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Abstract— This work presents a methodology for model-
based output feedback control of uncertain nonlinear hybrid
process systems using an adaptive predictor corrector strategy.
A hybrid monitoring scheme is initially developed to facilitate
the identification of the active mode at any given time using
the measured output. A set of stabilizing output feedback con-
trollers are then synthesized to robustly stabilize the constituent
modes where appropriate state estimators are used. To stabilize
each mode with minimal sensor-controller communication, a
predictive model of each mode is embedded within the corre-
sponding state feedback controller to provide an estimate of the
process state which is used during periods of communication
suspension. To determine when the communication must be
restored, the evolution of the state estimate for the active mode
is monitored and the corresponding state estimator is prompted
to send its estimate to update the model state only when some
update criteria are satisfied. The key idea is to use the model

as a predictor and to use the Lyapunov stability constraint for
each mode as a criterion for adaptively correcting the model
predictions. The implementation of the proposed methodology
is demonstrated using a simulated model of a chemical reactor
with multiple operating modes.

I. INTRODUCTION

The study of hybrid systems has emerged as an active

research area in process control over the past two decades.

Characterized by inherent and strong interactions between

continuous dynamics and discrete events, hybrid systems

pose several fundamental challenges, which, together with

the abundance of practical applications where hybrid dy-

namics are dominant, have been key driving forces behind

the significant and growing body of research work in this

area, including works on modeling and simulation (e.g.,

[1]), optimization (e.g., [2]), stability analysis (e.g., [3]–[6]),

monitoring (e.g., [7]–[10]) and control (e.g., [11]–[14]).

This progress notwithstanding, a careful examination of

the existing methods on control of hybrid systems shows

that the hybrid control problem is typically formulated and

addressed within the classical feedback control paradigm

where the process outputs are assumed to be transmitted

directly and flawlessly to the controller where the control

actions are generated and fed back to the process. In practice,

this paradigm often needs to be re-examined, partly due to

the increasing complexity of the process/controller interface

which features additional information-processing steps and

devices that should be accounted for in the control system
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design. For example, with the increased reliance in recent

years on networked control systems, and the emergence of

applications where a large number of networked sensors and

actuators are deployed, issues such as resource constraints,

data losses, measurement quantization, processing and com-

munication delays, and real-time scheduling constraints are

becoming commonplace, and ultimately impose constraints

on the sensor-controller communication link. While these

issues have been studied extensively in the context of re-

search work on networked control systems (e.g., see [15]

for a survey of some results and references in this area),

the focus of existing studies has been on systems with

purely continuous or purely discrete dynamics. At this stage,

systematic methods for handling these issues for combined

discrete-continuous processes remain lacking.

Motivated by these considerations, we present in this work

a methodology for model-based output feedback control of

uncertain nonlinear hybrid process systems using an adaptive

predictor corrector strategy. The approach aims to robustly

stabilize the hybrid process with minimal sensor-controller

information transfer. Beyond reducing the susceptibility of

the control system to unexpected communication disruptions,

such resource-aware control approach also helps identify the

fundamental limits on the stabilizability of a given process

subject to limitations on measurement availability. The hy-

brid control structure consists of a bank of mode observers

that identify the active mode at any given time, a family

of robustly stabilizing Lyapunov-based output feedback con-

trollers, where each controller consists of a model-based state

feedback controller and a state estimator, and a supervisor

that monitors the evolution of each Lyapunov function and

switches synchronously between the different controllers and

state estimators. The mode observers are co-located with

the sensors and thus receive continuous measurements from

the sensors. By evaluating the residuals which capture the

differences between the outputs of the mode observers and

the process, this monitoring scheme will locate the active

mode at any given time. Once the active mode is identified,

the corresponding controller and state estimator are activated

by the supervisor to stabilize the process. The state estimators

are embedded in the sensors and generate an estimate of the

state using the measured output. To minimize the sensor-

controller information transfer, a model of each mode is

embedded within the corresponding state feedback controller

to generate an estimate of the process state when the mode
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is active and the observer’s estimate is not available from

the sensors. The model state is used to generate the control

action and is updated by the state estimate when the sensor-

controller communication is established. The key idea of this

approach is to use the model as a predictor and to use the

Lyapunov stability constraint for each mode as a criterion for

adaptively correcting the model predictions. This naturally

leads to a state-dependent time-varying communication logic

which allows the plant to respond adaptively to changes in

operating conditions by increasing or decreasing the sensor-

controller information transfer. In addition, this approach

ultimately leads to an efficient utilization of the sensor-

controller link in the sense that data are transmitted only

when necessary to maintain closed-loop stability.

The rest of the paper is organized as follows. In Section II,

the mathematical model for the class of systems under

consideration is described. Following the design of the mode

observers in Section III, the synthesis of the Lyapunov-based

output feedback controllers is presented in Section IV, and

the design of the adaptive predictor corrector strategy in

Section V. Finally, the theoretical results are illustrated using

a hybrid chemical reactor example in Section VI.

II. PRELIMINARIES

We consider switched uncertain nonlinear systems de-

scribed by the following state-space representation:

ẋ(t) = Aix(t) + fi(x(t)) +Biui(t) +Wi(x(t))θi(t)

y(t) = Cx(t), t ∈ [tki,in, t
k
i,out) (1)

i(t) ∈ I = {1, 2, · · · , N}, k ∈ N

where x ∈ R
n denotes the vector of continuous-time state

variables, ui ∈ R
m denotes the vector of manipulated inputs

associated with the i-th mode, θi ∈ Θi ⊂ R
q denotes the

vector of bounded uncertain variables that takes values in a

nonempty compact convex subset of R
q and describes para-

metric uncertainty and/or time-varying external disturbances,

y ∈ R
p denotes the vector of output variables. Ai, Bi, Wi(·)

and C are n×n, n×m, n×q and p×n matrices, respectively.

fi : D → R
n denotes a Lipschitz map and D ⊂ R

n is a

domain that contains the origin x = 0. The switching signal

i : [0,∞) → I is assumed to be a piecewise continuous

(from the right) function of time, i.e., i(tk) = limt→tk+ i(t)
for all k, implying that only a finite number of switches are

allowed on any finite interval of time. It is assumed that all

entries of the vector field fi(·), and the n× q matrix Wi(·)
are sufficiently smooth. We also assume that the state, x,

does not jump when the system switches between modes,

which means that x is everywhere continuous. The notations

tki,in and tki,out are used to denote the k-th time that the i-th
mode is switched in and out, respectively. Referring to the

quasi-linear structure considered in (1), it should be noted

that while this form is chosen here to simplify the analysis

and design calculations to be presented later, this structure is

quite common in many practical systems such as chemical

processes where material and energy flows (which usually

depend linearly on the state) are coupled with chemical

reactions (whose rates typically depend nonlinearly on the

state).

III. MODE IDENTIFICATION AND

MODE TRANSITION DETECTION

Given that different modes within a switched system ex-

hibit different dynamics, different controllers will be needed

to stabilize the different modes. The ability to activate the

correct controller at the right time requires the development

of a mechanism for identifying the active operating mode

and detecting possible transitions from one mode to another.

Failure to perform synchronous process/controller transitions

could lead to performance degradation or even instability.

To address this problem, we construct the following set of

mode observers (inspired in part by the ideas in [16], [17])

to replicate the dynamics of each mode:

żi = Lizi +Kiy + (Mi −Hi)Cfi(ζi)
ζi = zi +Hiy, ri = Miy − ζi, i ∈ I

(2)

where zi ∈ R
n is the state of the i-th mode observer, ζi ∈ R

n

is the observer output, ri ∈ R
n is the residual, and Li, Ki,

Mi and Hi are design matrices. The following proposition

summarizes the conditions that the mode observers of (2)

must satisfy in order to allow the identification of the active

mode and the detection of mode transitions in the presence

of uncertainties.

Proposition 1. Consider the switched uncertain nonlinear

system of (1) and the bank of mode observers in (2) where

Li, Ki, Mi and Hi are chosen such that for all i ∈ I:

(Mi −Hi)CAi − Li(Mi −Hi)C −KiC = 0 (3a)

(Mi −Hi)CBi = (Mi −Hi)CWi(x) = 0 (3b)

(Mi −Hi)C 6= 0 (3c)

Without loss of generality, let mode ε, for some ε ∈ I, be

the active one over any time interval [tkε,in, t
k
ε,out), k ∈ N.

Then, the evolution of the corresponding residual, rε(t), for

t ∈ [tkε,in, t
k
ε,out), is governed by:

ṙε = Lεrε + (Mε −Hε)C[fε(x) − fε(ζε)] (4)

while the residual for any inactive mode j, where j ∈ I −
{ε}, satisfies the following evolution equation:

ṙj = Ljrj + (Mj −Hj)C[(Aε −Aj)x+ fε(x) − fj(ζj)]

+ (Mj −Hj)C[Bεuε +Wε(x)θε] (5)

Sketch of proof. The derivative of the i-th residual can be

computed from ṙi = MiCẋ−ζ̇i, where ẋ and ζ̇i are given by

(1) and (2), respectively. Then, after applying the conditions

(3a)-(3c), (4) and (5) can be obtained.

The following theorem characterizes the expected behavior

of the mode observer residuals corresponding to the active

and inactive modes in terms of time-varying bounds that will

serve as the basis for identifying the active mode.

Theorem 1. Consider the systems of (4) and (5) where Lε

and Lj are chosen to be Hurwitz and fε(·) and fj(·) are

Lipschitz on some domain D ⊂ R
n with Lipschitz constants

ϑε and ϑj , respectively. Then the systems of (4) and (5) are

input-to-state stable.

Proof. Consider the system of (4) first. Since Lε is Hurwitz,

then for any positive definite matrix Sε, there exists a pos-

itive definite matrix Pε that satisfies the Lyapunov equation

L′
εPε + PεLε = −Sε. Take Vε(rε) = r′εPεrε as a Lyapunov

function candidate which satisfies λm(Pε)‖rε‖
2 ≤ Vε(rε) ≤

λM (Pε)‖rε‖
2, where λm(·) and λM (·) denote the minimum

2032



and maximum eigenvalues of a matrix, and ‖·‖ denotes the

Euclidean norm of a vector or matrix. Evaluating V̇ε along

the trajectories of the system (4) yields:

V̇ε = −r′εSεrε + 2r′εPε(Mε −Hε)C[fε(x) − fε(Mεy − rε)]

≤ −λm(Sε)‖rε‖
2 + ϑεσε1‖rε‖‖(I −MεC)x + rε‖

≤ −λm(Sε)‖rε‖
2 + ϑεσε1‖rε‖

2 + ϑεσε1σε2‖x‖‖rε‖

where σε1 , 2‖Pε(Mε −Hε)C‖ and σε2 , ‖(I −MεC)‖,

which implies that:

V̇ε ≤ −λm(Sε)(1 − πε)‖rε‖
2, ∀ ‖rε‖ ≥ Gε‖x‖ (6)

where πε ∈ (0, 1), Gε , ̺εϑεσε1σε2 and ̺ε , (λm(Sε)πε−
ϑεσε1)

−1. By the same token, we consider Vj(rj) = r′jPjrj
as a Lyapunov function candidate for the system of (5), and

it can be shown that V̇j(rj) satisfies the following inequality

after introducing a constant πj ∈ (0, 1):

V̇j ≤ −λm(Sj)(1 − πj)‖rj‖
2, ∀ ‖rj‖ ≥ Gj‖x‖ +D (7)

where Gj , ̺jϑjσj1σj2, ̺j , (λm(Sj)πj − ϑjσj1)
−1,

σj1 , 2‖Pj(Mj − Hj)C‖, σj2 , ‖(I − MjC)‖, D ,

̺jσj1‖[fε(x) − fj(x) + (Aε − Aj)x + Bεuε +Wε(x)θε]‖.

From (6) and (7), we conclude that the systems of (4) and

(5), with x as input to each, are input-to-state stable.
Remark 1. (6) and (7) imply that the residual for the active

mode satisfies a time-varying bound of the following form:

‖rε(t)‖ ≤ βε(‖rε(0)‖, t) + γεGε‖x(t)‖ (8)

for some class KL function βε(·, ·), and γε =
√

λM (Pε)
λm(Pε) ,

while the residuals for the inactive modes satisfy:

‖rj(t)‖ ≤ βj(‖rj(0)‖, t) + γj(Gj‖x(t)‖ +D) (9)

for some class KL function βj(·, ·), and γj =
√

λM (Pj)
λm(Pj)

.

These bounds imply that both rε and rj are ultimately

bounded, but have different ultimate bounds. Therefore, if

we choose γεGε = γjGj (by proper selection of the design

matrices), it can be seen that the ultimate bound for the

residual for the active mode will always be closer to zero

than those for the inactive modes. This difference is due

to the term D which arises due to the differences between

the dynamics of the active and inactive modes as well as

the sensitivity of the residuals of the inactive modes to the

uncertainties within the active mode (see Proposition 1).

Based on the expected differences between the bounds in

(8) and (9), one can attempt to identify the active mode and

detect mode transitions. The idea would be to monitor the

residuals simultaneously to determine the one that attains the

smallest (steady-state) offset and declare this as the active

mode. When the given pattern of residuals changes and

another residual begins to exhibit minimal offset, a mode

transition is declared and a new active mode is identified.

Note, however, that caution must be exercised when applying

these criteria since the analysis is based essentially on the

ultimate bounds on the residuals (and not the residuals’ actual

values). Note also that until the transient terms, βε(·, ·) and

βj(·, ·), decay to sufficiently small values, they may still have

significant contributions to the values of the residuals and

thus could cause delays in identifying the active mode. Such

delays can be minimized by proper choices of Lε and Lj

to ensure that the transient terms approach zero sufficiently

fast (relative to the dwell time for the active mode).

Remark 2. Note that unlike the case under full-state feedback

in which the residuals are evaluated using the full-state

(e.g., see [10]), the residuals in (2) are evaluated using the

measured output only. As can be seen from the analysis

leading to (6), an important consequence of the lack of

access to the full-state is that the term [fε(x) − fε(ζε)]
cannot simply be bounded by ‖rε‖ (which is sufficient to

prove convergence under state feedback); instead, this term

depends also on x. Therefore, the residual for the active

mode no longer converges to zero but approaches a terminal

neighborhood of the origin that depends on the size of the

state as well as the observer’s design parameters, and this

leads at most to ultimate boundedness (provided that ‖x‖ is

bounded). This introduces some ambiguity in the analysis

of the residuals’ behavior as it forces the designer to rely

on comparing the different offsets attained by the different

residuals shortly after mode switching to identify the active

mode. Note, however, that from the input-to-state stability

property established in Theorem 1 and the estimate in (8), if

x converges to zero then so will rε. In this case, the active

mode can be identified with certainty as the one with the

residual that approaches zero.

IV. ROBUST STABILIZATION OF SWITCHED SYSTEMS

USING OUTPUT FEEDBACK CONTROL

Once a mode transition is detected and the active mode is

identified, the supervisor needs to activate the corresponding

output feedback controller to robustly stabilize the hybrid

system and achieve an arbitrary degree of uncertainty attenu-

ation within the active subsystem. In this section, we describe

the controller design procedure and provide an explicit

characterization of the closed-loop stability properties.

A. Robust state feedback controller synthesis

Consider the switched nonlinear system of (1) and, without

loss of generality, assume that the uncertainties are non-

vanishing, i.e., Wi(0) 6= 0. We further assume the uncertainty

is bounded by ‖θi‖ ≤ θb,i. Introducing a robust control

Lyapunov function [18] for each mode i ∈ I, the following

robust nonlinear state feedback controller can be designed

using the results in [14] (see also [19], [20]):
ui = ki(x, θb,i, ρi, χi, φi) = Ki(x) (10)

where Ki(x) = −
L∗

f̃i
Vi+

(
(L∗∗

f̃i
Vi)

2+‖(LBi
Vi)

′

‖4

)
1/2

‖(LBi
Vi)

′

‖2
(LBiVi)

′

if ‖(LBiVi)
′
‖ 6= 0 and Ki(x) = 0 if ‖(LBiVi)

′
‖ = 0,

L∗
f̃i
Vi = Lf̃i

Vi+
(ρi‖x‖+χiθb,i‖LWi

Vi‖)‖x‖

‖x‖+φi
, L∗∗

f̃i
Vi = Lf̃i

Vi+

ρi‖x‖ + χiθb,i‖LWiVi‖, Lf̃i
Vi = (∂Vi/∂x)f̃i(x), LBiVi =

(∂Vi/∂x)Bi, LWiVi = (∂Vi/∂x)Wi(x), and the constants

ρi > 0, χi > 1 and φi > 0 are controller tuning parameters.

Using a standard Lyapunov argument, it can be shown (see

[21] for a similar proof) that there exist class K functions,

αi(·) and ψi(·), such that V̇i satisfies:
V̇i = Lf̃i

Vi +LBiViKi(x) +LWiViθi ≤ −αi(‖x‖) +ψi(φ̄i)
(11)

where φ̄i = φi

χi−1 . Furthermore, given any real number δi >

0, there exists φ̃i such that if φ̄i ≤ φ̃i, lim supt→∞‖x‖ ≤
δi and the nominal equilibrium point of the i-th mode is

practically stable. This implies that the controller enforces
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robust closed-loop stability for each mode with an arbitrary

degree of attenuation of the effects of uncertainty, and

guarantees convergence to an arbitrarily small neighborhood

of the nominal equilibrium point in finite time.

Remark 3. For switched systems with only a finite number

of mode transitions, robust stabilization of the continuous

modes is sufficient to guarantee stability of the overall

system. However, when considering an infinite number of

mode transitions over the infinite time interval, additional

restrictions on the growth of each Lyapunov function for

the time periods during which the corresponding mode is

inactive are needed. This is typically expressed in the form

of a multiple Lyapunov function stability constraint [3].

B. Observer-based output feedback control

The direct implementation of the robust feedback con-

troller of (10) requires the availability of full-state measure-

ments, which are seldom available in practice. To compensate

for the lack of full-state measurements, an appropriate state

estimator must be designed for each mode i ∈ I to provide

an estimate of the state from the measured output which can

then be used by the state feedback control law to compute

the control action. The combination of the state feedback

controller with the state estimator yields an output feedback

controller of the following general form:

ω̇i = Γi(ωi, y, µi), ui = Ki(ωi) (12)

where ωi ∈ R
n is the state estimate, µi is an observer design

parameter, and Γi(·, ·, ·) is a vector function. In the interest of

generality, we will not limit the discussion to any particular

state estimator design method; instead, we will consider any

type of state estimator that satisfies the requirements set forth

in the following assumption.

Assumption 1. Referring to the i-th closed-loop subsystem

of (1) and (12), given any set of positive real numbers

{δb,i, θb,i, δd,i}, there exists φ∗i > 0, and for each φi ∈
(0, φ∗i ], there exists µ∗

i > 0, such that if φ̄i ≤ φ∗i , µi ≤
µ∗

i , ‖x(0)‖ ≤ δb,i, ‖ωi(0)‖ ≤ δb,i and ‖θi‖ ≤ θb,i, the

trajectories of the closed-loop system are bounded and satisfy

lim supt→∞‖x(t)‖ ≤ δd,i. Furthermore, given any positive

real number T b
i , there exists µ̃i ≤ µ∗

i such that if µi ∈ (0, µ̃i],
‖x(t) − ωi(t)‖ ≤ Υiµi with some Υi > 0 for all t ≥ T b

i .

Remark 4. Assumption 1 requires that the observer designed

for each mode be able to (a) ensure that the closed-loop

system under the output feedback controller of (12) is

stable with an ultimate bound on the closed-loop state that

can be tuned via proper selection of the observer design

parameter, and (b) enforce an arbitrarily fast convergence

of the observer-generated estimate to the actual state by

proper selection of the observer design parameter. These

requirements will facilitate the design and implementation

of the adaptive predictor-corrector strategy described in the

next section. Typical examples of state estimators satisfying

Assumption 1 include high-gain observers (e.g., see [14],

[22]) where µi scales inversely with the observer gain. Note

that convergence of the estimation error below some desired

level is ensured only after a short period of time T b
i which

can be made arbitrarily small by proper selection of µi.

The following proposition provides an explicit character-

ization of the stability properties of each mode under the

corresponding output feedback controller.

Proposition 2. Consider the i-th closed-loop subsystem of (1)

and (12) where Assumption 1 holds with φ̄i ≤ φ∗i , µi ≤ µ̃i,

‖x(0)‖ ≤ δb,i, ‖ωi(0)‖ ≤ δb,i and ‖θi‖ ≤ θb,i. Then there

exists a class K function ςi(·) such that for all t ≥ T b
i :

V̇i(x(t)) ≤ −αi(‖x(t)‖) + ψi(φ̄i) + ςi(µi) (13)

Proof. Evaluating V̇i(x) along the trajectories of (1) and (12)

and then applying (11) yields:

V̇i(x) ≤ −αi(‖x‖)+ψi(φ̄i)+‖LBiVi(x)‖‖Ki(ωi)−Ki(x)‖

Assumption 1 and the Lipschitz continuity of Ki(·) allow us

to conclude that there exist two positive real constants Πi

and Ξi such that ‖LBiVi(x)‖ ≤ Πi (since x is bounded) and

‖Ki(ωi) − Ki(x)‖ ≤ Ξi‖ωi − x‖. Therefore,

V̇i(x) ≤ −αi(‖x‖) + ψi(φ̄i) + ςi(µi) (14)

where ςi(µi) , ΠiΞiΥiµi.

V. ADAPTIVE PREDICTOR CORRECTOR STRATEGY

The implementation of the control law in (12) requires the

continuous availability of the state estimate from the state

estimators embedded within the sensors. To reduce sensor-

controller information transfer as much as possible without

sacrificing stability, a model of each mode is embedded

within the corresponding controller to provide it with an es-

timate of the state when the state estimate is not transmitted.

Feedback from the sensors to the controller is performed

by updating the model state using the observer’s estimate

whenever communication is restored. Under this architecture,

the control law for each mode is implemented as follows:
ui(t) = Ki(x̂(t)), i ∈ I
˙̂x(t) = Aix(t) + Fi(x̂(t)) + Biui(t), t ∈ [tji , t

j+1
i )

x̂(tji ) = ωi(t
j
i ), j ∈ N

(15)

where x̂ is the state of the model for the i-th mode, Ai,

Fi(·) and Bi model Ai, fi(·) and Bi in (1), respectively,

tji is used to denote the j-th time instant that the model

state embedded in i-th controller is updated using the state

estimate transmitted by the i-th state estimator. When the

sensor-controller communication is suspended, the control

action is evaluated based on x̂. Computing V̇i(x) along the

trajectories of the system of (1) subject to (15) yields:

V̇i(x(t)) ≤ −αi(‖x(t)‖) + ψi(φ̄i) + ςi(µi)

+ LBiVi(x)[Ki(x̂i(t)) − Ki(ωi(t))] (16)

for all t ≥ T b
i . As can be seen from (16), an additional term

appears on the right-hand side when the communication is

suspended. This term, which arises due to the discrepancy

between x̂ and ωi, could change the expected decay rate of

Vi or even result in the growth of Vi, hence instability of the

system. When this difference is large enough to dominate

the negative term of the right-hand side, communication

must be restored so that x̂ can be updated using ωi and the

undesirable behavior of the system due to the plant-model

mismatch can be corrected to regain stability. This suggests

that the behavior of Vi(x) can be used as a threshold for

suspending and terminating communication. However, owing

to the unavailability of full-state measurements, we need to

examine Vi(ωi) and its derivative instead. Specifically, from
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Assumption 1 and the continuity of αi(·) and V̇i(·), we can

conclude that given µi > 0, there exist class K functions

γi(·) and κi(·) such that, for all t ≥ T b
i :

‖x−ωi‖ ≤ Υiµi ⇒

{∣∣αi(‖x‖) − αi(‖ωi‖)
∣∣ ≤ γi(µi)∣∣V̇i(x) − V̇i(ωi)

∣∣ ≤ κi(µi)
(17)

Substituting the above estimates into (16), we obtain:

V̇i(ωi(t)) ≤ −αi(‖ωi(t)‖) + ψi(φ̄i) +̟i(µi)

+ LBiVi(x)[Ki(x̂(t)) − Ki(ωi(t))] (18)

for all t ≥ T b
i , where ̟i(·) , ςi(·) + γi(·) + κi(·) is a

class K function. The following theorem describes how the

above bound on V̇i(ωi) can be employed for suspending and

restoring the communication.

Theorem 2. Consider the system of (1), for which Vi(x), i ∈
I, satisfy (13) when the state estimate generated by the state

estimator for the active mode is transmitted continuously

to the corresponding model embedded in the corresponding

controller. Let x̂(t) = ωi(t) ∀ t ∈ [0, T b
i ], and let tj−i > T b

be the j-th time that V̇i(ωi) satisfies the following bound:

V̇i(ωi(t
j−
i )) > −αi(‖ωi(t

j−
i )‖) + ψi(φ̄i) +̟i(µi) (19)

where ωi(t
j−
i ) = lim

t→t
j−
i
ωi(t), then the update law given

by x̂(tji ) = ωi(t
j
i ) ensures that V̇i(xi(t

j
i )) ≤ −αi(‖x(t

j
i )‖)+

ψi(φ̄i) + υi(µi), for some class K function υi(·) > ̟i(·).

Proof. From (16), it can be seen that if (19) is satisfied,

then LBiVi(x)[Ki(x̂) − Ki(ωi)] > 0. If the state of the

model is updated such that x̂(tji ) = ωi(t
j
i ), then we obtain

V̇i(ωi(t
j
i )) ≤ −αi(‖ωi(t

j
i )‖) + ψi(φ̄i) + ̟i(µi). And thus,

by applying (17), we conclude that there exists a class K
function υi(·) , ̟i(·) + γi(·) + κi(·) > ̟i(·) such that

V̇i(x(t
j
i )) ≤ −αi(‖x(t

j
i )‖) + ψi(φ̄i) + υi(µi).

Remark 5. When using the update law specified in Theorem

2, communication is re-established when (19) is satisfied, and

therefore the update times are state-dependent. Immediately

after the update, the model estimation error is reset to zero

and the system behavior is corrected. Compared with a

static communication policy (with a fixed update period),

the proposed adaptive predictor corrector strategy is able,

on the one hand, to respond promptly whenever the plant is

influenced by unexpected external disturbances, and, one the

other hand, to suspend the communication for as long as the

prescribed threshold on V̇i(ωi) is not breached so that the

utilization of the sensor-controller link can be minimized.

Note that continuous communication is initially needed in

order to allow the observer estimation error to become

sufficiently small so that x can be reliably inferred from ωi.

VI. SIMULATION STUDY: APPLICATION TO A CHEMICAL

REACTOR WITH MULTIPLE OPERATING MODES

To illustrate the implementation of the proposed methodol-

ogy, we consider a well-mixed continuous stirred tank reactor

(CSTR) where three irreversible elementary exothermic re-

actions of the forms A
k10−→ D, A

k20−→ U and A
k30−→ R take

place in parallel, where A is the reactant, D is the desired

product, and U , R are undesired byproducts. The reactor

has three operating modes: in mode 1, pure A is provided

at flow rate F1, molar concentration CA1 and temperature

TA1; in mode 2, species A enters the reactor at flow rate F2,

molar concentration CA2 and temperature TA2; in mode 3,

one more stream with A at flow rate F3, molar concentration

CA3 and temperature TA3 is introduced. Transitions between

different operating modes are dictated by the change in the

operating requirements. A jacket is used to remove or provide

heat to the reactor. Under standard modeling assumptions, a

hybrid model of the process can be derived from material

and energy balances, and takes the following form:

ĊA =

3∑

τ=1

στ (t)
Fτ

V
(CAτ − CA) −

3∑

l=1

rl(CA, T )

ĊD = −

3∑

τ=1

στ (t)
Fτ

V
CD + k10 exp(−

E1

RT
)CA

Ṫ =
3∑

τ=1

στ (t)
Fτ

V
(TAτ − T ) −

3∑

l=1

∆Hl

ρcp
rl(CA, T ) +

Q

ρcpV

where rl(CA, T ) = kl0 exp
(
− El

RT

)
CA, CA denotes the

concentration of A, T denotes the reactor temperature, τ ∈
{1, 2, 3} is the feed stream index, στ (t) can either be 0

or 1, representing removal or addition of a new stream, V
is the reactor volume, kl0, El, ∆Hl, where l ∈ {1, 2, 3},

denote the pre-exponential constants, the activation energies,

and the enthalpies of the three reactions, ρ and cp are the

density and heat capacity of the fluid in the reactor, R
is the gas constant, Q is the rate of heat transfer to the

reactor. Using typical values for the process parameters, the

reactor with Q = Qnom
i (Qnom

i is the nominal value of the

rate of heat transfer for the i-th mode) usually has three

equilibrium points for the i-th mode: two locally asymptot-

ically stable and one unstable. The control objective here

is to stabilize each mode at its unstable equilibrium point

(C1s
A , C1s

D , T s) = (3.59 mol/L, 0.41 mol/L, 388.57 K),
(C2s

A , C2s
D , T s) = (3.91 mol/L, 0.20 mol/L, 388.57 K), and

(C3s
A , C3s

D , T s) = (4.11 mol/L, 0.14 mol/L, 388.57 K) in

the presence of parametric uncertainties in the enthalpies of

the reaction (which is simulated by 0.001∆Hnom
l sin(t)) and

in the inlet temperature of the first stream TA1 (which is

5 K lower than the value used in the controller synthesis).

The manipulated input used is ui = Q − Qnom
i and mea-

surements of CD are assumed to be available. To facilitate

the design process, we define the displacement variables

x = [x1 x2 x3]
′ = [CA −C1s

A CD −C1s
D T −T s]′ so that the

steady state of the first mode xs
1 is placed at the origin.

Following the methodology presented in Sections III and

IV, three mode observers and Lyapunov-based output feed-

back controllers are designed where the Lyapunov function

for each mode is chosen to be: Vi(X ) = ‖X − xs
i ‖

2, i ∈
{1, 2, 3} where X can represent the process state x, the

model state x̂ or the state estimate ωi. Since we consider only

a finite number of mode transitions in this example, stability

of each continuous closed-loop subsystem is sufficient to

ensure stability of the overall switched system. Due to

space limitations, the synthesis details for mode observers,

controllers, state estimators and dynamic models are omitted.

To demonstrate the implementation of the proposed strat-

egy, the reactor is initialized in mode 1 and the corresponding

controller is activated to robustly stabilize the system. Fig. 1

shows that all the states are able to approach the desired
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Fig. 1. Evolution of the concentration of the reactant A and the desired
product D (1(a)), and the reactor temperature (1(b)).
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Fig. 2. Evolution of the rate of heat transfer (2(a)) and the residuals of
the mode observers (2(b)) as the reactor switches from mode 1 to mode 2
to mode 3 and back to mode 1 at 200, 400, and 600 min, respectively.

steady state values very quickly and stay within a small

neighborhood of the desired equilibrium point. Fig. 2(b)

shows the residuals for the three mode observers. For 0 ≤
t < 200 min, the residual for mode observer 1 converges

quickly and stays closest to the origin after a short period

of time, which indicates that mode 1 is active during this

time interval. At t = 200.01 min, the residual for mode

observer 2 starts to have the minimal value, thus indicating

that operation has been switched to mode 2 (the actual mode

switching occurs at t = 200 min, and the time required

for convergence is very short since the eigenvalues of the

matrices Li are quite large in magnitude). After the mode

transition is detected, the output feedback controller for mode

2 is activated to stabilize the process. Subsequent transitions

to mode 3 and mode 1 follow a similar pattern. Note

that within each mode, the controller relies on the model

predictions until the state estimate satisfies (19) at which

time the model state is updated using the state estimate. As

a measure of the extent of sensor-controller communication,

we define an “average update rate” for each mode as the ratio

between the time used for updates and the entire amount of

time during a certain interval. Based on this definition, and

after 800 minutes of operation, the average update rates for

the four periods are 6.16%, 6.77%, 7.00% and 6.05%. Note

that even when the process state converges to the terminal

set, updates are still necessary from time to time because

there is no feedback link between the plant and the controller

when the sensor-controller communication is suspended and

thus the process state is not guaranteed to remain within the

required neighborhood of the unstable equilibrium point. The

effects of greater plant-model mismatches and unexpected

disturbances on the control system performance are also

investigated by setting the value of TA1 used in the dynamic

models to be 310 K and introducing disturbances that are

simulated by 40 K step increases in the inlet temperature

for all feed streams for t ∈ [500 min, 503 min). The con-

troller is still able to keep the state within a slightly larger

neighborhood of the nominal equilibrium point (the figures

are omitted due to space limitations) but the average update

rates for the four periods now are 13.50%, 13.76%, 14.56%
and 13.76%. This shows that, the effects of the greater

plant-model mismatches and unexpected disturbances are

compensated by more frequent communication because the

model prediction errors tend to grow faster.
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