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Abstract— This paper presents a global task coordinate
frame (TCF) based integrated direct/indirect adaptive robust
contouring controller (DIARC) for an industrial biaxial gantry
that achieves not only excellent contouring performance but also
accurate parameter estimations. Contouring control problem is
first formulated in a recently proposed global task coordinate
frame where the calculation of the contouring error is rather
accurate and not affected by the curvature of the desired
contour. A physical model based indirect type parameter esti-
mation algorithm is then synthesized to obtain accurate on-line
estimates of unknown physical model parameters. An integrated
direct/indirect adaptive robust contouring controller with dy-
namic compensation type fast adaptation is also constructed
to preserve the excellent transient and steady-state contouring
performance of the direct adaptive robust control (DARC)
designs. Comparative experimental results obtained on a high-
speed industrial biaxial precision gantry show that the proposed
algorithm not only achieves the best contouring performance
but also has accurate physical parameter estimations.

I. INTRODUCTION

During contouring tasks, lacking coordination of axes

can significantly contribute to contouring errors which are

the ultimate performance evaluation for coordinated motion

of multi-axes systems [1], [2], [3]. To solve this problem,

Koren [4] first proposed the cross-coupled control strategy to

strengthen the coordination of axes. Later on, the contouring

control problem is formulated in a task coordinate frame

(TCF) by using either the concept of generalized curvilinear

coordinates in [5], or the locally defined coordinates attached

to the desired contour in [6]. Under the task coordinate

formulation, a control law could be designed to assign

different dynamics to the normal and tangential directions

relative to the desired contour. This formulation has been

used in a number of recent publications [1], [7]. However,

the presented control techniques cannot explicitly deal with

parametric uncertainties and uncertain nonlinearities.

In [8], [9], the adaptive robust control (ARC) strategy

in [10], [11] and the local TCF approach in [6] have been

integrated to develop contouring controllers for high-speed
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biaxial linear-motor-driven gantries under both parametric

uncertainties and uncertain nonlinearities. Though sufficient

for some applications, they are not well suited for applica-

tions demanding not only good output tracking performance

but also accurate on-line parameter estimations for secondary

purposes such as machine component health monitoring and

prognosis. Accurate parameter estimations are also achieved

in our previous work [12], but the TCF used is locally defined

based on the desired trajectory to be tracked on the desired

contour, which is valid only for applications with very small

actual tracking errors and small curvatures.

This paper focuses on applications having large curvatures

and demanding stringent contouring control performance as

well as accurate real-time estimates of physical parameters.

Specifically, to address the problems associated with the lo-

cally defined task coordinate frame (LTCF) based contouring

controllers [8], [12] for large curvatures, our recently devel-

oped orthogonal global task coordinate frame (GTCF) [13]

will be used. The presented GTCF is globally defined and has

nothing to do with the specific desired trajectory to be tracked

on the contour. Furthermore, the calculation of the contouring

error is rather accurate and not affected by the curvature of

the desired contour. The integrated direct/indirect adaptive

robust control (DIARC) scheme [14] is then employed to

construct a coordinated motion controller for a biaxial gantry

to achieve not only excellent contouring performance but also

accurate on-line parameter estimations. Comparative experi-

mental results obtained on a linear motors driven high-speed

industrial biaxial precision gantry verify that the proposed

global TCF based DIARC controller not only achieves the

best contouring performance but also reasonably accurate

parameter estimations in practical applications.

II. PROBLEM FORMULATION

A. Orthogonal Global Task Coordinate Frame (TCF)

Traditionally, the TCF for a biaxial system is locally

defined at the desired position Pd(xd(t),yd(t)) based on the

desired trajectory given by qd(t) = [xd(t),yd(t)]
T . Such a

definition depend on not only the geometry of the desired

contour but also the desired motion. As such, when the actual

tracking error is large or the actual position differs from the

desired point qd(t) significantly, the calculated contouring

error could be far different from the actual one as illustrated

in Fig.1 by the coordinate frame in dashed lines. Intuitively,

the actual contouring error depends on the geometry of the

desired contour and the actual path of the system only and

should have no relation with the desired motion. To overcome

this problem, in [13], an orthogonal global TCF is introduced
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Fig. 1. A globally defined orthogonal task coordinate frame.

solely based on the geometry of the desired contour defined

by f (x,y) = 0 where x and y denote the coordinates of the

biaxial gantry system and f is a known smooth function as

shown in Fig.1. Specifically, a curvilinear coordinate along

the normal direction of the desired contour can be defined

as
rc(x,y) =

f (x,y)√
fx

2+ fy
2 (1)

where fx =
∂ f

∂x
and fy =

∂ f

∂y
. With this curvilinear coordinate,

the desired contour can be simply described by constraining

it to zero in the global TCF, i.e., rc(x,y) = 0, and the

normal direction of the desired contour is aligned with the

direction of this curvilinear coordinate. Furthermore, it is

shown in [13] that the coordinate value of the actual position

along this curvilinear coordinate direction, i.e., rc(x(t),y(t))
where (x(t),y(t)) represents the Cartesian coordinates of

the actual position at time t, is essentially the same as the

actual contouring error εc, the distance between the actual

position Pa(x(t),y(t)) and Pc(xc(t),yc(t)), the projection of

Pa(x(t),y(t)) onto the desired contour along its normal

direction as illustrated in Fig.1.

With the above definition of the curvilinear coordinate

representing the contouring error, the other curvilinear co-

ordinate rm(x,y) is defined based on the curve length on

the desired contour between the reference point and the

projection of the position (x,y) at the desired contour along

its normal direction, e.g., the curve lengths s0 and st shown

in Fig.1 for the initial position Pa(x(0),y(0)) and the actual

position Pa(x(t),y(t)) respectively. The details are given in

[13]. Overall, the proposed task coordinate system is defined

by the following curvilinear coordinate transformation:

r = h(q) =

[
rc(x,y)
rm(x,y)

]
(2)

It is shown in [13] that, on the desired contour, the directional

vector along the coordinate rc, [ ∂ rc

∂x
, ∂ rc

∂y
]T , is the same as

the unit vector along the normal direction of the desired

contour, [ fx√
f 2
x + f 2

y

,
fy√

f 2
x + f 2

y

]T , and the directional vector along

the coordinate rm, [ ∂ rm

∂x
, ∂ rm

∂y
]T , is the same as the unit

vector along the tangential direction of the desired contour,

[− fy√
f 2
x + f 2

y

, fx√
f 2
x + f 2

y

]T . It is thus obvious that, in the new TCF,

the original contour tracking problem is decoupled into a

regulation problem along rc and a trajectory tracking prob-

lem along rm. Furthermore, around the desired contour, the

Jacobian matrix of the curvilinear coordinate transformation

(2) can be approximated by

J =

[
∂ rc

∂x
∂ rc

∂y
∂ rm

∂x
∂ rm

∂y

]
≈




fx√
f 2
x + f 2

y

fy√
f 2
x + f 2

y

− fy√
f 2
x + f 2

y

fx√
f 2
x + f 2

y


 (3)

which is unitary for all values of x,y, i.e., J−1 = JT.

B. System Dynamics

The dynamics of the biaxial linear-motor-driven gantry can

be described by [9]:

Mq̈+Bq̇+F(q̇) = u+d (4)

where M = diag[M1,M2] and B = diag[B1,B2] are the 2×2

diagonal inertia and damping matrices, respectively; u is the

2× 1 vector of control input, and d is the 2× 1 vector of

unknown nonlinear functions due to external disturbances or

modeling errors; F(q̇) is the 2×1 vector of nonlinear friction,

and the model used in this paper is given by F̄(q̇) = ASf(q̇),
where A = diag[A1,A2] is the 2× 2 diagonal friction coef-

ficient matrix, and Sf(·) is a vector-valued smooth function,

i.e., Sf(q̇) = [S f (ẋ),S f (ẏ)]
T . Define the approximation error

as F̃ = F̄−F. Then (4) can be written as

Mq̈+Bq̇+ASf(q̇) = u+dn + d̃ (5)

where dn = [dn1,dn2]
T is the nominal value of d1 = d+F̃, and

d̃ = d1−dn. Noting (2) and (3), ṙ = Jq̇(t), r̈ = Jq̈(t)+ J̇q̇(t).
Thus (5) can be transformed into the global TCF as

Mtr̈+Btṙ+Ctṙ+AtSf(q̇) = ut +dt + ∆̃ (6)

where Mt = JMJ−1, Bt = JBJ−1, Ct =−JMJ−1J̇J−1,At =
JA, dt = Jdn, ut = Ju, ∆̃= Jd̃. It is well known that equation

(6) has several properties [12]: (P1) Mt is a symmetric pos-

itive definite (s.p.d.) matrix with µ1I ≤ Mt ≤ µ2I where µ1

and µ2 are two positive scalars; (P2) The matrix Nt = Ṁt −
2Ct is a skew-symmetric matrix. In other words, sTNts =
0,∀s; (P3) Mt, Bt, Ct, At, dt and ut in (6) can be linearly

parameterized by a set of unknown parameters defined as

θ = [θ1, ...,θ8]
T = [M1,M2,B1,B2,A1,A2,dn1,dn2]

T .

Assumption 1: Extent of parametric uncertainties and un-

certain nonlinearities is known. More precisely,

θ ∈ Ωθ , {θ : θmin ≤ θ ≤ θmax}
∆̃ ∈ Ω∆ ,

{
∆̃ : ||∆̃|| ≤ δ∆

}
(7)

where θmin = [θ1min, ...,θ8min]
T , and θmax = [θ1max, ...,θ8max]

T

are known constant vectors and δ∆ is a known function.

The control objective is to synthesize a control input ut

such that q = [x,y]T tracks qd(t) = [xd ,yd ]
T which is at least

second-order differentiable. In the proposed global TCF, such

an objective is achieved simply by regulating rc to zero and

letting rm follow rmd(t) = rm(xd(t),yd(t)).
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III. INTEGRATED DIRECT/INDIRECT ADAPTIVE ROBUST

CONTOURING CONTROL (DIARC)

A. Projection Type Adaptation Law

Let θ̂ denote the estimate of θ and θ̃ denote the estimation

error (i.e., θ̃ = θ̂ −θ ). By (7), the following projection type

adaptation law can be used

˙̂
θ = Pro j

θ̂
(Γτ) (8)

where Γ is a positive definite matrix, τ is an adaptation

function to be synthesized later. The standard projection

mapping Pro j
θ̂
(•) = [Pro j

θ̂1
(•1), ...,Pro j

θ̂8
(•8)]

T in [14]

should be used to keep the parameter estimates θ̂1, ..., θ̂8

within the known bound. And it is easy to show that the

projection type adaptation law (8) in which Γ(t) > 0 is

any continuously differentiable positive definite symmetric

adaptation rate matrix has the following properties [14]:

(P4). θ̂ ∈ Ωθ ,

{
θ̂ : θimin ≤ θ̂ ≤ θimax

}

(P5). θ̃ T (Γ−1Proj
θ̂
(Γτ)− τ)≤ 0, ∀τ

(9)

B. Integrated DIARC Contouring Control Law Synthesis

Define a switching-function-like quantity as s = ė +
Λe = ṙ− ṙeq, ṙeq , ṙd−Λe where e = r(t)− rd(t) is the out-

put tracking error, and Λ > 0 is a diagonal matrix. Define a

positive semi-definite (p.s.d.) function

V (t) = 1
2
sTMt(r)s (10)

Differentiating V yields

V̇ (t) = sT[ut −Mtr̈eq −Btṙ−Ctṙeq−AtSf(q̇)+dt + ∆̃]
(11)

where r̈eq , r̈d − Λė, and (P2) is used to eliminate the

term 1
2
sTṀt(r)s. Furthermore, since it follows from (P3)

that Mtr̈eq+Btṙ+Ctṙeq +AtSf(q̇)−dt =−Ψ(r, ṙ, ṙeq, r̈eq)θ
where Ψ(r, ṙ, ṙeq, r̈eq) is a 2×8 matrix of known functions,

commonly referred to as the regressor. Thus, from (11),

V̇ (t) = sT[ut +Ψ(r, ṙ, ṙeq, r̈eq)θ + ∆̃] (12)

Noting (12), the following DIARC law is proposed:

ut = ua +us, ua = ua1 +ua2, us = us1 +us2,

ua1 =−Ψ(r, ṙ, ṙeq, r̈eq)θ̂ , us1 =−Ks
(13)

where ua1 is the adjustable model compensation needed

for achieving perfect tracking with θ̂ being the on-line

estimates of physical parameters to be detailed later, ua2 is

a fast dynamic compensation term to be synthesized in the

following, us1 is used to stabilize the nominal system, which

is chosen to be a simple proportional feedback with K being

a symmetric positive definite matrix for simplicity. And us2 is

a feedback used to attenuate the effect of model uncertainties

for a guaranteed robust performance. Substituting (13) into

(12) and simplifying the resulting expression lead to

V̇ = sT[ua2 +us −Ψ(r, ṙ, ṙeq, r̈eq)θ̃ + ∆̃] (14)

Define a constant dc and time varying function d̃∗(t) as

Jdc + d̃∗(t) =−Ψ(r, ṙ, ṙeq, r̈eq)θ̃ + ∆̃ (15)

Conceptually, (15) lumps the disturbance and the model

uncertainties due to parameter estimation error together, and

divides it into the low frequency component dc and the higher

frequency components d̃∗(t), so that dc can be compensated

through the fast adaptation of direct adaptive robust control

(DARC) design [11]. Substituting (15) into (14),

V̇ = sT[ua2 +us +Jdc + d̃∗(t)] (16)

Choose the fast compensation term ua2 as

ua2 =−Jd̂c (17)

where d̂c represents the estimate of dc updated by

˙̂
dc = Pro j

d̂c
(γdJTs), |d̂c(0)| ≤ d̂cmax (18)

where d̂cmax is a pre-set bound for d̂c(t) and γd is a 2×
2 constant diagonal matrix. By (9), the projection mapping

in (18) guarantees |d̂c(t)| ≤ d̂cmax,∀t. Substituting (17) into

(16),

V̇ = sT[−Ks+us2 −Jd̃c + d̃∗(t)] (19)

where us2 is chosen to satisfy the following two conditions:

i sT[us2 −Jd̃c + d̃∗(t)]≤ η
ii sTus2 ≤ 0

(20)

where η is a constant that can be arbitrarily small. One

smooth example of us2 satisfying (20) is us2 = − 1
4η h2s,

where h is a smooth function satisfying h ≥ ||d̂cmax||+
||θM||||Ψ(r, ṙ, ṙeq, r̈eq)||+δ∆, and θM = θmax −θmin.

Theorem 1: With the DIARC control law (13) and the

projection type adaptation law (8), regardless the estimation

function τ to be used, in general, all signals in the resulting

closed loop system are bounded and the contouring error

and output position tracking error are guaranteed to have a

prescribed transient performance and steady-state accuracy

in the sense that V (t) defined by (10) is bounded by

V (t)≤ exp(−λ t)V (0)+ η
λ [1− exp(−λ t)] (21)

where λ = 2σmin(K)/µ2, and σmin(·) denotes the minimum

eigenvalue of a matrix.

C. Estimation of Physical Parameters

This subsection focuses on the construction of suitable

estimation functions τ so that an improved steady-state

performance – zero steady-state contouring error and position

tracking error – can be obtained even when all physical

parameters are unknown. In addition, it is desirable to

have on-line parameter estimates converge or stay close to

their true values for other purposes such as machine health

monitoring. To this end, in this subsection, it is assumed that

system has parametric uncertainties only, i.e., d̃ = 0 in (5).

Let H f (s) be the transfer function of any filter with a

relative degree not less than 1 (e.g., H f (s) = 1/(τ f s+ 1)).

Then, applying the filter to both sides of (5), when d̃ = 0,

uf = ϒf
Tθ (22)
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Fig. 2. A biaxial linear-motor-driven gantry system.

where uf =

[
u1 f

u2 f

]
, ϒf

T =

[
ẍ f ,0, ẋ f ,0,S f f (ẋ),0,1 f ,0
0, ÿ f ,0, ẏ f ,0,S f f (ẏ),0,1 f

]
,

and • f represents the filtered value of •. Define the prediction

error vector as ς = ûf −uf, where ûf = ϒf
Tθ̂ . Then,

ς = ϒf
Tθ̃ = ϒf

Tθ̂ −uf (23)

This linear regression model (23) is the standard form

to which various parameter estimation algorithms can be

applied for the estimates of θ . For example, with the least

squares type estimation algorithm [12],
˙̂
θ is updated by the

adaptation law (8) with the adaptation function given by

τ =− 1

1+υtr{ϒf
TΓϒf}

ϒfς (24)

and the adaptation rate matrix given by

Γ̇ =

{
κΓ− 1

1+υtr{ϒf
TΓϒf}

Γϒfϒf
TΓ, if λmax (Γ(t))≤ ρM

0, otherwise

(25)

where κ ≥ 0 is the forgetting factor, ρM is the pre-set

upper bound for ‖Γ(t)‖, υ ≥ 0 with υ = 0 leading to the

unnormalized algorithm. With these practical modifications,

Γ(t) ≤ ρMI, ∀t. Furthermore, it can be shown that if the

following persistent excitation (PE) condition is satisfied:
´ t+T

t
ϒfϒf

Tdτ ≥ κpIp, f or some κp > 0 and T > 0 (26)

then, the physical parameter estimate θ̂ converge to their true

values (i.e., θ̃ → 0 as t → ∞) and θ̃ ∈ L2[0,∞).
Theorem 2: If after a finite time t0 there exist parametric

uncertainties only, i.e., d̃ = 0, ∀t ≥ t0 in (5), by using the

DIARC control law (13) and the projection type adaption

law (8) with the least squares type estimation function (24),

if the PE condition (26) is satisfied, in addition to the robust

performance results stated in Theorem 1, an improved final

contouring performance – asymptotic output contouring – is

also achieved, i.e. εc → 0 and s → 0 as t → ∞.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Experimental setup

As shown in Fig. 2, the same biaxial industrial gantry from

Rockwell Automation as in [8], [9] is used as a test-bed. The

two axes powered by Anorad LC-50-200 iron core linear mo-

tors are mounted orthogonally with X-axis on top of Y-axis.

The position sensors of the gantry are two linear encoders

with a resolution of 0.5µm after quadrature. The velocity sig-

nal is obtained by the difference of two consecutive position

measurements. Standard least-square identification is per-

formed to obtain the parameters of the biaxial gantry and it

is found that nominal values of the gantry system parameters

without loads are M1 = 0.12V/m/s2,M2 = 0.55V/m/s2,B1 =
0.35V/m/s,B2 = 0.5V/m/s,A f 1 = 0.1V,A f 2 = 0.13V,dN1 =
0V,dN2 = 0V which is different from our previous pub-

lications because the physical characteristic of the gantry

have changed due to the long past time and some added

lubricant. The bounds of the parametric variations are cho-

sen as θmin = [0.06,0.4,0.2,0.3,0.05,0.08,−0.5,−0.5]T and

θmax = [0.25,0.7,0.6,0.6,0.15,0.25,0.5,0.5]T .

As in [8], the performance indexes ||εc||rms, the root-

mean-square (RMS) value of the contouring error, εcM ,

the maximum absolute value of the contouring error, and

||ui||rms, the average control input, will be used to measure

the quality of each control algorithm quantitatively.

B. Contouring experimental results

The control algorithms are implemented using a dSPACE

DS1103 controller board. The controller executes programs

at a sampling period of Ts = 0.2ms, resulting in a velocity

measurement resolution of 0.0025m/s. The following three

control algorithms are implemented and compared:

C1: Global TCF based DARC – the same GTCF but

with the DARC contouring control law synthesized as

in [8]. S f (ẋ) =
2
π arctan(9000ẋ), S f (ẏ) =

2
π arctan(9000ẏ),

and Λ = diag[100,30]. In implementation, a large enough

constant feedback gain is used to simplify the resulting

control law us2, with the total feedback gain in (13) cho-

sen as K = diag[100,60]. The adaptation rates are Γ =
diag[10,10,10,10,10,10,10000,10000]. The initial parame-

ter estimates are θ̂(0) = [0.1,0.55,0.3,0.3,0.1,0.15,0,0]T .

C2: Global TCF based DIARC control law proposed

in Section III. The same S f (ẋ), S f (ẏ), Λ, us2, and K =

diag[100,60] as in C1 are used. In (18), d̂cmax = [1,1]T and

γd = diag[10000,10000]. The filter H f (s) is chosen to be

of second-order with a relative degree of 2 and damping

ratio of 0.7, with the break frequencies of 250Hz and 150Hz

for X-axis and Y-axis, respectively. In (25), κ=0.1, υ=0.1.

Γ(0) = diag[10,10,10,10,10,10,5000,5000] and ρM = 500.

The initial parameter estimates are the same as those in C1.

C3: Local TCF based DIARC detailed in [12]. The control

parameters are chosen the same as in C2.

The following three test sets are performed:

Set1: To test the nominal contouring performance of the

controllers, experiments are run without payload, which

is equivalent to M1 = 0.12 and M2 = 0.55;

Set2: To test the performance robustness of the algorithms to

parameter variations, a 5 kg payload is mounted on the

gantry, which is equivalent to M1 = 0.19 and M2 = 0.62;

Set3: A large step disturbance (a simulated 0.6 V electrical

signal) is added to the input of Y axis at t=2.2 sec and

removed at t=5.2 sec to test the performance robustness

of each controller to disturbance.
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TABLE I

CONTOURING RESULTS OF EXPERIMENTS I

||εc||rms(µm) εcM(µm) ||ux||rms(V ) ||uy||rms(V )

C1 (Set1) 2.42 8.57 0.42 0.70

C2 (Set1) 2.42 8.15 0.42 0.68

C3 (Set1) 3.30 10.14 0.41 0.70

C1 (Set2) 2.50 9.52 0.54 0.78

C2 (Set2) 2.44 8.38 0.54 0.78

C3 (Set2) 3.38 10.21 0.54 0.78

C1 (Set3) 2.73 37.48 0.42 0.75

C2 (Set3) 2.73 36.52 0.42 0.74

C3 (Set3) 3.54 36.54 0.42 0.75

1) Experiments I: The biaxial gantry is first commanded

to track an ellipse of qd = [0.2sin(4t),−0.1cos(4t)+ 0.1]T

with an angular velocity of w = 4rad/s and a speed of

v=
√

0.16+0.48cos2(4t)m/s. The experimental results after

running the gantry for several periods are given in Table

I – both C1 and C2 achieve good steady-state contouring

performances during fast elliptical movements, while C1 and

C2 performs better than C3 with almost the same amount

of control efforts for every test set. Furthermore, the steady-

state contouring errors of C2 for Set2 are almost the same as

those for Set1, validating the strong performance robustness

of the proposed controller to the change of inertia load. The

desired contour and the actual contours of three controllers

for all sets are partially shown in Fig.3 around (0.2m,0.1m)
where the ellipse has the largest curvature. It can be seen

that, for all sets, the actual contours of C1 and C2 are quite

close to the desired contours, while the actual contours of C3

deviate from the desired contour significantly. These results

clearly demonstrate the superiority of the proposed global

TCF used in C1 and C2 over the traditional local TCF in C3

when dealing with contours of large curvatures.

2) Experiments II: To test the consistency of the proposed

algorithms, the gantry is also commanded to track another

ellipse given by qd = [0.2sin(3t),−0.15cos(3t)+0.15]T with

an angular velocity of ω = 3rad/s and a speed of v =√
0.2025+0.1575cos2(3t)m/s. The experimental results in

Table II show the same trends as in Experiments I – the better

contouring performance of C1 and C2 over C3 with almost

the same amount of control efforts. The time-histories of con-

touring errors for Set2 are displayed in Fig.4, showing that

C2 achieves excellent steady-state contouring performance in

spite of the change of inertia load. It is worth noting that the

contouring error of C3 appears to have a constant negative

offset, which is due to the fact that the contouring error in

C3 is approximately calculated based on the projection of

the actual tracking errors in the LTCF. The contouring error

shown in Fig.5 also shows that the added large disturbances

do not affect the contouring performance of the proposed

algorithms much except the initial transient when the sudden

changes of the disturbances occur. The desired contours and

the actual contours of all controllers for all sets are partially

shown in Fig.6 around (−0.2m,0.15m). It is seen again that

the actual contours of C1 and C2 in all sets are much more

closer to the desired contours than those of C3.

TABLE II

CONTOURING RESULTS OF EXPERIMENTS II

||εc||rms(µm) εcM(µm) ||ux||rms(V ) ||uy||rms(V )

C1 (Set1) 2.57 8.72 0.33 0.62

C2 (Set1) 2.60 9.64 0.33 0.61

C3 (Set1) 4.15 13.98 0.32 0.61

C1 (Set2) 2.74 9.93 0.38 0.66

C2 (Set2) 2.74 9.74 0.38 0.67

C3 (Set2) 4.19 15.72 0.38 0.68

C1 (Set3) 2.91 36.10 0.33 0.68

C2 (Set3) 2.93 35.30 0.33 0.67

C3 (Set3) 4.40 38.51 0.32 0.68

C. Parameter Estimation Results

While achieving excellent contouring performance, the

proposed C2 also achieves good parameter estimations which

cannot be achieved by C1. Fig.7 shows the histories of

parameter estimations of X-axis for C2 and C3 for no-load

experiments. As seen, regardless of the ellipses to be tracked

(i.e., experiments I or II), the parameter estimates of both

DIARC controllers (i.e., C2 and C3) consistently approach

the off-line estimated values without payload. The results

shown in Fig.8 for loaded situation also show that the on-line

parameter estimates of Y-axis for C2 and C3, approach to the

off-line estimated values with the payload. In summary, the

proposed global TCF based DIARC strategy possesses the

merits of both the global TCF based DARC and the local

TCF based DIARC – excellent contouring performance and

accurate on-line parameter estimations.

V. CONCLUSIONS

In this paper, a global task coordinate frame (GTCF) based

integrated direct/indirect adaptive robust controller (DIARC)

is synthesized for the coordinated motion control of biaxial

systems. The GTCF used in the paper provides a rather

straightforward and accurate calculation of contouring errors,

overcoming the inability of the existing locally defined

moving TCF in dealing with contours having large curvature

or large tracking errors. The parameter adaptation law of DI-

ARC enables estimation algorithms having good convergence

properties such as the least-squares type and explicit on-line

monitoring of signal excitation levels to be used for accurate

parameter estimations. Comparative experimental results re-

veal that the proposed GTCF based DIARC algorithm not

only achieves excellent contouring performance for high-

speed/large-curvature contouring applications but also has

accurate parameter estimations in practical applications.
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(with disturbance).
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