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Abstract— In incorporating an internal model (IM) to an
linear time invariant (LTI) feedback system to achieve asymp-
totic regulation for exogenous disturbances, limitation in robust
stability often hinders the transient response performance, such
as the convergence rate and maximum output magnitude, of the
LTI closed loop system. When the onset time of the disturbance
introduced to the system is known, we formulate a linear
time varying (LTV) controller, which exploits this information
to improve the transient performance while maintaining the
asymptotic regulation and desired robust stability. Simulation
and experimental results for asymptotic regulation of a linear
motor are presented to demonstrate the improvement of the
proposed LTV over LTI controller.

I. INTRODUCTION

The internal model principle [1] has been used to cancel

exogenous signal by generating dynamics in the feedback

path between the input and output to be regulated. By placing

the dynamics of the disturbance within the feedback path,

the system is able to achieve asymptotic convergence. Many

different implementations and approaches have proposed to

satisfy this constraint, such as Internal Model Principle (IMP)

[2] and Adaptive Feedforward Compensation (AFC) [3].

These approaches all achieve asymptotic performance, how-

ever many of approaches involve time invariant controllers

limiting, which have many limitations on their own. If a time-

invariant control is implemented in a real setting, it should

be constrained by standard robust stability constraints [4].

However because of these robust stability constraints, the

these controllers cannot be set to be arbitrarily aggressive to

achieve faster convergence rates.

There are many applications in which an exogenous dis-

turbance is known to occur at specific times, such as non-

circular cutting and hard disk drives [5], [6]. Sinusoidal

disturbance cancellation have been of much interest [7],

[8], [9], in hard disk drives because whenever a new seek

command to another track is issued, a new Repeatable

Runout Error (RRO) must be compensated for due to track

offset. If this disturbance is too large, track writing cannot

occur. This time onset of disturbance is known correspond

with every seek command, however, the magnitude and

phase of the disturbance is unknown ahead of time. If a

faster disturbance rejection time can occur, the seek time is

reduced and more data throughput can be handled. Another

common problem in vibration control [10], where an external
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sinusoidal may influence the performance of the underlying

system, would be improved with faster disturbance rejection.

Faster recoveries from disturbances will improve efficiency

of any systems. Under time-invariant control applications,

the robust controller cannot automatically handle changing

dynamics. Intuitively, if the disturbance perturbations are

known ahead of time, the information should be used to help

improve the convergence performance.

In this paper, we propose a time varying controller based

on the disturbance estimator Kalman filter. By augmenting

the system’s state to incorporate the disturbance dynamics,

the sudden change in disturbance dynamics can be modeled

as process noise specific to those disturbance states. In doing

so, the gains of the Kalman filter automatically adjust and

allow for faster learning of those new dynamics allowing

for faster convergence, while maintaining long term robust

stability.

The remainder of this paper is organized as follows: In

Section II, the problem is setup and the control algorithm

is described. In Section III, the algorithm is simulated on a

modeled plant, and in Section IV, the algorithm is transfered

to the real plant on a real time controller. The results are

then studied. Section V then concludes the paper.

II. PROBLEM SETUP

Let P be any plant and C be any preselected controller

as seen in Figure 1. The plant is perturbed by a disturbance

C
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−
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Fig. 1. Plug In Block Diagram for Disturbance Estimator

signal d which contains is composed of sinusoidal signals

that can described by

d = a(t) +
n
∑

i=0

αi(t) sin(ωit+ φi(t)) (1)

where a describes a constant disturbance and α, ω and φ

describe the amplitude, frequency and phase of a respective

sinusoidal exogenous disturbance. The magnitude of the

disturbance can have sharp transitions at known specific
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times. However the value of those exact magnitude and phase

change of those changes may not be known ahead of time. It

is assumed that both α(t) and φ(t) have step like transitions

during changes, however this method can also handle slowly

changing signals.

The goal of the estimator in figure 1 is to estimate d with

d̂ and cancel it out. The problem is placed in the framework

of a Kalman filter [11]. Estimating the state is not the main

objective; instead, the goal is to determine the characteristics

of the disturbance introduced. As so, the estimator does not

need to estimate the state of the controller, but only those

of the plant and the disturbance. The pre-designed controller

can be non-linear and time-varying since only the control

signal u is necessary.

Assume the discrete linear plant P can be described by

x(k) = Ax(k−1)+Bu(k−1)+Bd(k−1)+w(k−1) (2)

yk = Cxk + vk (3)

where wk and vk are the process noise and measurement

noise, respectively.

The plant state is then augmented to model the sinusoidal

disturbances as

xaug =

[

x

xd

]

(4)

which are modeled by:

xd(k) = Adxd(k − 1) + wd(k − 1) (5)

where Ad is made up of block diagonals containing the

internal model, where the first entry describes the constant

disturbance.

Ad =



















1 0
[

2 cos(ω1) −1
1 0

]

. . .

0

[

2 cos(ωm) −1
1 0

]



















(6)

and wd describes the possibility of drifting of the disturbance.

Combining eq. (2), (4) and (5), the overall system yields:

xaug =

[

x(k)
xd(k)

]

=

[

A BCd

0 Ad

] [

x(k − 1)
xd(k − 1)

]

(7)

where Cd =
[

1 0 1 0 · · · 1 0 1
]

simply de-

scribes how the noise is injected from the disturbance states

to the plant input. Note that where the disturbance states are

independent and uncontrollable.

The filter uses the standard discrete Kalman coefficient

updates [12],[13].

x̂(k|k − 1) = Ax̂(k − 1) +Bu(k − 1)

P (k|k − 1) = AP (k − 1)AT +Q(k)

L(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1

x̂(k) = x̂(k|k − 1) + L(k)(y(k)− Cx̂(k|k − 1))

P (k) = (I − L(k)C)P (k|k − 1)

where, P is the error covariance, and L represents the

Kalman gain. Note that the process noise covariance Q(k)
is able to change with time. Stability and convergence have

already been proven within the Kalman Filter framework

[14].

A. Q and R Selection

Under standard definitions Q is defined as Q = E[vvT ],
however after the state augmentation,

Qaug = E

[

v

vd

]

[

v vd
]

(8)

=

[

Q 0
0 Qd

]

(9)

The original process noise covariance matrix Q and measure-

ment noise covariance matrix R are still determined using

standard methods. This paper’s main flexibility arises from

the ability to tune Qd to both ensure steady state robust

stability and allow for faster convergence to a change in

disturbance. We propose that Qd is chosen to temporarily

increase to a large magnitude when the onset of disturbance

is pre-known to change, while maintaining a smaller value

during the rest of the time. By doing so, the Kalman gains

temporarily increase to quickly learn the evolution of the

disturbance parameters, and then later return to the original

conservative learning gains. The controller provides fast

learning, while maintaining long term stability. By putting

the disturbance estimation within the Kalman filter frame-

work, this controller affords the designer an stochastically

optimal convergence.

B. Selection of Qd

There are two main circumstances that the process noise

covariance matrix Qd must be chosen:

1) Steady State Performance Qd,ss

2) Onset disturbance transitions Qd,trans

Under nominal conditions, as long as Qd remains positive

definite, the overall system is guaranteed to be stable. How-

ever, under robust stability constraints, the steady state Qd,ss

are constrained in magnitude. By increasing Qd,ss arbitrarily

large, the complementary sensitivity can fall outside of

acceptable bounds. Unfortunately as shown in [15], it is

shown there are no bounds that can be known ahead of time;

only the designed controller can be checked to be robustly

stable. In practice, the limits of Qd can be checked against

an uncertainty bound Wr, or tuned on the actual system to

achieve acceptable performance.

On the other hand, the lower bound of Qd,ss can be

arbitrarily small. Another benefit is as Q → 0 the loop

gain of the system returns to the pre-designed controller,

which is assumed to already be within acceptable bounds.

If Qd,ss = 0, the system essentially freezes the disturbance

state estimation and maintains a constant disturbance can-

cellation. This intermittent learning yields similar benefits to

[16], but allows for a more formal and straightforward setup.

This formulation also allows sinusoidal disturbances instead

of only a steady state disturbance cancellation.
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During disturbance transitions, Qd,trans should be chosen

to accommodate the approximate E[vdv
T
d ], however any

small increase in Qd,trans relative to Qd,ss yields larger

learning gains for disturbance cancellations.

So under sharp transitions in disturbances, Qd can be

defined as

Qd(k) =

{

Qd,trans k ∈ K

Qd,ss otherwise
(10)

where K represents the set of times k such that an onset

of disturbance transition occurs. It should be of note, if

the plant model does not match the real plant, in order to

maintain stability these disturbance must be far enough apart

in time such that the elevated Kalman gains L can return to

normal levels and stabilize the system. Sustained impulses

of Qd,trans may have the ability to destabilize the system.

III. SIMULATION AND RESULTS

The algorithm is implemented on a Halbach linear motor

described in [17] is shown in Figure 2. The open loop plant

was modeled using N4SID and its bode plot can be seen

in Figure 3. The open loop system resembles a double

Fig. 2. Linear Motor Setup

integrator. The system has an update rate of 5kHz and is con-

trolled by C using manually tuned PD controller with a goal

to maximize the bandwidth. The regulation reference was

chosen to show disturbance characteristics. A PD controller

did not have to be chosen for its simplicity but also to show

the algorithms flexibility to fit within common framework.

Due to the fact that the states are already estimated with a

Kalman filter, a state feedback controller using LQR [18]

can also be easily designed within this scheme.

An artificially generated sinusoidal disturbance at 60Hz

of amplitude 0.3 Volts is inserted as d, that intermittently

affects the system as seen in Figure 4. The sinusoid abruptly

increases in magnitude. The results are similar to any phase

change or similar amplitude change. Below the input distur-

bance graph, Figure 4 shows the onset transitions for Qd.

During the transition times, when the value goes to one,

Qd = Qd,trans, and Qd = Qd,ss, when the value goes to

zero.
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Fig. 3. Bode plot of the linear motor model

For the experiment, both Qd,ss and Qd,trans are chosen

to be diagonal matrices multiplied by a scalar. The steady

state Qd,ss is chosen to push the performance, nearing

robustness bounds. Increasing Qd,ss further caused system

instability. The transitional Qd,trans was tuned to be 4 order

of magnitudes larger than Qd,ss. If instead Qd = Qd,trans is

chosen, the system goes unstable. In these simulations, the

time-varying impulsive Qd, is compared to its steady state

counterpart, where Qd = Qd,ss during the entire simulation.

By implementing a jump in Q at the onset of amplitude

changes, we can easily see a jump in the correction gains

L of the Kalman filter as seen in Figure 5. It can be noted

that these values do not change if the two Qd values remain

consistent throughout the experiment. These values can be

pre-calculated and put in a look up table to save on the

high computational cost of the Kalman filter, reducing the

complexity of computation down to a simple time-varying

Luenberger Observer. However if either value of Qd,ss or

Qd,trans cannot be known ahead of time, the original Kalman

implementation must be used. Also for this configuration, the

gains all return to steady state bounds within 0.2 seconds. As

hoped for, the largest two value changes in L correspond to

the sinusoidal disturbance states. The third largest correspond

to the steady state gains. The last three, which correspond to

the plant states, hardly change at all.

It may be useful to show the sensitivity functions of the

control systems with just the PD control, with an observer

with Q = Qd,ss, and with an aggressive observer with

Q = Qd,trans. Although in implementation, the values of

Q vary with time we allow the Kalman gains steady state
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Fig. 5. Evolution of Kalman learning gains L during the transition

to observe the steady state sensitivity and complementary

sensitivity functions, as seen in Figure 6. As expected, the

PD control has no rejection of any periodic disturbance,

while Q = Qd,ss and Q = Qd,trans do. It can also be

seen that the Q = Qd,trans has a much faster drop off at

ω = 0Hz and ω = 20Hz. It may be concluded that the better

choice would always be Q = Qd,trans, but if we look at

the complementary sensitivity function as seen in Figure 7,

we can that the more aggressive Q causes a much larger

gain in the higher frequencies. By having a larger gain, the

robust stability of our system can no longer be guaranteed.

It should be of note, that Qd,ss can be chosen to be zero

which would return both the sensitivity and complementary

sensitivity functions back to the original PD control.

Figure 8 shows the simulation results for the estimate

of d̂ to d. As we can see, by time-varying the Qd, the

disturbance rejection time converges much faster than the

non time-varying version. Instead of taking multiple periods

to estimate the disturbance, the algorithm begins the estimate
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Fig. 6. Steady state sensitivity functions of different choices for Q
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Fig. 8. Simulation: Disturbance estimation on onset of sinusoidal distur-
bance

5391



the correct magnitude and phase within one cycle.

For the true regulation error y, as seen in Figure 9 the
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Fig. 9. Simulation: Output error performance due to an onset of sinusoidal
disturbance

time it takes the system to correct to the sinusoidal change

is greatly reduced for the time-varying case. Regardless of

transition, the results are similar. The fall at time t = 0.5
seconds in Figure 4, has very similar results to t = 0 seconds,

and thus is not shown.

Because the disturbance model also can incorporate a

constant disturbance, this formulation can also account for

steady state error and correct for it. Another benefit, is that

it can also improve step jumps in the reference as well. To

test this, a constant disturbance is injected at time t = 0 with

a value of 0.3 volts, as can be seen in Figure 10. Under the

0 0.05 0.1 0.15 0.2
−0.1

0

0.1

0.2

0.3

0.4

D
is

tu
rb

a
n

c
e

 (
V

o
lt
s
)

Time (s)

 

 

Input Disturbance

Time Invariant

Time Varying

Fig. 10. Simulation: Disturbance estimation on the onset of a constant
disturbance

time invariant case, the states take more than 0.2 seconds to

accurately estimate this additional disturbance. However, the

time varying Qd achieves the same estimation in a fraction

of the time.

IV. EXPERIMENTAL RESULTS

In real implementation, the plant may be slightly perturbed

from our model due to modeling errors. Even with modeling

errors, Figure 12 still shows the drastic improvement in
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Fig. 11. Simulation: Output error performance due to an constant
disturbance onset

estimation convergence time due to an onset of a sinusoidal

disturbance. The simulation and experimental results do

not match exactly, but the functionality remains the same.

The output errors shown in Figure 13 shows a similar
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Fig. 12. Experiment: disturbance estimation on the onset of sinusoidal
disturbance

convergence rate to that of the disturbance estimation. The

maximum perturbation decreases from .2 micrometers to

0.05 micrometers.

Since a constant disturbance is also incorporated in the

internal model, the algorithm is also able more quickly

estimated steps changes in the error disturbance as seen

in Figure 14. However due to the fact that real system

encounters a constant disturbance most likely due to the

motor amplifier bias, the estimation is offset by about 0.3

volts. Regardless of the sources of constant disturbance, the

algorithm is able to estimate the magnitude of the change

in much the same way the simulation did. Also, the output

errors as seen in Figure 15 converge similarly with the time

varying control having a drastically faster convergence rate

than the time invariant control. The peak error is also reduced

from 1.8 micrometers to 0.8 micrometers.
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Fig. 13. Experiment: Output error performance due to an onset of sinusoidal
disturbance
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Fig. 14. Experiment: Disturbance estimation due to onset of constant
disturbance.
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Fig. 15. Experiment: Output error performance due to onset of step
disturbance at time zero

V. CONCLUSION

By formulating the internal model into a Kalman dis-

turbance estimator and simply adjusting its process noise

with respect to time, the algorithm is able to automatically

adjust its own gains to learn the changes to the disturbance

more quickly with the a priori knowledge of the onset time

of the disturbance. With the faster estimation convergence,

asymptotic regulation of the output is also achieved at a

similar rate. Furthermore, the proposed linear time varying

control algorithm is able to quickly return back to the robust

steady state LTI controller. The simulation and experimental

results have demonstrated that the LTV control was able to

drastically reduce both the maximum output and the transient

time over those of the LTI control.
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