEs,

∂th+∂θ h = 0, ∂t p+∂θ p = 0. (20)

We denote u∗ = − 1
R

∂θ h and using (20), the FPK equa-

tion (5) is given by

∂θ [pu∗] =
σ2

2
∂ 2

θθ p,

∴, u∗ =
σ2

2
∂θ ln(p)+

K

p
, (21)

where K is the constant of integration. Now, u∗ = − 1
R

∂θ h

where h is periodic. So,
∫ 2π

0 u∗ dθ = 0. Integrating both sides

of (21) over [0,2π], we have

0 =
∫ 2π

0
u∗ dθ = K

∫ 2π

0

1

p
dθ ,

i.e., K = 0 and

u∗ =
σ2

2
∂θ ln(p). (22)

Using (20), the HJB equation (4) is given by

− 1

2R
(∂θ h)2 +

σ2

2
∂ 2

θθ h = η∗− c̄. (23)

We introduce the Hopf-Cole transformation coordinate v

as

v = exp(− 1

σ2R
h), (24)
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to simplify the HJB equation (23) to

−∂ 2
θθ v =

2

σ4R
(η∗− c̄)v.

Finally, using (22) and (24), we obtain

σ2

2
∂θ ln(p) = u∗ = − 1

R
∂θ h = σ2∂θ ln(v).

This gives p = v2, where we have dropped the constant of

integration because h is defined only up to a constant.

We thus obtain the eigenvalue problem expressed only in

terms of v:

−∂ 2
θθ v(θ) =

2

σ4R

(

η∗−
∫ 2π

0
c•(θ ,ϑ)v2(ϑ)dϑ

)

v,

with the constraint that
∫

v2(θ)dθ = 1 because p = v2 is a

density.

In summary, solutions of G∞ can be obtained by consid-

ering one of two problems:

1) The variational problem (11)-(12) with constraint (15);

2) The nonlinear eigenvalue problem (13)-(15).

B. Variational formulation of W∞

As in the game-theoretic problem, we consider the fol-

lowing variational problem (VW
∞ ) as a means of obtaining a

mean-field optimum (MFO) of W∞, associated with (8). This

problem requires a v ∈ X so as to minimize

ηw(v) :=
∫ 2π

0

[

C (v)(θ)v2(θ)+
Rσ4

2
(∂θ v)2(θ)

]

dθ (25)

s.t. 1 =
∫ 2π

0
v2(θ)dθ , (26)

where C (v) is defined in (15).

Theorem 2: Consider an MFO of W∞, i.e. a solution to

W∞ (8) of the type (9). Any MFO of W∞ is a solution to the

variational problem (VW
∞ ) given by (25)-(26).

Proof: As N → ∞, η (OPT)(u) is given by

ηw(p) = lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ − s)

∫ 2π

0
c•(θ −ϑ)p(ϑ − s)dϑ dθ ds

+ lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ) 1

2
Ru2 dθ ds

=: I1 + I2, (27)

using the mean-field approximation (6) and traveling wave

ansatz (9) as in proof of Thm. 1. Then

I1 = lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ − s)

∫ 2π

0
c•(θ −ϑ)p(ϑ − s)dϑ dθ ds

= lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ)

∫ 2π

0
c•(θ −ϑ)p(ϑ)dϑ dθ ds

=
∫ 2π

0
p(θ)

∫ 2π

0
c•(θ −ϑ)p(ϑ)dϑ dθ . (28)

The traveling wave ansatz (9) also gives u = σ2

2
∂θ ln(p) as

stated in lemma 1. Consequently, I2 may be simplified as

I2 = lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ − s) 1

2
Ru2 dθ ds

= lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ − s)

Rσ4

8
(∂θ ln(p(θ − s)))2

dθ ds

= lim
T→∞

1

T

∫ T

0

∫ 2π

0
p(θ)

Rσ4

8
(∂θ ln(p(θ)))2

dθ ds

=
∫ 2π

0
p(θ)

Rσ4

8
(∂θ ln(p(θ)))2

dθ . (29)

Substituting (28)-(29) into (27), we obtain ηw(p) as

∫ 2π

0
p(θ)

[

∫ 2π

0
c•(θ −ϑ)p(ϑ)dϑ +

Rσ4

8
(∂θ ln(p(θ)))2

]

dθ .

Making a change of coordinate v2(θ) = p(θ), we arrive at

the formula for ηw(v) in (25). Because p = v2 is a density

function, we obtain the constraint (26).

Denote the average cost obtained this way as η∗
w, i.e.,

η∗
w := minv∈V ηw(v). The Euler-Lagrange results are sum-

marized as follows:

Lemma 4: Suppose v is a solution of (VW
∞ ), given by (25)-

(26). Then (v,λ ) satisfy the following:

∂ 2
θθ v+

2

σ4R
(λ −2C (v))v = 0, (30)

∫

v2(θ)dθ −1 = 0, (31)

where λ is the Lagrange multiplier associated with (26).

Furthermore,

η∗
w = λ −

∫ 2π

0
C (v)(θ)v2(θ)dθ . (32)

Proof: The Euler-Lagrange equation (30) is obtained

from considering the first variation of (25)-(26).

Multiply both sides of (30) by v and integrate from 0 to

2π to obtain

λ

∫

v2 =
∫

σ4R

2
(∂θ v)2 +2

∫

C (v)v2 = η∗
w +

∫

C (v)v2,

which gives η∗
w = λ − ∫ 2π

0 C (v)(θ)v2(θ)dθ .

In summary, solutions of W∞ can be obtained by consid-

ering one of the following two problems:

1) The variational problem (VW
∞ ) (25)-(26), or

2) The nonlinear eigenvalue problem (30)-(31).

C. Efficiency loss

The efficiency loss is denoted by ∆η(R;σ) and is given by

η∗
g (R;σ)−η∗

w(R;σ). Our main result of this subsection is

twofold in nature. First, we provide a precise relationship

between an MFE and an MFO, in terms of v and λ .

Second, using these these relationships, we then construct

an expression for ∆η(R).
Theorem 3: Let σ be fixed. For a given value of R, let

(c̄∗,v∗g(R)) be the solution of (VG
∞ ), λ ∗

g (R) be the corre-

sponding Lagrange multiplier, v∗w(R) be the solution to the

variational problem (VW
∞ ) and λ ∗

w(R) be the corresponding

Lagrange multiplier. Then we have
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(i) v∗w(R) = v∗g(R/2), λ ∗
w(R) = 2λ ∗

g (R/2),

(ii) ∆η(R) =λ ∗
g (R)−2λ ∗

g (
R

2
)

+
∫ 2π

0

∫ 2π

0
c•(θ −ϑ)(v∗g)

2(ϑ ;
R

2
)dϑ(v∗g)

2(θ ;
R

2
)dθ .

Proof: Denote problem (13) as Gg(v,λ ,R) = 0 and

problem (30) as Gw(v,λ ,R) = 0. Consider the problem

Gw(vw,λ w,Rw) = 0. Suppose Rw = 2R and λ w = 2λ . Then

we obtain the relationship

Gw(vw,λ w,Rw) = ∂ 2
θθ vw +

2

σ42R
(2λ −2C (vw)(θ))vw

= ∂ 2
θθ vw +

2

σ4R
(λ −C (vw)(θ))vw

= Gg(vw,λ ,R) = Gg(vw,λ w/2,Rw/2).

That is to say, to solve the problem Gw(vw,λ w,R) = 0, we

could instead solve the equivalent problem Gg(vg,λ g,R/2) =
0. Then vw(R) = vg(R/2) and λ w(R) = 2λ g(R/2).

The formula for ∆η is obtained from its definition using

the relationship in (i) and lemma 4.

There are several insights that one can draw from the

expression for ∆η(R), particularly from the numerical study.

We observe that as R → 0, we have that η∗
w and η∗

g both

tend to zero. In effect, the efficiency loss tends to zero, as

R→ 0. Furthermore, when R is beyond a threshold, we again

observe that the efficiency loss is zero. In fact, the efficiency

loss is seen to be positive between these two regimes. In

the next section, through a bifurcation analysis, we provide

a locally valid upper bound on efficiency loss (Lemma 7).

IV. BIFURCATION ANALYSIS

In this section, we investigate the solutions of the nonlinear

eigenvalue problems (13)-(15) and (30)-(31) by using the

methods of bifurcation theory and conclude with a bound on

the efficiency loss.

We denote Y := C0
2π([0,2π],R), the space of continuous

nonnegative real-valued periodic functions on [0,2π]. Recall

X := C2
2π([0,2π],R+). The eigenvalue problem (Denoted as

(EPα )) comprises of a nonlinear operator Gα : X ×R
+ ×

R
+ → Y, and a constraint B : X → R:

Gα(v,λ ,R) := ∂ 2
θθ v+

2

σ4R
(λ −αC (v))v = 0, (33)

B(v) :=
∫

v2(θ)dθ −1 = 0, (34)

where C (v) is defined in (15) and α = 1, 2. When α = 1, it

is the problem (13)-(15), while when α = 2, it is the problem

(30)-(31).

For any fixed R ∈ R
+, we are interested in obtaining

solutions (v,λ ) ∈ X × R
+ such that Gα(v,λ ,R) = 0 and

B(v) = 0, for α = 1, 2.

For the nonlinear eigenvalue problem, we define the inco-

herence solution

v = v0 :=
1√
2π

, λ = λ0 :=
α

2π

∫ 2π

0
c•(θ)dθ .

About the incoherence solution, the linearization of (33) is

given by

LRṽ(θ) := ∂ 2
θθ ṽ− 2α

σ4Rπ

∫ 2π

0
c•(θ −ϑ)ṽ(ϑ)dϑ

with ṽ ∈ X and satisfies the integral constraint
∫ 2π

0 ṽ(θ)dθ =
0.

The spectrum of the linear operator LR : X → Y is

summarized in the following:

Lemma 5: Consider the linear eigenvalue problem LRv =
sv. Suppose the Fourier expansion of the function c• is

c•(θ) =
∞

∑
k=−∞

C•
k eikθ . (35)

Then the spectrum consists of eigenvalues s = −k2 −
4α

σ4R
C•

k =: sk for k = 0,1,2, . . . The eigenspace for the kth

eigenvalue s = sk is given by span{cos(kθ),sin(kθ)}.

As the parameter R varies, the potential bifurcation points

are where an eigenvalue crosses zero. The kth such bifurca-

tion point is given by

R = Rk := − 4α

k2σ4
C•

k .

Example 1: Consider now the function c•(θ − ϑ) =
1
2

sin2
(

ϑ−θ
2

)

. In this case, C•
1 = − 1

8
and the first bifurcation

point

R =
α

2σ4
=: Rα

c

is the critical point at which the incoherence solution loses

stability.

We state the bifurcation result for a specific cost function

c• next. The similar proof can be found in [11].

Theorem 4: Consider the nonlinear eigenvalue prob-

lem (33)-(34) with cost function c•(ϑ −θ) = 1
2 sin2

(

ϑ−θ
2

)

.
Let (v0,λ0) denote the incoherence solution. Then from R =
Rα

c = α
2σ4 bifurcates a branch of non-constant solutions (v,λ )

of (33)-(34). More precisely, there exists a neighborhood

J ⊂ R of x = 0, functions λ̂ (x), R̂(x) ∈ C1(J), and a family

v(x) of non-constant solutions of (33)-(34) in X such that

(i) λ = λ̂ (x) and λ̂ (x) → λ0, R = R̂(x) and R̂(x) → Rα
c as

x → 0, and

(ii) the amplitude of v(x)− v0 tends to zero as x → 0.

A Lyapunov-Schmidt perturbation method is used to ob-

tain an asymptotic formula for the non-constant bifurcating

solution branch for the cost c•(ϑ − θ) = 1
2

sin2
(

ϑ−θ
2

)

. We

substitute the expansion

R = r0 + εr1 + ε2r2 + . . .

v = v0 + εv1 + ε2v2 + . . .

λ = λ0 + ελ1 + ε2λ2 + . . .

(36)

into (33)-(34), and collect the terms according to different

orders of ε . The results are summarized in the following

lemma. The calculations can be found in the extended version

on authors’ website.
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Lemma 6: Given the function c•(ϑ −θ) = 1
2

sin2
(

ϑ−θ
2

)

,

the solution for (33)-(34) is given by an asymptotic formula

in the small “amplitude” parameter x:

v(x) =v0 +2xcos(θ +θ0)+

(

− 1

v0
+ v0π cos2(θ +θ0)

)

x2

λ =λ̂ (x) = λ0 −απx2,

R =R̂(x) = r0 −
7απ

2σ4
x2

to the order of o(x2), where r0 = Rα
c = α

2σ4 , λ0 = α
4

for

α = 1,2 and θ0 is an arbitrary phase in [0,2π].
Using the asymptotic formula from lemma 6 and the

formula of ∆η(R) in Thm. 3, we obtain an upper bound for

the efficiency loss around the critical value of R1
c .

Lemma 7: In a sufficiently small neighborhood of R =
R1

c = 1
2σ4 , the following bound holds for ∆η :

∆η(R) ≤ 6

49
(1−σ4R)2 +O(x3(1,R/2)), (37)

where x(α,R) =
√

2σ4

7απ (Rα
c −R).

V. NUMERICS

In this section we present the numerical results of the

nonlinear eigenvalue problems (33)-(34) for c•(θ − ϑ) =
1
2 sin2

(

θ−ϑ
2

)

. We set the noise level at σ2 = 0.1. The results

of the solutions p and the average cost η∗ from Lyapunov-

Schmidt perturbation method as well as those from the

AUTO software are depicted for comparison.

Fig. 1. Bifurcation diagram for the Lagrange multiplier λ as a function
of parameter 1/

√
R; (left) for (EP1) of (VG

∞ ) and (right) for (EP2) of (VW
∞ ).

For (EP1), λ also equals the average cost η∗
g .

a) Relationship of p and λ with R: Figure 1 depicts

the bifurcation diagram for the Lagrange multiplier λ as

a function of the bifurcation parameter R as well as the

function of p for a particular value of R (R = 10 for (EP1)

and R = 22.8 for (EP2)). For comparison, we also depict

the corresponding numerical results of the problem that is

obtained in AUTO using a continuation method [12]. The

first row is the results for (EP1) while the second is for (EP2).

This verifies the perturbation calculation results of Sec. IV.

b) Relationship of η with R: Next, we compare the

average cost (η∗
g for (EP1) and η∗

w for (EP2)) obtained from

solving the two nonlinear eigenvalue problems using AUTO.

For (EP1), we know η∗
g = λ from lemma 3. For (EP2), we

know η∗
w from lemma 4. The results are depicted in Fig. 2

(Left). There are two critical points in the figure: One is

R1
c for (EP1) and the other is R2

c for (EP2). When R > R2
c

(R−1/2 < (R2
c)

−1/2), we obtain the incoherence solution for

both problems. When R < R1
c (R−1/2 > (R1

c)
−1/2), we obtain

the synchrony solution for both problems. The figure shows

η∗
g ≥ η∗

w. The equality holds when both are in incoherence

solution, i.e., R > R2
c .

c) Relationship of ∆η with R: We calculate the differ-

ence of the average cost (efficiency loss) ∆η for the case

of R < R1
c . The difference is calculated by two methods.

One is the method stated in Thm. 3 (ii) and the other is

the definition. The results are depicted in Fig. 2 (Right).

It shows that the formula for ∆η(R) in Thm. 3 is quite

accurate, and the solution of (VG
∞ ) is always inefficient except

in the incoherent regime. From the numerics, we obtain that

∆η/η∗
w < 20%.
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Fig. 2. (Left) The bifurcation diagram in terms of the average cost η∗ for
two eigenvalue problems (EPα ). The results are for σ2 = 0.1. The critical

value of R for (EP1) of the game problem is R1
c = 50((R1

c)
−1/2 = 0.1414)

while for (EP2) of the welfare optimization problem is R2
c = 100((R2

c)
−1/2 =

0.1). (Right) ∆η calculated using two methods: Method one is the method
stated in Thm. 3 (ii); Method two is the definition ∆η (R) = η∗

g (R)−η∗
w(R).
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