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Abstract— Cognitive radio system is a very popular area in
the communication community as it saves money and band-
width by sensing the available licensed spectrum for unlicensed
users. This advantage provides a promising future for the
application of cognitive radio in control systems. In this paper,
we propose to communicate through a cognitive radio link
between the sensor and the estimator. In this way, the state
estimator needs to adjust to this new communication link as
the link is affected by the interruptions from primary users.
We assume the emergence of primary users results in packet
losses. The link is assumed to be governed by multiple semi-
Markov processes each of which can capture and represent one
channel in it. We derive sufficient conditions for the stability of
the peak covariance process of the optimal filter. A numerical
example is given to demonstrate the theorems.

I. INTRODUCTION

Nowadays, the fast development of the communication

and networks extend the areas of traditional science. These

remote techniques are employed everywhere to facilitate

the users located in different areas. However, the widely

use of various technologies such as radio, satellite and

phone service also increases the need of the spectrum used

in transmission. Most of the current spectrum has been

licensed to different users to ensure the coexistence of diverse

wireless systems [1]. Thus an important question is: How

to save bandwidth in communication without affecting the

performance too much?

Based on Federal Communications Commission’s (FCC’s)

frequency allocation chart [2], it shows that although the

majority of the frequency bandwidth has been assigned to

different users, large portions of spectrum are frequently

unused [3]. Then, cognitive radio architecture [4] [5] is

proposed, as a communication system, to be used for sensing

available spectrum, searching for unutilized spectrum, and,

communicating over the unused spectrum with the minimum

disturbance to primary users (with license). In cognitive radio

system, each secondary user (without license) is able to sense

the licensed spectrum and detect the unused spectrum holes.

If a frequency channel is not being used by primary users,

then the secondary user can access it for communication.

Due to the sparse activities of primary users in spectrum,

cognitive radio can provide a large amount of spectrum for

communications. With cognitive radio system, the question

above is answered.

However, cognitive radio suffers from interruptions from

primary users since a secondary user must leave the licensed
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channel when primary users emerge. Hence, the cognitive

radio based communication link is not reliable, and can

cause significant impact on the control performance since the

observations from sensor may not be able to reach destination

timely. In this paper, we assume the emergence of primary

users can result in packet losses. Then, we will focus on

optimal filtering over cognitive radio and give stability

conditions.

Modern control theory has been increasingly concerned

with networks, communication channels, and remote control

technology. A lot of research has been performed in the

area of control and estimation over communication links

under constraints such as packet losses, transmission delays,

and bandwidth constraints [6]∼ [14], but minimal research

has been performed for cognitive radio architecture. The

state estimation of system over a cognitive radio system

is first considered in [15], where the cognitive radio link

is modeled by a two-switch model with distributed and

dynamic spectral activity introduced by [1]. The switching

variables are assumed to be Bernoulli variables. Control and

estimation of the closed-loop of the system over the same

cognitive radio links are discussed in [16]. However, as it is

shown in [17], through theory and experiments, that a semi-

Markov process captures the stochastic behavior of each

channel in cognitive radio system more accurately. Here,

we use a semi-Markov model to represent the behavior

of the cognitive radio link.

The remainder of the paper is organized as follows: In

section II, the model for cognitive radio is discussed and

the problem is formulated; In section III, the optimal filter

is given. In section IV, some preliminaries of semi-Markov

processes are presented. The main result is contained in

section V and simulation results are given in section VI.

II. SYSTEM MODEL

A. Model for Cognitive Radio

Fig. 1 gives an example of a cognitive radio system:

There are N (N > 1) independent licensed channels that

can be sensed named as f1, f2,..., fN , respectively; each

channel is divided into parts by vertical lines and each part

represents the channel status in one time slot; the marked

slot represents that the channel is utilized by primary users

and the secondary users can not use it at that time while the

blank one means that it is free to be used by other users.

[17] shows that each channel is governed by a semi-

Markov process: In each channel, there are two states (busy

and idle). The times that the channel stays in one state

are i.i.d random variables following some density function,

which may depend on the two states between which the move
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Fig. 1: Bandwidth status in cognitive radio

is made. The cognitive radio structure considered in [15]

[16] employs i.i.d Bernoulli variables to represent the switch

between idle and busy states. In fact, Bernoulli distribution is

a special case of the Markov process and thus a special case

of the semi-Markov process. In this work, a homogeneous

semi-Markov process is used to model each channel.

Assume the sensor in cognitive radio infrastructure senses

only one channel at each time step (this avoids costly and

a complicated sensor which can sense multiple channels).

Every time the sensor chooses one channel to sense accord-

ing to some sensing policy, if the channel is idle, transmits

the signal through it; otherwise, stop transmission (no signal

transmitted at this time) to avoid collision.

Denote the signal sent at time t as yt, then the received

signal can be written as:

ỹt = γtyt + ωt (1)

where γt is governed by N semi-Markov processes each of

which represents the behavior of one channel. γt = 1 if a

unutilized channel is sensed and the signal is transmitted to

the receiver and γt = 0 if a busy channel is sensed and

no information is delivered. ωt denotes the Gaussian noise

with zero mean and variance R. Assume γt is known at the

receiver here.

B. Problem Formulation

The linear discrete time system can be written as follows:

xt+1 = Axt + vt (2)

yt = Cxt (3)

where xt ∈ R
r×1 is the state vector at time t, A ∈ R

r×r, C ∈
R

m×r are system parameters and assume the system is

unstable, (A,C) is observable, vt is Gaussian noise with

mean 0 and variance Q, yt ∈ R
m×1 is the system output at

time t. The measurements received through a cognitive radio

system discussed above is thus written as:

yt = γtCxt + ωt (4)

Let γl
t denote the status of the lth channel at time t and

{γl
t}k is the lth semi-Markov process. γl

t = 1 expresses the

lth channel is idle at time t otherwise it is busy.

In the following sections, we will discuss about the

stability of the optimal filter of the system (2,4). Note that

the problem can be viewed as a packet loss problem which

has been considered in many works [8]∼ [12], all of which

consider that the packet losses are either Bernoulli random

variables or Markov processes. However, in our model, γt is

governed by semi-Markov processes which has not been

considered elsewhere.

III. OPTIMAL FILTER

The optimal state estimator for system (2,4) is well-known.

In this case, the problem becomes a standard state estimation

of a linear time varying system subject to Gaussian noise.

The optimal estimator is the standard Kalman Filter given as

follows:

Priori state estimate and error covariance:

x̂t|t−1 = x̂t−1|t−1 (5)

Pt|t−1 = APt−1|t−1A
T +Q (6)

Posteriori state estimate and error covariance:

x̂t|t = x̂t|t−1 + γtKt(yt − Cx̂t|t−1) (7)

Kt = Pt|t−1C
T (CPt|t−1C

T +R)−1 (8)

Pt|t = Pt|t−1 − γtKtPt|t−1 (9)

where x̂t|t−1 is the prior state estimate at time t; x̂t|t is

the posterior state estimate at time t; Pt|t−1 is the error

covariance of xt − x̂t|t−1;Pt|t is the error covariance of

xt − x̂t|t; Kt is the Kalman gain.

To characterize the prediction error covariance, one can

easily derive the following Riccati equation:

Pt+1 = APtA
T +Q−γtAPtC

T (CPt|t−1C
T +R)−1CPtA

T

(10)

where Pt+1 = Pt+1|t. The initial condition of (10) is P1 =
AP0A

T +Q.

The process γt will experience a consecutive sequence of

1, then followed by a consecutive sequence of 0. Thus, start-

ing from a nonnegative definite real matrix P1, when γt = 1,

Pt+1 = APtA
T +Q−APtC

T (CPt|t−1C
T +R)−1CPtA

T

converges according to Kalman Filtering theory; when γt =
0, Pt+1 = APtA

T + Q diverges as A is unstable. So

the covariance will go through a ”stable process” (when

γt = 1) and then a ”unstable process” (when γt = 0). To

better illustrate the stability of covariance, we employ peak

covariance process introduced by [11].

Let βk denote the time of the kth jump of γt from 0 to

1 (see section V for more details). Labeling a subsequence

of the covariance process Pk by the sequence of times βk,

denote

Mk = Pβk

Mk denotes the value of the covariance Pβk
= Pβk|βk−1

computed by Pt+1 = APtA
T +Q at t = βk −1 and {Mk}k

is called the peak covariance process. The peak covariance

process thus consists of a sequence of covariances which are

computed at t = βk−1 before γt jumping into state γβk
= 1.
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Definition 1: We say the peak covariance sequence {Mk}
is stable if supk≥1 E ‖ Mk ‖ < ∞. Accordingly, we say the

system satisfies peak covariance stability [11].

The analysis of the stability of this peak covariance

process is important and useful for analyzing the filtering

performance in that it provides an insight that due to succes-

sive packet losses, how ”bad” the covariance process may

be.

Consider a series of systems:

xt+1 = Axt + vt

yt = γl
tCxt + ωt (11)

where l = 1, ..., N . Note γt in (4) is replaced by γl
t (defined

in section II.B) in (11) and the original problem (2, 4)

has been divided into N independent problems, each of

which is a packet loss problem governed by a semi-Markov

process. The optimal filters for these systems can be derived

similarly from (5) to (9). Use {P l
t}t to denote the covariance

process of each optimal filter and use {M l
k}k to denote the

peak covariance process of the lth system. The following

assumption is made:

Assumption 1: Assume there is at least one channel d of

N satisfying:

sup
k≥1

E ‖ Mk ‖ ≤ sup
k≥1

E ‖ Md
k ‖

This assumption is reasonable as the sensor is employed

in the cognitive radio system to help the secondary users to

search a better way for transmission. If no channel satisfies

assumption 1, then the peak covariance Mk is ”worse” than

the peak covariance M l
k for each channel, which makes the

sensor useless.

Based on the statements above, one can easily reach the

following lemma which is useful for stability conditions of

optimal filtering over cognitive radio.

Lemma 1: Under the assumption 1, the peak covariance

process {Mk}k of the optimal filter of the original system

(2, 4) is stable if {M l
k}k is stable for each l.

Proof: From the statement of the lemma, {M l
k} is

stable for each l of N , thus we have supk≥1 E ‖ Md
k ‖ < ∞

which further leads to supk≥1 E ‖ Mk ‖ < ∞.

The argument for each l is necessary as in practice, the

information about which channel satisfies the assumption 1

is known.

IV. PRELIMINARY OF SEMI-MARKOV PROCESS

In this section, we introduce some preliminaries of semi-

Markov process that will be useful in the next section.

A semi-Markov chain is characterized by an imbedded

Markov chain and a set of sojourn time probability densities.

When the process enters state i, the next state j is chosen

based on imbedded Markovian transition probabilities, and

the time after which the jump takes place is obtained from

the sojourn time density function.

The associated homogeneous semi-Markov kernel Q is

defined by [18]:

Qij(τ) = P{γn+1 = j, tn+1 − tn ≤ τ | γn = i}, (12)

where tn+1 is the time for the n+ 1th jump and tn for the

nth jump of the process , and i, j = 0, 1. And as is well

known [19],

pij = lim
τ→∞

Qij(τ) = P{γn+1 = j | γn = i}, (13)

where P = [pij ] is the transition probability matrix of

the imbedded Markov chain. Now define the following

probability density function:

Sij(τ) = P{tn+1 − tn = τ | γn+1 = j, γn = i}. (14)

It is easy to see that
∑∞

τ=1 Sij(τ) = 1 for both i, j = 0, 1
[20].

Denote Sl
ij(τ) as the probability function of the sojourn

time of the lth channel (the lth semi-Markov process). In

practical situation, the stochastic properties of each channel

can be observed through a period of time.

V. STABILITY ANALYSIS

Based on Lemma 1 and due to the independence of

each system in (11), the stability problem for the optimal

filter over cognitive radio system is reduced to the stability

problem for each system in (11). The system (11) is rewritten

by suppressing the superscript l as follows:

xt+1 = Axt +mt

yt = γtCxt + nt (15)

where the packet indicator γt is governed by a semi-Markov

process different from N semi-Markov processes in the

original problem. We are now in the position to derive the

stability conditions for the peak covariance process {Mk}
(after suppressing the superscript l) in (15).

For a given initial condition γ1 = 1, the following two

stopping times are introduced [11]:

τ1 = inf{t : t > 1, γt = 0}.

β1 = inf{t : t > τ1, γt = 1}.

Thus τ1 is the first time when primary users occur and β1

is the first time the channel becomes idle again. The above

procedure then generates two sequences:

τ1, τ2, ..., τk, ...

β1, β2, ..., βk, ...

where for i > 1:

τi = inf{t : t > βi−1, γt = 0}.

βi = inf{t : t > τi, γt = 1}.

Lemma 2: The two sequences {τi, i ≥ 1} and {βi, i ≥ 1}
have finite values for each of their entries [11].

Define:

τ∗i = τi − βi−1

β∗
i = βi − τi

where β0 = 1. Here τ∗i and β∗
i denote the sojourn times at

state 1 and state 0, respectively.

Lemma 3: The following hold

(i) The random variables {τ∗i , i ≥ 1} are i.i.d., and P (τ∗i =
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k) = S10(k)p10, k ≥ 0.

(ii) The random variables {β∗
i , i ≥ 1} are i.i.d., and P (β∗

i =
k) = S01(k)p01, k ≥ 0.

(iii) The random variables {τ∗i , β
∗
i , i ≥ 1} are independent

of each other.

Proof: We only give the proof of (i) here, the proof of

(ii) and (iii) can be obtained similarly. By the assumption in

section II-A, the sojourn time {τ∗i , i ≥ 1} are i.i.d.

By definition:

P (τ∗i = k) = P (t2i−1 − t2i−2 = k, γ2i−1 = 0|γ2i−2 = 1)

= P (t2i−1 − t2i−2 = k|γ2i−1 = 0, γ2i−2 = 1)

∗ P (γ2i−1 = 0|γ2i−2 = 1)

= S10(k)p10 (16)

Definition 2 and Lemma 4 from [11] are useful in deriving

the main theorem, we simply present them below.

Let Sr denote the set of all r × r nonnegative definite

real matrices. Define the map F (·): Sr → Sr by

F (P ) = APA′ +Q−APC ′(CPC ′ +R)−1CPA′

where P ∈ Sr. It is obvious that for any P ∈ Sr, F (P ) ≥
F (0) = Q and therefore F (P ) ∈ Sr.

Definition 2: For the observable linear system [A,C], the

observability index is the smallest integer I0 such that

[C ′, A′C ′, ..., (AI0−1)′C ′] has rank r, where C ′ and A′

denote the transpose of C and A, respectively.

Define Sr
0 := {P : 0 ≤ P ≤ AP̃A′ +Q, for some P̃ ≥

0}. Note that Sr
0 is a convex subset of Sr.

Lemma 4: For the map F (P ) defined above, there exists

a constant K > 0 such that:

(i) For any P̄ ∈ Sr
0 , F k(P̄ ) ≤ KI for all k ≥ I0;

(ii) For any P̄ ∈ Sr, F k+1(P̄ ) ≤ KI for all k ≥ I0;

(iii) For 1 ≤ i ≤ (I0 − 1) ∨ 1, there exist positive constants

d
(0)
i and d

(1)
i satisfy the following inequality:

‖ F i(P ) ‖≤ d
(1)
i ‖ P ‖+ d

(0)
i , ∀P ∈ Sr

0 (17)

where I is the r×r identity matrix; (I0−1)∨1 = max{(I0−
1), 1};‖ · ‖ denotes the induced norm for matrices. For the

case I0 = 1, d
(1)
1 = 0 and d

(0)
i > 0.

Now, we are going to present the main theorem of this

paper.

Theorem 1: The peak covariance process of (15) is stable

if the following three conditions hold:

(i) lim sup
k→∞

(1−
S01(k + 1)

1−
∑j=k

j=1 S01(j)
) <

1

|λA|2

(ii) lim sup
k→∞

(
S01(k + 1)

S01(k)
) <

1

|λA|2

(iii) p01p10d
(1)
1 [S10(1) +

I0−1
∑

i=1

d
(1)
i S10(i+ 1)]

∞
∑

j=1

‖ Aj ‖2 S01(j) < 1

where λA is an eigenvalue of the largest magnitude for

matrix A. Moreover, if C is invertible, then condition (iii)

above vanishes and the peak covariance stability holds under

condition (i) and (ii).

Proof: The expectation of ‖ Pβk+1+1 ‖ conditioned on

Pβk+1 = P ≥ 0 is calculated as:

E[‖ Pβk+1+1 ‖| Pβk+1 = P ]

=
∞
∑

j=1

∞
∑

i=1

E[‖ Pβk+1+1 ‖

×1τk+1−βk=i,βk+1−τk+1=j |Pβk+1 = P ]

=
∞
∑

j=1

∞
∑

i=1

‖ F [AjF i−1(P )(A′)j +Aj−1Q(A′)j−1

+ · · ·+AQA′ +Q] ‖ ×S10(i)p10S01(j)p01

≤

∞
∑

j=1

∞
∑

i=1

d
(1)
1 ‖ AjF i−1(P )(A′)j +Aj−1Q(A′)j−1

+ · · ·+AQA′ +Q ‖ ×S10(i)p10S01(j)p01 + d
(0)
1

≤

∞
∑

j=1

∞
∑

i=1

d
(1)
1 ‖ Aj−1Q(A′)j−1 + · · ·+AQA′

+Q ‖ ×S10(i)p10S01(j)p01 +
∞
∑

j=1

∞
∑

i=I0+1

d
(1)
1

‖ AjF i−1(P )(A′)j ‖ ×S10(i)p10S01(j)p01

+
∞
∑

j=1

I0
∑

i=1

d
(1)
1 ‖ AjF i−1(P )(A′)j ‖

×S10(i)p10S01(j)p01 + d
(0)
1

= Γ1 + Γ2 + Γ3 + d
(0)
1 p10p01 (18)

Then,

Γ1 =
∞
∑

j=1

d
(1)
1

∞
∑

i=1

S10(i) ‖

j−1
∑

k=0

AkQ(A′)k ‖

×S01(j)p01p10

≤
∞
∑

j=1

d
(1)
1

j−1
∑

k=0

‖ Ak ‖2‖ Q ‖ S01(j)p01p10

= p01p10d
(1)
1 ‖ Q ‖

∞
∑

k=0

‖ Ak ‖2
∞
∑

j=k+1

S01(j) < ∞ (19)

where by positive series property, the series converges if:

lim sup
k→∞

‖ Ak+1 ‖2
∑∞

j=k+2 S01(j)

‖ Ak ‖2
∑∞

j=k+1 S01(j)
< 1 (20)

Thus we have condition (i) from (20) by the fact that
∑∞

j=1 S01(j) = 1.

Similarly,

Γ2 ≤ Kd
(1)
1

∞
∑

i=I0+1

S10(i)
∞
∑

j=1

‖ Aj ‖2 S01(j) (21)

where the positive series converges if:

lim sup
j→∞

‖ Aj+1 ‖2 S01(j + 1)

‖ Aj ‖2 S01(j)
= lim

j→∞
|λ2

A|
S01(j + 1)

S01(j)
< 1

(22)
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Thus condition (ii) is obtained from (22). At last, we have:

Γ3 ≤
∞
∑

j=1

d
(1)
1 ‖ Aj ‖2 S01(j)[S10(1) ‖ P ‖

+

I0−1
∑

i=1

(d
(1)
i ‖ P ‖ +d

(0)
i )S10(i+ 1)]p01p10

= {[S10(1) +

I0−1
∑

i=1

(d
(1)
i S10(i+ 1))] ‖ P ‖ +

I0−1
∑

i=1

d
(0)
i

×S10(i+ 1)}d
(1)
1

∞
∑

j=1

‖ Aj ‖2 S01(j)p01p10

= C0 ‖ P ‖ +C1 (23)

By (22), C1 is a positive finite constant. And to guarantee

the stability, let

C0 = [S10(1) +

I0−1
∑

i=1

(d
(1)
i S10(i+ 1))]

×d
(1)
1

∞
∑

j=1

‖ Aj ‖2 S01(j)p01p10 < 1

Then, by (19), (22) and (23), (18) can be written as:

E[‖ Pβk+1+1 ‖| Pβk+1 = P ] = C0 ‖ P ‖ +C2 (24)

and this implies:

E[‖ Pβk+1+1 ‖| Pβk+1] = C0 ‖ Pβk+1 ‖ +C2 (25)

which leads to

E[‖ Pβk+1+1 ‖] ≤ C0 ‖ Pβk+1 ‖ +C2 (26)

which means lim supk E[‖ Pβk+1+1 ‖] < ∞.

Similarly, we estimate E[‖ Pβk+1
‖] starting with Pβk+1:

E[‖ Pβk+1
‖ |Pβk+1, βk]

=

∞
∑

j=1

∞
∑

i=1

‖ AjF i−1(Pβk+1)(A
′)j +Aj−1Q(A′)j−1

+ · · ·+AQA′ +Q ‖ ×S10(i)p10S01(j)p01

≤
∞
∑

j=1

∞
∑

i=1

‖ AjF i−1(Pβk+1)(A
′)j ‖ + ‖ Aj−1Q(A′)j−1

+ · · ·+AQA′ +Q ‖ ×S10(i)S01(j)

=

∞
∑

j=1

∞
∑

i=1

‖ AjF i−1(Pβk+1)(A
′)j ‖ S10(i)S01(j) +O(1)

=
∞
∑

i=1

‖ F i−1(Pβk+1) ‖ +O(1)

=

I0
∑

i=1

‖ F i−1(Pβk+1) ‖ +O(1) ≤ K1 ‖ Pβk+1 ‖ +K2

where K1,K2 are positive constants. In the above, the second

equality is from condition (i), the third comes from condition

(ii), the forth is from lemma 4 and the last inequality is from

(17). Then it is easily follows that supk≥1 E[‖ Pβk+1
‖] < ∞

and the stability of the peak covariance process is obtained.

When C is invertible, then I0 = 1, which means d
(1)
1 = 0.

Thus condition (iii) vanishes.

The next theorem is a direct result of lemma 1 and theorem

1.

Theorem 2: The peak covariance process of the original

system (2,4) is stable if each of the channels sensed in the

cognitive radio system can be represented by a semi-Markov

process that satisfies theorem 1.

Remark: (1) When C is invertible, condition (iii) vanishes

in theorem 1, thus an appropriate chosen of S01(k) will

stablize the covariance process, and provide a way to design

cognitive radio channels to guarantee stability. (2) If γk
is a Markov process which is a special case of the semi-

Markov process, conditions in theorem 1 coincide with the

two conditions in theorem 6 in [11].

VI. NUMERICAL EXAMPLE

In this section, we give an example to illustrate the

performance of the theorem. For simplicity, assume there

is only one channel: N = 1. Due to the independence of

each channel, this assumption does not lose any generality.

The parameters of the system is given as:

A =

[

1.1 0.1
0 1.2

]

, C = [1 1], Q = I2×2, R = 1

The channel is characterized by a semi-Markov process

with transition probability matrix P = [pij ] and sojourn time

probability mass function Sij(τ):

P =

[

0.2 0.8
0.4 0.6

]

S01(τ) = s0 exp(−|τ |)

S10(τ) = s1 exp(−|τ − 2|)

with si such that
∑∞

τ=0 Sij(τ) = 1.

It is easy to see with the above information, the left hand

side of condition (i) and (ii) are both e−1 = 0.3679 and

|λA| = 1.2, thus condition (i) and (ii) are satisfied.

We also have ‖ F (P ) ‖≤‖ AA′ ‖‖ P ‖ and since

AA′ has two eigenvalues λ1 = 1.1672 and λ2 = 1.4927.

Thus choose d
(1)
1 = 1.4928. By numerical calculation,

we have
∑∞

j=1 ‖ Aj ‖2 S01(j) ≤ 2.1, and S10(1) =

0.18868, S10(2) = 0.51286 gives S10(1) + d
(1)
1 S10(2) =

0.95428. Thus the left hand side of condition (iii) is com-

puted as p01p10d
(1)
1 [S10(1) + d

(1)
1 S10(2)]

∑∞
j=1 ‖ Aj ‖2

S01(j) ≈ 0.9573 < 1. Thus conditions in theorem 1 are all

satisfied. P11(t) and P12(t) are two entries of the covariance

matrix Pt, from Fig. 2 and Fig. 3, it is obvious they are

bounded. Similarly, the other two entries P21(t) and P22(t)
are also bounded but the figures are omitted for the sake of

space.

VII. CONCLUSIONS AND FUTURE WORKS

The paper discusses the optimal filtering over the cognitive

radio system governed by semi-Markov processes, each

of which can represent and capture the behavior of one

channel. This new communication link may cause packet

losses during the transmission due to the activities of primary
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Fig. 2: P11(t) of the covariance.
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Fig. 3: P12(t) of the covariance.

users. Sufficient stability conditions are derived for the

peak covariance process of the optimal filter. An illustrative

example is provided and demonstrate the method’s viability.
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