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Abstract— We study the problem of designing controllers
to track time-varying state trajectories for plants modeled
as hybrid dynamical systems, which are systems with both
continuous and discrete dynamics. The reference trajectories
are given by functions that may exhibit jumps. The class of
controllers considered are also modeled as hybrid systems.
These are designed to guarantee stability of tracking and
that the difference between the plant’s state and the reference
trajectory converges to zero. Using recently developed tools for
the study of asymptotic stability in hybrid systems, we recast
the tracking problem as the problem of stabilizing a closed set
and derive conditions for the design of tracking controllers for
hybrid reference trajectories with the property that the jump
times of the plant coincide with those of the given reference
trajectories. The approach is illustrated in examples.

I. INTRODUCTION

The literature on stability analysis and stabilization of

equilibria for systems with state jumps is relatively well de-

veloped. On the other hand, in many control problems, such

as tracking, output regulation, synchronization, and observer

design, the goal consists of stabilizing time-varying trajecto-

ries. To effectively tackle such problems for hybrid systems,

results on the stability and stabilization of time-varying

trajectories of such systems are imperative. Unfortunately,

general results for stabilizing impulsive/discontinuous, or,

more generally, hybrid trajectories are not currently available.

Notable specific solutions to stabilization of such trajectories

are given by the work in [11], [10], [4], in which the state

estimation and tracking problems for particular classes of

mechanical systems with impacts are addressed, the work

in [7], in which the observer design problem for a class

of complementarity systems is studied, the work in [9], in

which a tracking control for a class of measure differential

inclusions is solved, the work in [1], [2], [3], in which a

tracking problem for a class of mechanical systems with

unilateral constraints is addressed, and the work in [16]

considering the juggling problem as a tracking problem.

In this paper, we present sufficient conditions characteriz-

ing controllers solving a state tracking control problem. We

consider plants given in terms of a constrained flow equation

ξ̇ = fp(ξ, u) (ξ, u) ∈ Cp (1)
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and a constrained jump inclusion

ξ+ ∈ Gp(ξ, u) (ξ, u) ∈ Dp, (2)

with output y = ξ. For this class of hybrid systems, a

controller assigning the input u and measuring ξ is to be

designed so that the difference between ξ and the reference

trajectory r, which may both flow and jump, is well behaved.

Without being precise about a notion of tracking, it should be

expected that the tracking controller guarantees both stability

and attractivity properties relative to the reference trajectory.

The former consists of the property that solutions to the

plant starting close to the reference stay close to it while

the latter consists of the property that the distance between

the plant’s solution component and the reference decreases

asymptotically. A challenge in guaranteeing these properties

for hybrid systems is discussed in Section II. The proposed

approach in this note consists of recasting a state tracking

problem for hybrid systems, which is defined in Section IV,

as the stabilization of a closed set that embeds the reference

trajectory. Exploiting sufficient conditions for asymptotic

stability of closed sets for hybrid systems, in Section V we

present sufficient conditions for a class of hybrid tracking

controllers enforcing that the jump times of the plant to

coincide with those of the given reference trajectory. The

approach is illustrated in examples in Section VI.

II. AN OBSTACLE TO TRACKING CONTROL DESIGN FOR

HYBRID SYSTEMS

Consider a scalar, single-valued hybrid plant as in (1)-

(2) with y = ξ and the reference trajectory to be tracked

given by the sawtooth signal shown in Figure 1, which

has discontinuities when reaching 1. Trajectories ξ to the

plant can be defined as functions defined on hybrid time

domains dom ξ, which are subsets of R≥0×N := [0, +∞)×
{0, 1, 2, . . .} and parameterize the trajectories by flow time

t and jump time j [6]; see Section III for more details. A

typical approach used in tracking control of continuous-time

and discrete-time plants consist of defining the tracking error

and then analyzing the resulting time-varying error dynamics.

Following this approach, the reference trajectory r on the

hybrid time domain dom r is given by

r(t, j) = t − trj ∀t ∈ [trj , t
r
j+1], (3)

where trj = j, j ∈ N. Note that r(t, j) ∈ [0, 1] for all (t, j) ∈
dom r, where dom r is the union of [trj , t

r
j+1]×{j} for every

j ∈ N. Let

Tr :=
⋃

j∈N>0

(trj , j − 1) (4)
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denote the fixed values of (t, j) at which r jumps. Then, the

dynamics of the tracking error

e := y − r(t, j) = ξ − r(t, j)

are given by the flow equation

ė = fp(e + r(t, j), u) − 1 (5)

when

(e + r(t, j), u) ∈ Cp and t ∈ [trj , t
r
j+1], (6)

and by the jump equation

e+ = Ge(e + r(t, j), u, t, j) (7)

when

(e + r(t, j), u) ∈ Dp or (t, j) ∈ Tr, (8)

where Ge is defined at every point satisfying (8) as

Ge=







Gp(e + r, u) − r (e + r, u) ∈ Dp, (t, j) 6∈ Tr

e + r (e + r, u) 6∈ Dp, (t, j) ∈ Tr

Gp(e + r, u) (e + r, u) ∈ Dp, (t, j) ∈ Tr.

(For notational convenience, we removed the arguments of

some of the functions.)
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(b) Projection onto R≥0.

Fig. 1. Reference trajectory for the tracking control problem in Section II.
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Fig. 2. A resulting jump map Ge for the error system in the tracking control
problem of Section II when Gp(ξ, u) = 0 and Dp = {(ξ, u) : ξ = 1 }.
The map Ge is defined for each (ξ, r) ∈ (R × {1}) × ({1} × [0, 1]).

First, note that, in particular, the constraints (6) and (8)

cannot be written in terms of the tracking error solely. Now,

suppose that a feedback law u = κc(y, r) is designed to map

the error to zero when both the plant’s state ξ and r jump

simultaneously, that is, the third case in the definition of Ge

is zero. It is possible that, from points ξ in Cp that are nearby

Dp and times (t, j) ∈ Tr, Ge updates e to |e+| = e+1, which

is far from zero. In fact, Figure 1 depicts a particular map Ge

as a function of ξ and r(t, j) when the jumps of the plant

occur when ξ = 1, that is, Dp := {(ξ, u) : ξ = 1 }, and

with Gp(ξ, u) = ξ + u, κc(y, r) = −ξ. Since, for the given

reference, condition (t, j) ∈ Tr is equivalent to r(t, j) = 1,

the jump map Ge is written as a function of (ξ, r) only and

is defined at every point satisfying (8), which is the set of

points (ξ, r) in (R × {1}) × ({1} × [0, 1]). Note that when

(t, j) ∈ Tr (equivalently, r(t, j) = 1) if ξ = 1 then e+ = 0
but if ξ is slightly below 1, then |e+| will be close to 1 after

the jump. This “peaking phenomenon,” which is due to the

jump instants of plant and reference not coinciding, has also

been recognized in [8], [11], [3] and imposes a difficulty in

guaranteeing that the norm of e converges to zero.

We consider tracking controllers that avoid the issue of

an increasing error signal by ensuring that jumps of the

plant occur at the same instant as the jumps of the reference

trajectories. For the illustrative example above, a controller

designed with the said approach will assign u so that the

jumps of the plant and the reference trajectory occur jointly.

For this purpose, we recast the tracking control problem as

the stabilization of a closed set which embeds the time-

varying reference trajectory. For the design of the tracking

controllers we exploit sufficient conditions for asymptotic

stability of hybrid systems in [5] (see also [14] and [15]).

An alternative approach based on generating the reference

trajectories from an exosystem was proposed in [13].

III. PRELIMINARIES

Below, given a set S, S denotes its closure; given a vector

x ∈ R
n, |x| denotes the Euclidean vector norm; given a set

S ⊂ R
n and a point x ∈ R

n, and |x|S := infy∈S |x − y|.
A function α : R≥0 → R≥0 is said to belong to class-K
(α ∈ K) if is continuous, zero at zero, and strictly increasing

and to belong to class-K∞ (α ∈ K∞) if it belongs to class-K
and is unbounded. PD denotes the set of real-valued positive

definite functions.

A hybrid system H with state x, input u, and output y is

modeled as

H







ẋ = f(x, u) (x, u) ∈ C

x+ ∈ G(x, u) (x, u) ∈ D

y = h(x),
(9)

where R
n is the space for the state x, U ⊂ R

m is the space

for inputs u, the set C ⊂ R
n×U is the flow set, the function

f : C → R
n is the flow map, the set D ⊂ R

n × U is the

jump set, G : D ⇉ R
n is the jump map, and h : R

n → R
p is

the output map. The data of the hybrid system H is given by

(C, f, D, G, h). Solutions to hybrid systems H are defined

by hybrid arcs on hybrid time domains, which are functions

defined on subsets of R≥0×N given by the union of intervals

of the form [tj , tj+1] × {j}, tj ≤ tj+1; see [6] for more

details.

We define stability and Lyapunov functions for closed
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hybrid systems (no inputs and outputs) given by

H

{

ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D.
(10)

The following definition introduces stability for general sets

of the state space. Given φ(0, 0) ∈ R
n, SH(φ(0, 0)) denotes

the set of maximal solutions φ to H with φ(0, 0).

Definition 3.1 (stability): A set A ⊂ R
n is said to be

• uniformly globally stable (UGS) if there exists α ∈
K∞ such that each solution φ ∈ SH(φ(0, 0)) satisfies

|φ(t, j)|A ≤ α(|φ(0, 0)|A) for all (t, j) ∈ domφ;

• uniformly globally attractive (UGA) if for each ε > 0
and λ > 0 there exists T > 0 such that, for any solution

φ ∈ SH(φ(0, 0)) with |φ(0, 0)|A ≤ λ, (t, j) ∈ domφ

and t + j ≥ T imply |φ(t, j)|A ≤ ε;

• uniformly globally asymptotically stable (UGAS) if it is

both uniformly globally stable and uniformly globally

attractive.

Definition 3.2 (Lyapunov function candidate): A function

V : domV → R is said to be a Lyapunov function candidate

for the hybrid system H = (C, f, D, G) with respect to the

closed set A if the following conditions hold:

1) C ∪ D ∪ G(D) ⊂ domV ,

2) V is continuously differentiable on an open set con-

taining C.

The following result for asymptotic stability of closed

sets will be employed in the design of hybrid controllers

for tracking. It is a Lyapunov stability theorem for hybrid

systems.

Theorem 3.3: (Lyapunov theorem [5]) Let H =
(C, f, D, G) be a hybrid system and let A ⊂ R

n be

closed. If V is a Lyapunov function candidate for H with

respect to A and there exist α1, α2 ∈ K∞, and a positive

definite and continuous function ρ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D ∪ G(D),
(11a)

〈∇V (x), f(x)〉 ≤ −ρ (|x|A) ∀x ∈ C, (11b)

V (g) − V (x) ≤ −ρ (|x|A) ∀x ∈ D, g ∈ G(x),
(11c)

then A is uniformly globally asymptotically stable for H.

The following result introduces relaxed Lyapunov condi-

tions.

Corollary 3.4: (relaxed Lyapunov conditions [5]) Let

H = (C, f, D, G) be a hybrid system and let A ⊂ R
n be

closed. Suppose that V is a Lyapunov function candidate

for H with respect to A and there exist α1, α2 ∈ K∞, and

a continuous ρ ∈ PD such that (11a) and either A) or B)

below holds:

A) Condition (11c) holds,

〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ C, (12)

and, for each λ > 0, there exist γλ ∈ K∞, Nλ ≥ 0

such that for every solution φ to H with |φ(0, 0)|A ∈
(0, λ] we have that (t, j) ∈ domφ, t + j ≥ T imply

j ≥ γλ(T ) − Nλ;

B) Condition (11b) holds,

V (g) − V (x) ≤ 0 ∀x ∈ D, g ∈ G(x) , (13)

and, for each λ > 0, there exist γλ ∈ K∞, Nλ ≥ 0
such that for every solution φ to H with |φ(0, 0)|A ∈
(0, λ] we have that (t, j) ∈ domφ, t + j ≥ T imply

t ≥ γλ(T ) − Nλ;

then A is uniformly globally asymptotically stable.

This corollary states that uniform attractivity can be as-

serted as long as the Lyapunov function decreases, along

solutions, over sufficiently long hybrid time intervals. More

precisely, A) is about the Lyapunov function being nonin-

creasing during flows but strictly decreasing during jumps

and the jumps occur frequently enough while B) is about

the Lyapunov function being nonincreasing during jumps but

strictly decreasing during flows and the flows occur for long

enough.

IV. PROBLEM STATEMENT

We consider plants Hp modeled as hybrid systems H with

state ξ ∈ R
np , input u ∈ R

mp , and output y = ξ given by

Hp

{

ξ̇ = fp(ξ, u) (ξ, u) ∈ Cp

ξ+ ∈ Gp(ξ, u) (ξ, u) ∈ Dp
(14)

with data (Cp, fp, Dp, Gp). We consider hybrid arcs r :
dom r → R

np defining reference trajectories to be tracked.

The following class of tracking hybrid controllers with state

η ∈ R
nc and data (Cc, fc, Dc, Gc, κc) is considered:

Hc







η̇ = fc(η, y, r) (η, y, r) ∈ Cc

η+ ∈ Gc(η, y, r) (η, y, r) ∈ Dc

u = κc(η, y, r).
(15)

The input of Hc has been assigned to (y, r) while its output

u to the input of the plant Hp. The closed-loop system (14)-

(15) resulting from the interconnection of Hp and Hc is

denoted Hcl, has state

x := (ξ, η) ∈ R
np × R

nc

and is given by1

ξ̇ = fp(ξ, κc(η, ξ, r))
η̇ = fc(η, ξ, r)

}

(ξ, κc(η, ξ, r)) ∈ Cp

and (η, ξ, r) ∈ Cc

ξ+ ∈ Gp(ξ, κc(η, ξ, r))
η+ = η

}

(ξ, κc(η, ξ, r)) ∈ Dp

ξ+ = ξ

η+ ∈ Gc(η, ξ, r)

}

(η, ξ, r) ∈ Dc,

(16)

where, for notational simplicity, we have omitted the argu-

ment (t, j) of the time-varying reference r.

Using the above definitions, we state a tracking control

problem for hybrid systems.

1When the jump conditions (ξ, κc(η, ξ, r)) ∈ Dp and (η, ξ, r) ∈ Dc are
satisfied simultaneously, either jump map can be used. This can be captured
with a set-valued jump map; see the model in Section V-A.
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Tracking Control Problem (⋆): Given a plant Hp

and a complete reference trajectory r design the data

(Cc, fc, Dc, Gc, κc) of the controller Hc so that the set of

points ξ satisfying

ξ = r(t, j) (17)

is uniformly globally asymptotically stable.2

Problem (⋆) asks for a controller such that the set of points

(17) has the UGS and UGA properties (see Definition 3.1)

for the closed-loop system. The attractivity property implies

that complete solutions to Hcl satisfy

lim
t+j→∞

|ξ(t, j) − r(t, j)| = 0.

Moreover, the stability property implies that solutions to the

plant with initial conditions ξ(0, 0) = r(0, 0), if they exist,

satisfy

ξ(t, j) = r(t, j) for all (t, j) ∈ dom ξ.

Note that unless further conditions are imposed on r, the

set in (17) is time varying and not compact. Furthermore,

boundedness of the state of the controller is not guaranteed

by UGAS of (17) and has to be established separately.

V. A CLASS OF HYBRID CONTROLLERS FOR STATE

TRACKING WITH KNOWN REFERENCE TRAJECTORIES

A. Main Approach

In smooth systems, a well-known approach is to introduce

the coordinate transformation e = ξ − r and then analyze

the resulting system. This approach is used for systems with

time-triggered state jumps in [12]. However, in general, the

flow and jump sets as well as the flow and jump maps of the

error dynamics become time dependent. To avoid this issue,

we recast Problem (⋆), which pertains to the stabilization

of a time-varying set, as the stabilization of a closed, not

necessarily bounded, time-invariant set. To this end, given a

reference r : dom r → R
np , following (4), we define the set

Tr collecting all of the points (t, j) in the domain of r at

which r jumps, that is, every point (trj , j) ∈ dom r for which

(trj , j +1) ∈ dom r. Auxiliary variables τ ∈ R≥0 and k ∈ N

are incorporated as states to parametrize a given reference

trajectory r. That is, τ evolves continuously according to the

flow time parameter t, while k evolves discretely according

to the jump time parameter j at jumps of r. In this setting,

the set to be stabilized is given by

A = {(x, τ, k) : ξ = r(τ, k) } , (18)

which is a subset of R
np × R

nc × R≥0 × N. For instance,

for the example of Section II, the set to be stabilized with

the proposed approach is given by
{

(x, τ, k) : ξ + trk = τ ∈ [trk, trk+1], (t
r
k, k) ∈ (0, 0) ∪ Tr

}

,

where Tr is given in (4). This set is closed and unbounded

in the τ and k components.

2The definition of UGAS for a time-varying hybrid system follows
Definition 3.1; see [14].

The next ingredient of the approach is to guarantee, by

design of the controller, that the jumps of the plant and of

the reference trajectory occur simultaneously. This will be

a constraint in the design of the controller, which, while it

restricts the type of systems for which the tracking problem

can be solved, it allows for a solution to certain tracking

problems as Section VI illustrates.

With a controller satisfying such a property, our approach

is to recast the problem under study as the stabilization of

the set A for the resulting closed-loop system

ξ̇ = fp(ξ, κc(η, ξ, r(τ, k)))
η̇ = fc(η, ξ, r(τ, k))
τ̇ = 1

k̇ = 0















(ξ, κc(η, ξ, r(τ, k))) ∈ Cp

and (η, ξ, r(τ, k)) ∈ Cc

and τ ∈ [trk, trk+1
], k ∈ N

ξ+ ∈ Gp(ξ, κc(η, ξ, r(τ, k)))
η+ = η, τ+ = τ

k+ = k + 1







(ξ, κc(η, ξ, r(τ, k))) ∈ Dp

and (τ, k) ∈ Tr

ξ+ = ξ

η+ ∈ Gc(η, ξ, r(τ, k))
τ+ = τ, k+ = k







(η, ξ, r(τ, k)) ∈ Dc.

(19)

The resulting closed-loop system, denoted H⋆
cl, can be mod-

eled by data (C, f, D, G) given by

C := {(x, τ, k) : (ξ, κc(η, ξ, r(τ, k))) ∈ Cp,

τ ∈ [trk, trk+1
], k ∈ N, (η, ξ, r(τ, k)) ∈ Cc},

f(x, τ, k) :=









fp(ξ, κc(η, ξ, r(τ, k)))
fc(η, ξ, r(τ, k))

1
0









,

D := D1 ∪ D2

D1 := {(x, τ, k) : (ξ, κc(η, ξ, r(τ, k))) ∈ Dp,

(τ, k) ∈ Tr}
D2 := {(x, τ, k) : (η, ξ, r(τ, k)) ∈ Dc } ,

G(x, τ, k) :=















































































G1(x, τ, k) :=









Gp(ξ, κc(η, ξ, r(τ, k)))
η

τ

k + 1









(x, τ, k) ∈ D1 \ D2,

G2(x, τ, k) :=









ξ

Gc(η, ξ, r(τ, k))
τ

k









(x, τ, k) ∈ D2 \ D1,

{G1(x, τ, k), G2(x, τ, k)}
(x, τ, k) ∈ D1 ∩ D2.

Then, asymptotic stability of A can be asserted using the

sufficient conditions provided by Theorem 3.3 and Corol-

lary 3.4.

B. Characterization of Hybrid Controllers

The data (Cc, fc, Dc, Gc, κc) is designed so that:

• There exist a Lyapunov function candidate V : R
np ×

R
nc×R≥0×N → R for H⋆

cl with respect to A, functions
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α1, α2 ∈ K∞, and a continuous ρ ∈ PD such that

α1(|(x, τ, k)|A) ≤ V (x, τ, k) ≤ α2(|(x, τ, k)|A)
∀(x, τ, k) ∈ C ∪ D ∪ G(D),

(20)

〈∇V (x, τ, k), f(x, τ, k)〉 ≤ −ρ (|(x, τ, k)|A)
∀(x, τ, k) ∈ C,

(21)

V (g) − V (x, τ, k) ≤ −ρ (|(x, τ, k)|A)
∀(x, τ, k) ∈ D1 \ D2, g ∈ G1(x, τ, k),

(22)

V (g) − V (x, τ, k) ≤ −ρ (|(x, τ, k)|A)
∀(x, τ, k) ∈ D2 \ D1, g ∈ G2(x, τ, k),

(23)

V (g) − V (x, τ, k) ≤ −ρ (|(x, τ, k)|A)
∀(x, τ, k) ∈ D1 ∩ D2, g ∈ {G1(x, τ, k), G2(x, τ, k)}.

(24)

Remark 5.1: The conditions above imply that com-

plete solutions to the closed-loop system are such that

|(x, τ, k)(t, j)|A → 0 as t + j → ∞, that is,

|ξ(t, j) − r(τ(t, j), k(t, j))| → 0 as t + j → ∞.

This includes all possible solutions with unconstrained initial

conditions of τ and k, in particular, τ(0, 0) = k(0, 0) = 0,

for which r(τ(t, j), k(t, j)) = r(t, j) and, consequently,

|ξ(t, j) − r(t, j)| → 0 as t + j → ∞.

Note that complete solutions to Hcl have the property that

τ(t, j)+k(t, j) is unbounded as t+ j → ∞. Furthermore, it

implies that ξ(t, j) = r(t, j) on the domain of definition

of solutions starting from ξ(0, 0) = r(0, 0), τ(0, 0) =
k(0, 0) = 0, when solutions from such points exist. While

the conditions above could have been expressed in terms of

the tracking error e, as illustrated in Section II it is rarely

the case that its dynamics can be written as a function of e

and η only.

The following result summarizes the discussion above on

characterization of tracking controllers.

Theorem 5.2: Given a complete reference trajectory r :
dom r → R

np and associated closed set A, if there exists a

hybrid controller Hc guaranteeing that the jumps of r and

Hp occur simultaneously and there exist a Lyapunov function

candidate V : R
np×R

nc×R≥0×N → R for H⋆
cl with respect

to A as in (18), functions α1, α2 ∈ K∞, and a positive

definite and continuous function ρ such that (20)-(24) hold,

then Hc provides a solution to Problem (⋆).

Remark 5.3: Theorem 5.2 characterizes controllers solv-

ing the tracking problem. The conditions in Theorem 5.2 can

be relaxed according to items A) and B) of Corollary 3.4. In

general, the data of the hybrid controller has to be chosen so

that (21)-(24) hold. In particular, condition (21) depends on

fc, Cc and κc; (22) depends on κc; and (23) depends on Gc

and Dc, which are all to be chosen in the design. We foresee

that for specific classes of hybrid systems (such as those with

linear flow and jump maps), constructive controller design

techniques can be developed. The examples in the next

section illustrate the feasibility of the design of controllers

satisfying the conditions of the theorem.

VI. EXAMPLES

Example 6.1 (Tracking a square wave signal): Consider

the scalar hybrid plant Hp

ξ̇ = −aξ + u1 ξ u1 ≥ 0, |ξ| > 0, (25)

ξ+ = b + u2 ξ u1 ≤ 0, |ξ| > 0, (26)

where3 a, b > 0, and consider the problem of tracking the

square wave signal

r(t, j) = (−1)j+1 t ∈ [trj , t
r
j+1], j ∈ N, trj = j.

Then, following the approach proposed in Section V, the

goal is to solve Problem (⋆) with A given by the points such

that ξ = (−1)k+1, τ ∈ [trk, trk+1
], (trk, k) ∈ (0, 0) ∪ Tr. For

this purpose, we consider the static controller
[

u1

u2

]

= κc(ξ, r(τ, k)) =

[

a r(τ, k)
−b − r(τ, k) + λ(ξ − r(τ, k))

]

,

with λ ∈ [0, 1). It follows that, for every ξ(0, 0) < 0, every

jump of r triggers a jump of the plant. In fact, if ξ(0, 0) <

0, since u1 = a r(τ, k), we have that aξ(0, 0)r(0, 0) > 0
and solutions initially flow. Flows of ξ will not trigger a

jump since the sign of ξ remains constant. Jumps of the

closed-loop system occur only when r changes sign, which

is at (t, j)’s in Tr, Tr = {(1, 0), (2, 1), (3, 2), . . .}. Then, the

closed-loop system H = (C, f, D, G) given by

ξ̇ = −a(ξ + r(τ, k))

τ̇ = 1, k̇ = 0

}

a ξ r(τ, k) ≥ 0, |ξ| > 0,

τ ∈ [trk, trk+1
], k ∈ N,

ξ+ = −r(τ, k) + λ(ξ − r(τ, k))
τ+ = τ, k+ = k + 1

}

a ξ r(τ, k) ≤ 0,

|ξ| > 0,(τ, k) ∈ Tr

captures all of the solutions to the original system with initial

conditions ξ(0, 0) < 0, τ(0, 0) = k(0, 0) = 0. To establish

asymptotic stability of A, consider the Lyapunov function

V (ξ, τ, k) =
1

2
(ξ − r(τ, k))2,

for which condition (20) holds trivially. For each (ξ, τ, k)
satisfying a ξ r(τ, k) ≥ 0, |ξ| > 0, τ ∈ [trk, trk+1

], k ∈ N

〈∇V (ξ, τ, k), f(ξ, τ, k)〉 = −2aV (ξ, τ, k);

and for each (ξ, τ, k) satisfying a ξ r(τ, k) ≤ 0, |ξ| >

0, (τ, k) ∈ Tr we have

V (G(ξ, τ, k)) − V (ξ, τ, k) = −(1 − λ2)V (ξ, τ, k).

3Condition |ξ| > 0 removes solutions that only jump at the origin.
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Fig. 3. Reference and closed-loop system trajectory for Example 6.1. The
Lyapunov function along the trajectories is also shown. Parameters: a =
b = 1, λ = 0.9.
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Then, Theorem 5.2 implies uniform global asymptotic sta-

bility of A for the closed-loop system. Figure 3(a) depicts

a closed-loop system trajectory converging to the reference

asymptotically, both along flows and jumps. Figure 3(b)

depicts the Lyapunov function along the trajectory.

Example 6.2 (Tracking for a motion control system):

Consider a particle with mass M actuated by a force input

u. The position of the particle is denoted by ξ1 and its

velocity by ξ2. The controller force u contains a Lebesgue

integrable part u1 and an impulsive part u2 with impulses

at instants ti. The plant is impulsive and modeled as

ξ̇ =

[

ξ2
u1

M

]

when t 6= ti, ξ+ = ξ +

[

0
u2

M

]

when t = ti,

where M > 0, the state ξ is completely measured. The input

u will be designed, such that the state ξ tracks a reference

r =

[

r1

r2

]

, given in Figure 4. The component r2 jumps

at times (t, j) ∈ Tr =
⋃

j∈N
(j + 1, j). Such a reference

trajectory can be desirable for the position of the end effector

of a robot system. A controller that stabilizes the set A for

the given reference trajectory is given by

u1 = −λ1(ξ1 − r1) − λ2(ξ2 − r2)

u2 =























0, (t, j) 6∈ Tr,

M, (t, j) ∈
⋃

k∈N

(4k + 3, 4k + 2) ∪ (4k + 4, 4k + 3)

−M, (t, j) ∈
⋃

k∈N

(4k + 1, 4k) ∪ (4k + 2, 4k + 1),

where λ1, λ2 > 0. Using the change of coordinates z =
ξ − r(τ, k), the closed-loop system H = (C, f, D, G) is

ż =

[

0 1

−λ1

M
−λ2

M

]

z, τ̇ = 1, k̇ = 0

}

τ ∈ [trk, trk+1
]

k ∈ N,

z+ = z, τ+ = τ, k+ = k + 1
}

(τ, k) ∈ Tr.

The feedforward signal u2 assures that z is not affected

by the jumps of the reference. Furthermore, if the initial

conditions are ξ(0, 0) = r(0, 0), τ(0, 0) = k(0, 0) = 0, then

the solution satisfies r(t, j) = ξ(t, j) for all (t, j) ∈ dom r.

Take V (z, τ, k) = z⊤Pz with P = P⊤ > 0 such that

〈∇V (z, τ, k), f(z, τ, k)〉 ≤ −V (z, τ, k).

Such a matrix P is guaranteed to exist due to the continuous

dynamics of z. Since z does not change at jumps, we get

V (G(z, τ, k)) − V (z, τ, k) = 0 ∀(z, τ, k). (27)

By the properties of V , there exist functions α1, α2 and ρ
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Fig. 4. Reference and closed-loop trajectory for Example 6.2. Parameters:
M = 1, λ1 = 1, and λ2 = 0.5.

such that both (20) and (21) are satisfied. Moreover, the

hybrid time domain of each solution to the closed-loop

system is unbounded in the t direction. Hence, following

Remark 5.3, global uniform asymptotic stability of the set

A for the closed-loop system follows using Theorem 5.2

and Corollary 3.4. In Figure 4, a closed-loop trajectory is

shown for parameters M = 1, λ1 = 1 and λ2 = 0.5.

VII. CONCLUSION

We state a tracking control problem for tracking of refer-

ence signals with jumps. The proposed technique consists of

embedding the reference trajectory into a set and then apply

Lyapunov stability tools to the closed-loop system. The class

of controllers considered have to guarantee the strict property

of jump times of the plant coinciding with those of the given

reference trajectories. Relaxation of this stringent condition

is part of current research.
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