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Abstract— In this article, a method for assimilating data
into the shallow water equations when some of the model
parameters are unknown is presented. The one dimensional
Saint-Venant equations are used as a model of water flow
in open channels. Using these equations, a nonlinear state-
space model is obtained. Lagrangian measurements of the
flow velocity field are used as observations or measurements.
These measurements may be obtained from a group of drifters
equipped with GPS receivers and communication capabilities
which move with the flow and report their position at every time
step. Using the derived state-space model, the extended Kalman
filter is used to estimate the state and the unknown model
parameters given the latest measurements. The performance of
the method is evaluated using data collected from an experiment
performed at the USDA-ARS Hydraulic Engineering Research
Unit (HERU) in Stillwater, Oklahoma in November 2009.

I. INTRODUCTION
Data assimilation is the process of integrating observations

or measurements into a mathematical model of a physical
system, in order to estimate some quantities of interest.
Recently, data assimilation has provided rapid advances in
geosciences such as meteorology, occeanography and hy-
drology [1], [3], [5], [19]. Different methods for assimilating
data include variational data assimilation [6], filtering-based
methods [15], [20], optimal statistical interpolation [22], or
the Newtonian relaxation [18], [24].

Open channel flow is an example of the so-called dis-
tributed parameter systems. A physical system which is mod-
elled by a set of partial differential equations (PDE) is called
a distributed parameter system. For modelling the water flow
in rivers and open channels, the Saint-Venant equations,
which are a set of first-order hyperbolic nonlinear PDEs,
are commonly used [13], [2]. Solving the PDEs requires
an accurate knowledge of the boundary conditions, which
are usually obtained from measurements of sensors installed
at appropriate locations. However, noise and inaccuracies
in the measurements of the boundary conditions, as well
as modelling assumptions (simplifications made to construct
the mathematical model), can lead to mismatch between the
model prediction of the system state and the actual state of
the system. When additional observations (measurements) of
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the system state are available, it is desirable to incorporate
these measurements into the model to reduce the mismatch
between the model prediction and the actual system and
improve the model predictions throughout the whole domain
of interest.

In this article, we present a method to integrate Lagrangian
measurements of the flow into the one dimensional Saint-
Venant equations using the extended Kalman filter (EKF).
Lagrangian measurements are measurements of the flow
properties at a point moving with the flow along the stream-
line whereas Eulerian measurements are measurements of the
flow properties at a fixed location. Lagrangian sensors which
move with the flow and report their location and possibly
other local quantities of interest (temperature, salinity, etc.)
are commonly used in oceanography [7], [16], [26] (usually
referred to as drifters) and in river hydraulics [4]. Lower
production and maintenance cost, as well as flexibility in
deployment, are the main advantages of the drifters over the
traditional static sensors. These drifters are equipped with
GPS receivers and report their position, velocity and other
measurements at every time step. The goal is to estimate
the state of the system, which consists of the flow and
stage throughout the whole domain of interest, i.e. at all
discretized cells, using the local velocity measurements of
the flow obtained from a number of drifters.

In [25], using linearized one dimensional Saint-Venant
equations as the flow model, the Kalman filter is used to
estimate the state using the drifter position data. It is shown
that the Kalman filter based on the linear model provides
accurate estimates when the deviation from the steady state
around which the system is linearized is moderate. However,
the error significantly increases with time as the deviation of
the state of the system from the steady state increases. In
the present article, we use nonlinear one dimensional Saint-
Venant equations as the model of the flow. Furthermore, it is
assumed that some of the model parameters are unknown. In
practice, it is sometimes not possible to obtain an accurate
approximation of the parameters of the model because of
lack of proper equipment, time constraints, costs, etc. As a
matter of fact, one of the motivations of using drifters to
obtain measurements as opposed to traditional static sensors
is their applicability in new areas where no infrastructure is
available. For instance, in case of an emergency (e.g. a levee
break, gate malfunction), measurements of the flow can be
obtained by releasing a group of drifters in the region of
interest and use these measurements to model the flow in real
time. For such applications, there will not be enough time
to design an experiment to identify the model parameters,
or even if all the parameters have been identified before, in
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case of an emergency, the flow conditions (e.g. the channel
geometry) may change significantly such that the former
values of parameters are no longer accurate enough. One
possible approach is to assume a rough approximation of
the parameter and perform the data assimilation method.
However, depending on the sensitivity of the model to the
unknown parameters, the error introduced by these approx-
imations may be large. In the present article, we propose a
method to estimate the unknown model parameters along
with the state in real time by augmenting the unknown
parameters to the state vector and applying the extended
Kalman filter to perform state estimation on the augmented
state-space model. It is clear considering parameters as
unknown as opposed to having fixed values adds to the
degrees of freedom of the model and hence may improve
the estimation results.

We evaluate the performance of the method using data
collected from an experiment performed at the USDA-ARS
Hydraulic Engineering Research Unit (HERU) in Stillwater,
Oklahoma in November 2009. Since the bottom elevation of
the channel is not available, the bed slope of the channel
is assumed as an unknown parameter. Compared to the
case of performing state estimation assuming a zero bed
slope, it is shown that considering the bed slope as an
unknown parameter and using the measurements to estimate
it improves the model prediction.

The rest of this article is organized as follows. In section II,
the Saint-Venant model is presented and the equations are
discretized using the Lax diffusive scheme. In section III,
a state-space model is constructed and the method to per-
form combined parameter-state estimation using the extended
Kalman filter is described. In section IV, we describe the
drifter hardware, software and communication, the exper-
iment setup and specifications and the numerical results.
Finally, in section V, we conclude the article.

II. MATHEMATICAL MODEL

A. The Saint-Venant Model

The Saint-Venant model is among the most common
models used for modeling the flow in open channels and
irrigation systems [13], [2]. In the one dimensional case,
Saint-Venant equations are two coupled first-order hyperbolic
partial differential equations (PDE) derived from conserva-
tion of mass and momentum. For prismatic channels with no
lateral inflow, these equations can be written as [27]

T
∂H

∂t
+
∂Q

∂x
= 0 (1)

∂Q

∂t
+

∂

∂x

(
Q2

A

)
+

∂

∂x
(ghcA) = gA(S0 − Sf ) (2)

for (x, t) ∈ (0, L) × <+, where L is the river reach (m),
Q(x, t) is the discharge or flow (m3/s) across cross section
A(x, t) = T (x)H(x, t), H(x, t) is the stage or water-depth
(m), T (x) is the free surface width (m), D = A/T is the
hydraulic depth m, Sf (x, t) is the friction slope (m/m), Sb is
the bed slope (m/m), g is the gravitational acceleration (m/s2).

The friction slope is empirically modeled by the Manning-
Strickler’s formula [21]:

Sf =
m2Q2P 4/3

A10/3
(3)

with Q(x, t) = V (x, t)A(x, t) the discharge across
cross-section A(x, t), P the wetted perimeter, and m the
Manning’s roughness coefficient (sm−1/3).

The boundary conditions are usually taken to be the
upstream flow Q(0, t) and the downstream stage H(L, t).

Remark 1: Throughout this article, we assume the flow to
be sub-critical, i.e. the Froude number defined as F = V/C
with C =

√
gD being the wave celerity is less than 1.

Remark 2: The dependence on the spatial variable x is
occasionally omitted for the sake of readability.

B. Discretization: Lax Diffusive Scheme

We use the Lax diffusive scheme [12], [27] which is a first-
order explicit scheme to discretize the equations. Using f to
represent the dependent variables, v and h, the derivatives
become

∂f

∂t
=
fk+1
i − 1

2 (fki+1 + fki−1)

∆t
(4)

∂f

∂x
=

(fki+1 − fki−1)

2∆x
(5)

using the traditional finite difference discretization notation,
with subscript i for space and supperscript k for time.

Applying this scheme to equations (1) and (2), we obtain
the set of following finite difference equations,
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+4t
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where
φ = gA(Sb − Sf ) (9)

This scheme is stable provided that the Courant-Friedrich-
Lewy (CFL) condition holds, i.e.

∆t

∆x
|V + C| ≤ 1 (10)

The equations above may only be used for interior grid
points. At the boundaries, these equations cannot be applied
since there is no grid point outside the domain. Therefore,
another method needs to be used to compute the unknown
variables at the boundaries. Here, we use the method of spec-
ified time intervals to compute these variables [12]. In this
method, after computing the characteristics, the boundary
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grid point is projected backward to the previous time step
along its corresponding characteristic curve. After computing
the variables at the projected point, which is usually done
by using linear interpolation, the characteristic equations are
used to compute the unknown variable at the boundary grid
point at the next time step.

III. COMBINED STATE-PARAMETER ESTIMATION

A. State-Space Model

The discretized equations obtained in section II-B can be
used to obtain a state-space model

xk+1 = f(xk, uk) (11)

where xk is the state vector at time k

xk = (Qk
2 , · · · , Qk

N , H
k
1 , · · · , Hk

N−1)T (12)

and the input uk contains the boundary conditions, i.e. the
upstream flow and downstream stage,

uk = (Qk
1 , H

k
N )T (13)

Qk
i and Hk

i are the flow and stage at cell i at time k∆t,
respectively, and N is the number of cells used for the
discretization of the channel.

Assuming that all model parameters are known, when
measurements of the flow other than the boundary conditions
are available, these measurements can be incorporated into
the state-space model using one of the standard nonlinear
filters, e.g. the extended Kalman filter. However, in practice,
it is sometimes impossible or expensive to obtain accurate
values for one or more of these parameters. For instance, it
is usually a difficult task to obtain an accurate value for the
bed slope of a channel. As it will be shown in section IV-
D, the results of the model are very sensitive to the value
of the bed slope. In such cases, proper experiments can be
designed to obtain measurements of the system and these
measurements may be used later to identify the unknown
parameters. Nevertheless, it is sometimes not possible to
carry out this kind of experiments beforehand due to time
constraints, lack of proper equipment, high costs, etc.

In order to obtain estimates of the unknown parameters in
real time, we augment a vector of unknown parameters vk to
the state vector and consider vk+1 = vk as the time evolution
of the parameters. A nonlinear filter can then be applied to
the augmented state-space model to simultaneously estimate
the parameters and the actual state of the system.

B. Measurement Model

The information of the position of the drifters equipped
with GPS can be used to obtain Lagrangian measurements
of the flow velocity. Each drifter reports its current position
at every time step which is used to calculate the speed of
the drifter at every time step. In order to derive the relation
between the drifter velocity and the flow at the corresponding
cross-section, we assume a quartic velocity profile on the
surface and a logarithmic profile along the depth [10]. For a
given particle moving at a distance y from the center line and

z from the surface, the particle’s velocity vp(y, z) is related
to the flow Q with the following equations:

vp(y, z) = FT (y)FV (z)
Q

A
(14)

with

FT (y) = Aq +Bq

(
2y

w

)2

+ Cq

(
2y

w

)4

(15)

Aq +Bq + Cq = 0 (16)

Aq +
Bq

3
+
Cq

5
= 1 (17)

FV (z) = 1 +

(
0.1

κ

)(
1 + log

(z
d

))
(18)

where w is the channel width, d is the water depth, and Aq ,
Bq and Cq are constants and κ = 0.4. Aq is commonly
calculated experimentally and equations (16) and (17) are
used to compute Bq and Cq .

Denoting the collection of velocity measurements obtained
from the drifters at time step k by yk, the measurement model
can be written as

yk = g(xk, k) (19)

Note that the observation operator g is time-varying since
the drifters are moving with the flow. Therefore, the cells at
which the flow velocity is measured are changing over time.

C. Stochastic State-space Model

The effect of modelling uncertainties, as well as inaccura-
cies in measurements of the inputs, are commonly considered
as an additive noise term in the state equations (11) to obtain
a stochastic equation

xk+1 = f(xk, uk, wk) (20)

The noise wk is usually assumed to be zero-mean white
Gaussian and

E[wkw
T
l ] = Qkδkl (21)

x0 ∈ Rm is the initial state which is also assumed to be
Gaussian and

x0 = N (x̄0, P0) (22)

where x̄0 and P0 are the initial guesses for state and error
covariance.

Similarly, the errors and uncertainties in the measurements
can be taken into account by adding a noise term to the
measurement model (23) to obtain

yk = g(xk, ek, k) (23)

where ek is the measurement noise of the sensors which is
assumed to be zero-mean white Gaussian and

E[eke
T
l ] = Rkδkl (24)

We also assume that the process and measurement noises
and the initial conditions are all independent.
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D. Extended Kalman Filter

In the Extended Kalman Filter (EKF), the states of the
system are approximated by a Gaussian random variable
and are propagated through a linearized approximation of
the state equations. The prior mean of the state is fed
into the state equations to yield the prediction of the state.
The posterior covariance matrices are calculated for a linear
model which is obtained from linearizing the state equations
around the current estimate [9].

With the stochastic state-space model given in the previous
section and the following notations

x̂k|k−1 = E[xk|y0, y1, · · · , yk−1] (25)
x̂k|k = E[xk|y0, y1, · · · , yk] (26)

Pk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)T |y0, y1, · · · , yk−1]
(27)

Pk|k = E[(xk − x̂k|k)(xk − x̂k|k)T |y0, y1, · · · , yk] (28)

the iterations of the EKF can be summarized as follows

Time update:

x̂k|k−1 = f(x̂k−1|k−1, uk−1, 0) (29)

Pk|k−1 = Φk−1Pk−1|k−1ΦT
k−1 +Bk−1Qk−1B

T
k−1 (30)

Measurement update:

Kk = Pk|k−1G
T
k (GkPk|k−1G

T
k +DkRkD

T
k )−1 (31)

ŷk = Gkx̂k|k−1 (32)
x̂k|k = x̂k|k−1 +Kk(yk − ŷk) (33)
Pk|k = (I −KkGk)Pk|k−1 (34)

where

Φk−1 =
∂f

∂x

∣∣∣∣
x̂k|k−1,uk−1

, Bk−1 =
∂f

∂w

∣∣∣∣
x̂k|k−1,uk−1

(35)

IV. IMPLEMENTATION

A. Sensor Hardware

The Floating Sensor Network project at UC Berkeley
(http://float.berkeley.edu) designs and builds drifters for
riverine and estuarine environments. Six second-generation
drifters were used in this experiment.

Fig. 1: Overview of the drifter hull. Left: closed. Right: open.

The hull is manufactured at UC Berkeley using low-
cost, small-run manufacturing techniques. The drifter has a
vertical cylinder configuration in order to present a uniform
profile to surface currents while also supporting the antennas
a small distance above the waterline. The hull consists of four
major components, shown in Figure 1: a hand-cast fiberglass
lower hull (A), machined aluminum parts for the watertight
seal (B), a commercially available fiberglass pipe for the
upper hull (C), and a vacuum-formed polycarbonate top cap
(D). The lower hull is flooded so that water quality sensors
mounted in the bulkhead may contact the water but also
be mechanically protected. In order to keep the center of
mass below the center of buoyancy (a necessary condition
for stability), 800 g of ballast must be located at the bulkhead
between the upper and lower hull. The battery that powers the
electronics is part of this ballast. Our standard configuration
is to use a 200 g battery and a 600 g lead weight. The battery
and water quality sensor are labelled (E) in Figure 1.

Fig. 2: Module-level block diagram of drifter electronics.

The electronics are mounted near the top of the cylinder.
See Figure 2 for a block diagram of the major modules.

The GPS receiver, GSM module, and embedded computer
are on the main electronics PCB, labelled (G) in Figure 1. A
subordinate microcontroller for real-time tasks such as sensor
management is located on a lower board (F). Antennas for
the GPS and GSM modules, and a short-range 2.4 GHz radio,
are located at the top of the hull (H).

The GPS receiver is the Magellan AC-12 OEM module. In
autonomous mode (not using differential correction, SBAS,
or post-processing), its Circular Error Probability (CEP)
range is 1.5 m [28].

Long-range communication with the server is performed
using the Motorola G24 GSM module. In areas with GSM
coverage, the General Packet Radio Service (GPRS) service
can be used to open TCP or UDP packets to servers on the
Internet. Data rates depend on the cellular tower configura-
tion, but are at least 9.6 kbit/s upload and download [23].

Short-range communication between drifters, and between
drifters and field personnel, is performed with the Digi
XBee-PRO ZB module. Using the IEEE 802.15.4-2006 pro-
tocol [17], these devices can form ad-hoc mesh networks.
The “PRO” module can transmit with 50 mW (17 dBm) of
power [14]; we have observed connectivity at distances of
up to 1 km in river environments when using these modules.
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The embedded computer is a Gumstix Verdex Pro XM4,
a 20 mm × 80 mm single-board computer with a Marvell
PXA270 400 MHz processor and 64 MB of RAM. The
PXA270 is an applications processor designed around the
ARMv5 architecture. One relevant characteristic for design-
ers of embedded sensor systems is that the PXA270 does not
have hardware floating point capability, which may make it
difficult to efficiently implement intensive signal processing
or other computations. The Verdex is developed to run an
OpenEmbedded Linux distribution.

B. Software and Communication

Because of the small experimental domain (and the low
probability of losing a drifter), the GSM modules were
not activated in this experiment. Instead, GPS position and
velocity readings were stored on a 1 GB MicroSD card
installed on the Verdex and simultaneously transmitted over
the XBee radio to a nearby laptop, which uploaded them to
the home server using a database synchronization protocol
over a single GSM link. See Figure 3.

Fig. 3: Communication architecture.

Fig. 4: The downstream stage (m).

C. Mission Description

In November 2009, an experiment was performed at the
USDA-ARS Hydraulic Engineering Research Unit (HERU)
in Stillwater, Oklahoma. The HERU facility, located adjacent
to Lake Carl Blackwell, has a gravity-fed supply canal which
can have a controlled rate of up to 4.25 m3/s (150 ft3/s). The
supply canal feeds a number of experimental units which are
normally used for investigations into levee reliability, reser-
voir safety, and spillway design [11]. For our experiment, we
deployed drifters into the supply canal itself. The upstream

boundary condition was the supply canal flow control, set to
1.42 m3/s (50 ft3/s); the downstream boundary condition was a
gate that could be raised or lowered to restrict the flow out of
the experimental region. In this experiment, the downstream
gate was opened as soon as the final drifter was released. The
water stage was captured at the downstream boundary with
a video camera. Figure 4 shows the stage at the downstream
end of the channel. As can be seen in this figure, the
downstream stage is initially 1.33 m and it starts to decrease
as the downstream gate is opened until it becomes 0.92m.

Drifters were released at approximately 30 s intervals
near the upstream boundary, at point A in Figure 5. After
travelling through the canal for approximately 400 s, they
were individually retrieved at point B. Point C marks the
location of the downstream control gate.

Fig. 5: HERU facility, with experimental channel annotated. Image
courtesy of USGS.

Fig. 6: Channel profile, including minimum and maximum water height.

Fig. 7: Two drifters in the HERU facility supply canal.

Figure 6 shows the cross section of the prismatic channel
over most of its extent.
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Fig. 8: The flow (top) and stage (bottom) at the 10th cell for Sb = 0
(green), Sb = 0.001 (red), Sb = 0.002 (blue).

D. Numerical Results

The discretization is done by dividing the channel to 60
cells and the temporal step size is chosen as 1 s. Since
we do not have any data about the bottom elevation of the
channel, we cannot calculate the bed slope of the channel.
In order to determine the sensitivity of the model with the
given boundary conditions to the value of the bed slope, we
run the forward simulation with three different values of bed
slope. In each case, the initial condition is chosen to be the
backwater curve (steady state) which is computed using the
following equations:

∂Q

∂x
= 0 (36)

∂H

∂x
=

gA(S0 − Sf )

−Q2 Tb+2H
H2(Tb+H)2 + g(TbH +H2)

(37)

where Tb is the bottom width.
Figure 8 shows the flow and stage at the 10th cell for

the three values of bed slope. It is not surprising to see that
the results of forward simulation varies significantly with
different values of the bed slope.

To implement the data assimilation method, we use the
measurements obtained from 5 drifters. We then estimate the
velocity of the 6th drifter using the estimated flow which we
compare with its actual value obtained from the 6th drifter.
We implement the extended Kalman filter with and without
estimating the bed slope. Figure 9 shows the flow and stage at
a few different cells predicted by the forward simulation (i.e.
state-space model) assuming the bed slope is zero, estimated
flow and stage by performing the data assimilation method
while the bed slope is assumed to be zero, and estimated flow
and stage by performing the data assimilation method and
estimating the bed slope as an unknown parameter. As can
be seen in Figure 4, the downstream stage starts to decrease
at around time step 150 due to the gate opening. As can be
seen in Figure 9, the flow increases as a result of opening
the gate. It can be seen in Figure 9 that the stage reduction
caused by opening the gate propagates backward through
the channel. However, in case of assuming the bed slope
as an unknown parameter, this reduction is stage is more
moderate. In particular, at cell 10, no decrease in the stage

is seen. This is due to the fact that for a nonzero bed slope,
the backwater curve (steady state) is not uniform. Since the
initial estimate of the bed slope is taken to be equal to zero,
the extended Kalman filter is initialized by a uniform steady
state corresponding to a zero bed slope. However, as the
estimated bed slope deviates from zero, the steady state of
the system deviates from uniform steady state accordingly.
While the values of flow and stage estimated by the data
assimilation methods seem physically more reasonable, it
is not possible to formally evaluate the performance of the
method by looking at these figures. In order to obtain a
more quantifiable assessment of the method, we calculate
the velocity of the 6th drifter using the estimated flow at
the corresponding cell. We use the same velocity profiles on
the surface and along the depth as described in section III-
B to calculate the drifter velocity from the estimated flow.
Figure 10 shows the velocity of the 6th drifter predicted by
the forward simulation and both data assimilation methods as
well as its actual value. As can be seen in this figure, the data
assimilation methods significantly improve the estimation
results. Also, it can be seen that considering the bed slope
as an unknown parameter and using the measurements to
estimate it improves the estimation results further.

V. CONCLUSION

In this article, we presented a method to assimilate mea-
surements obtained from a distributed parameter system into
the mathematical model. With the objective of modelling the
water flow in an open channel, we used one dimensional
Saint-Venant equations as the mathematical model. The
Saint-Venant equations, which are a set of PDEs, are used
to obtain a state-space model of the flow whose inputs are
the boundary conditions. As observations or measurements,
we used Lagrangian measurements of the flow velocity field.
These measurements are obtained from a group of drifters
equipped with GPS receivers and communication capabilities
which move with the flow and report their position at every
time step. The position data are then used to calculate the
drifter velocity. Assuming a quartic velocity profile on the
surface and a logarithmic profile along the depth, the drifter
velocities are used to compute the flow at the corresponding
cross sections. The extended Kalman filter was used to
estimate the state of the system given the measurements
obtained from the drifters.

We also considered a case where some of the model
parameters are unknown. A method was proposed to use
the measurements to estimate the unknown parameters along
with the state in real time. This is done by artificially
augmenting the unknown parameters to the state vector and
using the augmented state-space model with the extended
Kalman filter.

The numerical results of implementing these methods on
data obtained from an experiment done on a 290-meter
channel in Stillwater, Oklahoma in November 2009 were
presented. Since the bottom elevations were not available to
us, it was not possible to compute the value of the bed slope
of the channel. We implemented the data assimilation method
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Fig. 9: The flow (m3/sec) (left) and stage (m) (right) at the 10th, 20th, 30th, 40th cells, forward simulation (green), EKF with zero bed slope (red), EKF
with estimating bed slope (blue).

with assuming a zero bed slope and also with considering
the bed slope as an unknown parameter. It was shown that
using the measurements to estimate the bed slope along with
the state improve the results significantly.

Fig. 10: the velocity of the 6th drifter, forward simulation (green), EKF
with zero bed slope (red), EKF with estimating bed slope (blue) and the
actual drifter measurements (black).
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