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Abstract— In this paper, we investigate the relationship be-
tween Lp stability and internal stability of nonlinear systems.
It is shown that under certain conditions, Lp stability without
finite gain implies attractivity of the equilibrium, and that local
Lp stability with finite gain implies local asymptotic stability
of the origin.

I. INTRODUCTION

In this paper, we study the relationship between Lp stabil-

ity and internal stability of nonlinear systems. Specifically,

for a nonlinear system that is Lp stable, we are interested in

investigating the internal stability of the autonomous system

when the input is zero. The research in this area evolves

along two main lines. The first line starts with Lp stability

without finite gain. An important result that emerges in this

direction is [1]. It is shown that under a fairly restrictive

condition on the structural properties of the system, Lp

stability without finite gain implies global attractivity of the

equilibrium. In fact, it turns out that this conclusion can be

attained under much weaker conditions than those in [1].

It is shown in this paper that under mild conditions, global

Lp stability without finite gain ensures attractivity of the

equilibrium in the absence of input and attractivity of the

origin with any Lp input.

The other line emanates from Lp stability with finite

gain. There is a large body of work in the literature in this

direction; see, for instance, [2], [3], [4], [1]. Along this line

of research, the objective is to conclude local asymptotic

stability of the equilibrium based on Lp stability with finite

gain. It was shown in [2] that under a uniform reachability

condition, global Lp stability with finite gain implies local

asymptotic stability of the equilibrium. In [3], the notion

of small-signal Lp stability with finite gain was introduced

and its connection to attractivity of the equilibrium was

established. This concept of small-signal Lp stability was

extended in [4] by so-called gain-over-set stability, and it

was shown that finite-gain Lp stability over a set in Lp

space yields local asymptotic stability of the equilibrium. In
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this paper, we prove a result on the relationship between

Lyapunov stability and local Lp stability with finite gain,

which further extends, to some level, the result in [4].

II. PRELIMINARIES

Consider a nonlinear system

Σ1 : ẋ = f (x,u), x(0) = x0, (1)

where x ∈ R
n and u ∈ Rm. We assume that for all x0 ∈ R

n

and u ∈ Lp, the system Σ1 has a unique solution defined

on [0,∞), which is absolutely continuous on any compact

interval. Moreover, we assume that f (x,u) is continuous with

respect to x. Let x(t, t0,u,x0) denote the trajectory of Σ1

initialized at time t0 with input u and initial condition x0.

We shall investigate the internal stability of the unforced

system

Σ2 : ẋ = f (x,0), x(0) = x0, (2)

under the assumption that Σ1 is Lp stable in some sense.

We formally define the notions of Lp stability as follows:

Definition 1: Σ1 is said to be globally Lp stable without

finite gain if for x0 = 0 and any u ∈Lp, x(·,0,u,0)∈Lp. Σ1

is said to be locally Lp stable with finite gain if there exists

a δ and γ such that for x0 = 0 and any u with ‖u‖Lp
≤ δ ,

‖x(·,0,u,0)‖Lp
≤ γ‖u‖Lp

.

The domain of attraction and the notion of an Lp-

reachable set are defined as follows:

Definition 2: The set

A (Σ2) = {x0 ∈ R
n | x(t,0,0,x0)→ 0 as t → ∞} (3)

is called the domain of attraction of the system Σ2.

Definition 3: A point ξ ∈R
n is an Lp-reachable point of

system Σ1 if there exist finite T , M and a measurable input

u : [0,T ]→ R
m such that x(T,0,u,0) = ξ and

∫ T

0
‖u(t)‖pdt ≤ M. (4)

The set of all Lp-reachable points of Σ1 is called the Lp-

reachable set of Σ1, which is denoted as Rp(Σ1).
The following definition of small-signal local Lp-

reachability is adapted from [4]:

Definition 4: The system Σ1 is said to be small-signal

locally Lp-reachable if for any ε > 0, there exists δ such that

for any ξ ∈R
n with ‖ξ‖≤ δ , we can find a finite time T and

a measurable input u : [0,T ]→R
m such that x(T,0,u,0) = ξ

and ‖u‖Lp
≤ ε .
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III. MAIN RESULT

Theorem 1: Suppose system Σ1 is globally Lp stable

without finite gain for some p ∈ [1,∞). Then A (Σ2) ⊇
Rp(Σ1).

In order to prove Theorem 1, we need the following

lemma:

Lemma 1: Consider system Σ2. If x(t,0,0,x0) ∈ Lp for

some p ∈ [1,∞), then x(t,0,0,x0)→ 0.

Proof: For simplicity, we denote x(t,0,0,x0) by x(t)
and f (x(t),0) by f (x(t)) in this proof. Suppose, for the sake

of establishing a contradiction, that x(t)→ 0 does not hold.

Then there exists a δ > 0 such that, for any arbitrarily large

T ≥ 0, there is a τ ≥ T such that ‖x(τ)‖ ≥ 2δ . Let m be

a bound on ‖ f (x,0)‖ on the closed ball B(2δ ). This bound

exists due to continuity of f (x,0) with respect to x.

For some τ such that ‖x(τ)‖ ≥ 2δ , let t2 > τ be the

smallest value such that ‖x(t2)‖= δ , and let t1 be the largest

value such that t1 < t2 and ‖x(t1)|= 2δ . Such t1 and t2 exist

because x ∈ Lp. Since ‖x(t)‖ ∈ B(2δ ) for all t ∈ [t1, t2], we

have, due to the absolute continuity of the solution,

‖x(t1)‖−‖x(t2)‖ ≤ ‖x(t2)− x(t1)‖=

∥

∥

∥

∥

∫ t2

t1

f (x(τ))dτ

∥

∥

∥

∥

≤
∫ t2

t1

‖ f (x(τ))‖dτ ≤ (t2 − t1)m.

Hence, t2 − t1 ≥ (‖x(t1)‖ − ‖x(t2)‖)/m = δ/m. Clearly

‖x(t)‖≥ δ for all t ∈ [τ, t2], and furthermore t2−τ ≥ t2−t1 ≥
δ/m. It follows that for each τ such that ‖x(τ)‖ ≥ 2δ , we

have ‖x(t)‖ ≥ δ for all t ∈ [τ,τ + δ/m].
Let T be chosen large enough that

∫ ∞

T
‖x(t)‖p dτ <

δ p+1

m
. (5)

Such a T must exist, since x(t) ∈ Lp. Let τ ≥ T be chosen

such that ‖x(τ)‖ ≥ 2δ . We have

∫ ∞

T
‖x(t)‖p dτ ≥

∫ τ+δ/m

τ
‖x(t)‖p dτ ≥

δ p+1

m
.

This contradicts (5), which proves that x(t)→ 0.

Proof of Theorem 1: For any x0 ∈ Rp(Σ1), there exist

finite T , M and an input u0(t) for t ∈ [0,T ] such that

x(T,0,u0,0) = x0 and

∫ T

0
‖u0(t)‖

pdt ≤ M

Define

u(t) =

{

u0(t), t ∈ [0,T ]

0, t > T

Clearly, u ∈ Lp. Since Σ1 is globally Lp stable without

finite gain, we have that x(·,0,u,0)∈Lp. On the other hand,

u(t) = 0 for t > T implies that after T the system Σ1 is

equivalent with system Σ2 initialized at x0, i.e. x(t,0,u,0) =
x(t−T,0,0,x0) with t > T . Therefore, x(t,0,0,x0)∈Lp over

[0,∞). It follows from Lemma 1 that x(t,0,0,x0) → 0 as

t → ∞. This completes the proof.

Corollary 1: Suppose system Σ1 is globally Lp stable

without finite gain for some p ∈ [1,∞). If Rp(Σ1) =R
n, then

the origin of Σ2 is globally attractive.

Due to space limitation, the proofs of subsequent theorems

are omitted.

The next theorem shows that under a certain condition on

the structure of f (x,u), the origin of Σ1 is attractive for any

input u ∈ Lp.

Theorem 2: Suppose that Σ1 is globally Lp stable without

finite gain for some p ∈ [1,∞). If there exist δ , m1, m2 and

q ∈ [0, p] such that for any x with ‖x‖ ≤ δ

‖ f (x,u)‖ ≤ m1 +m2‖u‖q, (6)

then for x0 = 0 and any u ∈ Lp, x(t,0,u,0)→ 0 as t → ∞.

Remark 1: In [1], in order to prove the same result as in

Theorem 2, the following condition was imposed on f (x,u):
there exists δ1, K1, K2 and α ∈ [0, p] such that for x ∈ R

n

with ‖x‖ ≤ δ1,

‖ f (x,u)‖ ≤ K1(‖x‖+ ‖u‖)+K2(‖x‖α + ‖u‖α)

Theorem 2 shows that the restrictions on x in the above

condition is not necessary.

An immediate consequence of Theorem 2 is the next

theorem.

Theorem 3: Suppose that Σ1 is globally Lp stable without

finite gain and Rp(Σ1)=R
n for some p∈ [1,∞). If there exist

δ , m1, m2 and q ∈ [0, p] such that for any x with ‖x‖ ≤ δ

‖ f (x,u)‖ ≤ m1 +m2‖u‖q,

then Σ1 is globally Lp stable without finite gain with

arbitrary initial condition.1 Moreover, for any x0 ∈ R
n and

any u ∈ Lp, x(t,0,u,x0)→ 0 as t → ∞.

The following theorem is a slight generalization of results

in [4].

Theorem 4: Suppose that Σ1 is locally Lp stable with

finite gain and small-signal locally Lp-reachable. Then the

origin of Σ2 is locally asymptotically stable.

Remark 2: Compared with the result in [4], Theorem 4

only requires a finite gain within an arbitrary small neigh-

borhood of the origin of Lp space.

Remark 3: We assume in this paper that f (x,u) is continu-

ous with respect to x, which covers a large class of dynamical

systems. In fact, it can be seen from the proof that we only

need continuity of f (x,u) with respect to x at x = 0.
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1Σ1 is said to be global Lp stable without finite gain with arbitrary initial
condition if for any x0 ∈ R

n and u ∈ Lp, we have x(·,0,u,x0 ) ∈ Lp.
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