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Abstract— This study addresses a discretization method with
Lebesgue sampling for a type of nonlinear system, and proposes
a control method based on the discrete system model. A cart-
pendulum system is used as this example. Applying this control
method to some real system, how to implement the controller
is a crucial problem. To overcome the problem, an impulsive
Luenberger observer is introduced with a numerical forward
mapping from the current system state to the one-step ahead
state by well-known Runge-Kutta method. As the result, a cart-
pendulum system with a quantizer, whose quantization interval
is relatively large, can be controlled effectively. Numerical
simulations are performed to verify the effectiveness of the
proposed method.

I. INTRODUCTION

Discrete-time control has nice properties and is natural for
real systems with respect to the implementation viewpoint.
This assertion is based on difficulty to realize an arbitrarily
short sampling interval. That means a control law described
in continuous-time systems basically cannot be implemented
to real systems as it is, with the exception of analog devices
use. Hence, digital control systems with a time-invariant and
constant sampling interval are usually utilized to implement
a desired control law by some digital devices including
computers, DSPs and FPGAs [1].

Recently some interesting extensions on the digital control
are discussed. Lebesgue sampling is one of such topics.
In usual digital control, the update of the control input is
performed every sampling interval, and the sampling interval
is given by chopping the time axis at some regular intervals.
On the other hand, in the Lebesgue sampling case, the update
of the control input is performed whenever the output of
the system exceeds the given levels which are decided by
chopping the output range like chopping the time axis in
the usual digital control case [2]. In other words, the control
input is updated whenever some events on the output arise.
In this sense, the digital control with Lebesgue sampling
can be regarded as an event-based control [3], [4]. As other
related studies, a comparison between periodic and Lebesgue
sampling for one-dimensional systems can be found in [5].
In such literature, it is shown that some impulsive control
based on the Lebesgue sampling may reduce the average
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sampling frequency to achieve the almost same performance
as the periodic sampling case.

The concept of the Lebesgue sampling-based control is
very natural for systems with many digital sensors such as
encoders, and also for networked-systems. Typically we can
say cheaper sensors are desired from the cost viewpoint
for marketed products such as cars. Such cheaper sensors,
however, doesn’t provide good resolution in general, and a
typical controller cannot achieve good performance. Hence,
there are several studies on observer-based control which
considers the quantization effect of low-resolution sensors
to recover good control performance [6], [7].

The systems via some networks are another example of
Lebesgue sampling systems. The information via networks is
not continuous but intermittent. The arrival intervals between
previous and current information are also not fixed and
varying. Hence, if a natural conception on the system via
networks leads to the control law updated when the new in-
formation comes, i.e. event-based control. Montestruque and
Antsaklis [8] addressed this issue and proposed an interesting
model-based control for networked systems. Their and our
previous methods in [7] have many points of similarity.

This paper is an extension of our previous method in [7].
Especially a cart-pendulum system, which is nonlinear, is
used as a specific example. The discretization method with
Lebesgue sampling for this type of nonlinear systems are
discussed first of all. The control purpose of the pendulum
system is to keep the rotational speed of the pendulum,
and a control. Once the discrete system is obtained, a
control law based on the model is derived to realize the
purpose. The control law practically can be designed by
the well-known linear servo control theory [9] because the
pendulum system can be represented by a linear system by
the proposed discretization with Lebesgue sampling. How-
ever, applying this control method to some real system, the
implementation of the controller becomes a crucial problem.
To overcome the problem, according to the analogy of [7], an
impulsive Luenberger observer is introduced. The impulsive
Luenberger observer requires the forward mapping from the
current system state to the one-step ahead state. Hence we
also describe a numerical forward mapping by well-known
Runge-Kutta method. As the result, a cart- pendulum system
with a quantizer, whose quantization interval is relatively
large, can be controlled effectively. Numerical simulations
are performed to verify the effectiveness of the proposed
method.
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Fig. 1. Comparison of the linear relation, y = x, with the quantizer output,
q(y), in the case of qn = 1.
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Fig. 2. The schematic figure of a cart-pendulum model. θp, (xp, yp) and
(xc, yc) show the angle of the pendulum, the CoG of the pendulum, and
the CoG of the cart, respectively.

TABLE I
PHYSICAL PARAMETERS AND VARIABLES OF THE CART-PENDULUM.
Distance between hinge and CoG rp 0.25 [m]
of pendulum

Principal moment of inertia Jp 0.2 [kg ·m2]
of pendulum
Mass of pendulum mp 0.75 [kg]
Mass of cart mc 1.5 [kg]
Angle of pendulum θp [rad]
Position of CoG of pendulum (xp, yp) [m]
Position of CoG of cart (xc, yc) [m]
Input force to cart Fxc [N]

II. DISCRETIZATION OF CART-PENDULUM SYSTEM BY
LEBESGUE SAMPLING

A quantizer, q (·), used in this study is defined as

q(θ) := qn · round (θ/qn) , (1)

where θ is an input value to be quantized, and qn is
the quantization interval, and the function round (·) is the
rounding function to the nearest integer. For example, Fig. 1
illustrates the quantization of y = x by the quantizer, q(x),
with qn = 1. Let us define a time when the quantizer output
changes as tk. In this paper we call the time, tk, the interrupt
time. Hence tk+1 shows the next interrupt time. Note that
tk+1−tk for all k is NOT constant. Introduce the notation to
distinguish a quantized value, θ[k], from an original value,
θ(tk), at tk by θ[k] = q(θ(tk)).

A cart-pendulum system in Fig. 2 is used as a plant to be
controlled in this paper. Its physical parameters and variables
are shown in Table I. The equations of motion of the cart-
pendulum system are given by[

mc +mp mprp cos θp
mprp cos θp Jp +mpr

2
p

] [
ẍc

θ̈p

]
=

[
Fcx +mprp sin θpθ̇

2
p

gmprp sin θp

]
.

(2)

The following equation of motion of only the pendulum can
be extracted from (2).

mprp cos θpẍc +
(
Jp +mpr

2
p

)
θ̈p = mpgrp sin θp. (3)

The acceleration of the cart, ẍc, is regarded as the input to
the pendulum system (3).(

Jp +mpr
2
p

)
θ̈p = mpgrp sin θp −mprp cos θpẍc. (4)

The following rearrangement of the angular acceleration, θ̈p,
can hold in general.

θ̈p =
dθ̇p
dt

=
dθp
dt

dθ̇p
dθp

= θ̇p
dθ̇p
dθp

(5)

Substituting (5) into (4) yields(
Jp +mpr

2
p

)
θ̇p

dθ̇p
dθp

= mpgrp sin θp −mprp cos θpẍc. (6)

Suppose the acceleration of the cart during the interval from
tk and tk+1, ẍc[k], be constant. Integrating both term of (6),∫ θ̇p[k+1]

θ̇p[k]

(
Jp +mpr

2
p

)
θ̇pdθ̇p

=

∫ θp[k+1]

θp[k]

(mpgrp sin θp −mprp cos θpẍc[k]) dθp. (7)

Rearranging (7), we have
1

2

(
Jp +mpr

2
p

) (
θ̇2p[k + 1]− θ̇2p[k]

)
=−mpgrp (cos θp[k + 1]− cos θp[k])

−mprp (sin θp[k + 1]− sin θp[k]) ẍc[k], (8)

θ̇2p[k + 1] = θ̇2p[k]

+ α(θp[k], θp[k + 1]) + β(θp[k], θp[k + 1])ẍc[k], (9)

where

α(θp[k], θp[k + 1]) =
−2mpgrp (cos θp[k + 1]− cos θp[k])

Jp +mpr2p
,

β(θp[k], θp[k + 1]) =
−2mprp (sin θp[k + 1]− sin θp[k])

Jp +mpr2p
.

Introducing a new input, up[k], the present input to (9), the
cart acceleration ẍc[k], can be rewritten by

ẍc[k] =
up[k]− α(θp[k], θp[k + 1])

β(θp[k], θp[k + 1])
. (10)

Hence (9) comes to

θ̇2p[k + 1] = θ̇2p[k] + up[k]. (11)

In (11), define the state as x[k] = θ̇2p[k] and the system
matrices as Φ = 1 and Γ = 1. A discrete system of the cart-
pendulum system derived by Lebesgue sampling is finally
given by

x[k + 1] = Φx[k] + Γup[k]. (12)

We’re interested in a class of nonlinear systems which
can be shown by the discrete system representation (12)
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or a time-varying discrete system representation with the
same structure with (12). Unfortunately, at the moment, we
cannot describe such class clearly yet. But a piston-crank
model, which can present combustion engine dynamics, can
be classified into this class. We also try to extend the
discretization by Lebesgue sampling with multivariable case
although this study just think the case only a single variable,
θp, is quantized. Those issues are our ongoing works.

III. CONTROL SYSTEM DESIGN

This paper considers a control task to realize constant-
speed rotational motion for the pendulum of a cart-pendulum
system. This task can be formulated by a servo control design
to keep the state x[k] = θ̇2p[k] of (12) be a constant desired
value.

To derive the following control system, we assume that
the angular velocity of the pendulum, θ̇2p[k], can be known
at each Lebesgue sampling. This implies

y[k] = Cx[k] = x[k], (13)

with C = 1. Of course, this assumption is not valid for the
real system. Hence, this issue will be discussed later, and
can be solved by combination of some numerical integration
method and impulsive Luenberger observer, which is an
extension of our previous method proposed by an author [7].

Basically the control input, up[k], in (12) is designed by
the well-known optimal type-1 servo design [9]. Considering
a quadratic cost function under the discrete system (12);

J =
∞∑
i=0

(
x[k]TQx[k] + u[k]TRu[k]

)
, (14)

the optimal state feedback control law, u[k], is given by

u[k] = −fx[k] with f =
(
R+ ΓTPΓ

)−1
ΓTPΦ, (15)

where P is the positive symmetric matrix as the solution of
the following discrete-time Riccati equation;

P = Q+ΦTPΦ− ΦTPΓ
(
R+ ΓTPΓ

)−1
ΓTPΦ. (16)

Here, define a reference value as yr, and consider an aug-
mented system as follows:[

x[k + 1]
z[k + 1]

]
=

[
A 0
−C 1

] [
x[k]
z[k]

]
+

[
B
0

]
up[k] +

[
0
yr

]
. (17)

A state feedback control law for (17),

up[k] = −
[
h −k

] [x[k]
z[k]

]
, (18)

leads to the optimal type-1 servo controller for the closed-
loop system. The feedback gain is given by

[
h k

]
=

[
fΦ fΓ + I

] [Φ− I Γ
C 0

]−1

, (19)

where f is the optimal feedback gain in (15).

IV. IMPLEMENTATION

During an interval from tk and tk+1, up[k] is constant and
given by (18). The corresponding cart acceleration, ẍc[k],
is calculated by (10). Note that θp[k + 1] is given as a
prior information, and is available for calculation of (10)
because θp[k + 1] is an output of the quantizer, (1), and the
quantization interval of (1) is known preliminarily.

From (2), the cart acceleration, ẍc, can be represented by

ẍc =

(
Jp +mpr2p

) (
Fcx +mprp sin θpθ̇2p

)
−m2

pr
2
pg cos θp sin θp

(mc +mp)
(
Jp +mpr2p

)
− (mprp cos θp)

2
.

(20)
Therefore, once ẍc[k] is obtained from up[k], the hori-
zontal force applied to the real cart, Fcx, is derived by

Fcx =
(
mc + mp − (mprp cos θp)

2
)(

up[k] − α(θp[k], θp[k + 1])

β(θp[k], θp[k + 1])

)
− mprp sin θpθ̇

2
p +

m2
pr

2
pg cos θp sin θp

Jp + mpr2p
. (21)

Note that Fcx in (21) is continuous with respect to time, and
varying even though up[k], θp[k] and θp[k + 1] are constant
during the Lebesgue sampling interval, because (21) requires
continuous values of θp and θ̇p.

As aforementioned, new measurement data, θ̇p[k], is ob-
tained only at the interrupt time ik, i.e. only when the
quantizer output changes. In this sense, θp[k] and θp[k + 1]
are known a priori because θp[k] is the quantized value
of the original θp. During the interrupt times, the original
signals, θp and θ̇p cannot be measured. So (21) cannot be
applied and implemented to the system directly. Hence in the
following section, we propose a numerical method to solve
the problem.

Here we also give a remark to control the rotational
direction of the pendulum. The rotational direction depends
on whether define θp[k + 1] = θp[k] + qn or θp[k + 1] =
θp[k]− qn with the quantizer interval qn.

A. Numerical integration of nonlinear system by Runge-
Kutta method in SDC form

To overcome the addressed issue on the implementation,
the key is to introduce an impulsive Luenberger observer.
This scheme is a kind of analogy in [7] and [8]. Such
impulsive Luenberger observer, however, requires the map-
ping of the current system state to the one-step ahead state.
That means a discrete system of the target nonlinear system
is required. However, it is a difficult problem to obtain
such discrete time system. We regard the difficulties is
caused by the fact the input of the system affects to the
system matrices in the case of the discretization for nonlinear
systems. That is, the input must be known a priori over
the interval for discretization. This requirements causes a
circular reference problem in control system design because
the system matrices are required a prior to design the input.
In our case, on the other hand, the discrete system of the
target nonlinear system is used only when the state estimation
is updated posteriori, i.e, after each interrupt. The diagram of
the proposed controller is shown in Fig. 3. In the following
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Fig. 3. The diagram of the impulsive Luenberger observer-based controller
for Lebesgue sampled systems.

part, the detail is derived by using the cart-pendulum system
as the example.

B. Non-linear system discretization by the Runge-Kutta
method

Assume that input force u from tk to tk+1 is constant.

Let a state vector of the system be x =
[
xc, θp, ẋc, θ̇p

]T
.

Motion equations of the system (2) can be changed the
formula

ẋ = f (x, t) , (22)
= A(x)x+B(x)u. (23)

(22) is approximated by using the Runge-Kutta method as
follows

x[k + 1] = x[k] +
∆

6
(k1 + 2k2 + 2k3 + k4) , (24)

where

k1 = f (x[k], tk) ,

k2 = f

(
x[k] +

∆

2
k1, tk +

∆

2

)
,

k3 = f

(
x[k] +

∆

2
k2, tk +

∆

2

)
,

k4 = f (x[k] + ∆k3, tk +∆) .

Rearranging (23) into the approximated formula, k1 is ob-
tained as follows

k1 = A(x[k])x[k] +B(x[k])u.

For simplicity let A(x[k]) = A1, B(x[k]) = B1

k1 = A1x[k] +B1u. (25)

In a similar way k2 is obtained as follows

k2 = A

(
x[k] +

∆

2
k1

)(
x[k] +

∆

2
k1

)
+B

(
x[k] +

∆

2
k1

)
u.

For simplicity let A
(
x[k] + ∆

2 k1

)
= Ā2, B(x[k]+∆

2 k1) =
B̄2

k2 = Ā2

(
x[k] +

∆

2
k1

)
+ B̄2u. (26)

Rearranging (25) into (26), k2 is obtained as follows

k2 = Ā2

(
x[k] +

∆

2
(A1x[k] +B1u)

)
+ B̄2u

= Ā2

(
I +

∆

2
A1

)
x[k] +

(
∆

2
Ā2B1 + B̄2

)
u. (27)

For simplicity let Ā2

(
I + ∆

2 A1

)
= A2, ∆

2 Ā2B1 + B̄2 =
B2

k2 = A2x[k] +B2u. (28)

In a similar way k3, k4 are obtained as follows

k3 = A3x[k] +B3u, (29)

A3 = Ā3

(
I +

∆

2
A2

)
,

Ā3 = A

(
x[k] +

∆

2
k2

)
,

k4 = A4x[k] +B4u, (30)
A4 = Ā4 (I +∆A3) ,

Ā4 = A (x[k] + ∆k3) .

Thus a discretized formula of (23) can be described as
follows

x[k + 1] = Φ (x[k], ∆)x[k] + Γ (x[k], ∆)u, (31)

Φ (x[k], ∆) = I +
∆

6
(A1 + 2A2 + 2A3 +A4) ,

Γ (x[k], ∆) =
∆

6
(B1 + 2B2 + 2B3 +B4) .

C. Impulsive Luenberger Observer

In the system if the angular velocity θ̇p can not measure
then θ̇p need to be estimated. Consequently θ̇p is estimated
by using ILO which consider the quantization of the pendu-
lum angle. ILO is defined as follows{

˙̂x(t) = f (x̂(t), t, u) ∀t /∈ {tk}∞k=0

x̂(t)← x̂(t) +LkC (x̄(t)− x̂(t)) ∀t ∈ {tk}∞k=0

(32)

where x̂ is estimated state, and x̄ =
[
xc, q (θp) , ẋc, θ̇p

]T
.

Assume that the pendulum angle q(θp) and the cart position
xc can be masured, coefficient matrix of the output equation
is as follows

C =

[
1 0 0 0
0 1 0 0

]
.

The obserer gain Lk can be obtained so that all eigenvalues
of Φ(x[k], ∆)−LkCΦ(x[k], ∆) are inside the unit disc.

V. NUMERICAL SIMULATION

In the following simulation the control input and the esti-
mated states can only be updated at the quantizer transition
time. The quantization width qn = 5π/180[deg]. Setting the
constant reference yr = (2π)2 in the system (17), the angular
velocity of the system is controlled to the constant velocity
θ̇p = 2π[rad/sec].

At first simulation results with the measurement velocity
θ̇p by using the servo control law are shown.
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Next simulation results with only the cart position xc and
the pendulum angle θp are shown. In this results the other
states is estimated by using ILO (32) with the discrete system
(31).

A. Angular velocity control with the measurement θ̇p
In this simulation integral calculation function is rkf45()

with MaTX Windows9x/ME/NT/2000/XP(Visual C++ 2005)
version 5.3.37. Step size for rkf45() is 10−5. Initial condi-
tion of the pendulum angle is 25π/180[rad], the pendulum
velocity is θ̇p = 0.75[rad/sec], otherwise 0. Weight matrix
are set to Q = [1] and R = [60] for x[k] and u[k].
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Fig. 4. The pendulum angular velocity of the cart pendulum.
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Fig. 5. The pendulum angular velocity error from constant reference
2π[rad/sec].
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Fig. 7. The pendulum angle of the car pendulum.

From Fig. 4 and Fig. 5, the pendulum velocity θ̇p achieve
the constant reference 2π[rad/sec]. From Fig. 7, the pen-
dulum angle monotonic increase by the pendulum velocity
which achieve the constant reference. From Fig. 6, the input
force to the cart updates at the quantizer transition time. From
Fig. 8 and Fig. 9, the cart position and speed change with
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Fig. 9. The cart velocity of the car pendulum.

the input force which designed the above.

B. Angular velocity control with ILO

In this simulation integral calculation function is rkf45()
with MaTX Windows9x/ME/NT/2000/XP(Visual C++ 2005)
version 5.3.37. Step size for rkf45() is 10−5. Initial
condition of the pendulum angle is 25π/180[rad], the
pendulum velocity is θ̇p = 0.75[rad/sec], otherwise 0.
Weight matrix are set to Q = [1] and R = [60]
for x[k] and u[k]. The observer gain Lk is designed
discrete-time linear quadratic regulator with controllable pair(
Φ (x[k], ∆)

T
, (CΦ (x[k], ∆))

T
)

. Weight matrix are set
to Qo = diag(1, 100, 1, 10000) and Ro = diag(1, 1) for
x(tk) and the correction term.
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Fig. 10. The pendulum angular velocity of the cart pendulum with ILO.
Red solid line is the pendulum angular velocity θ̇p. Orange solid line is the
estimated pendulum angular velocity.

-9

-8

-7

-6

-5

-4

-3

-2

-1

 0

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

th
et

a_
p

_
d

o
t 

[r
ad

/s
ec

]

Time [sec]

error

Fig. 11. The pendulum angular velocity error from constant reference
2π[rad/sec] with ILO.
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Fig. 13. The pendulum angle of the car pendulum with ILO.
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Fig. 15. The cart velocity of the car pendulum with ILO.

From Fig. 10 and Fig. 11, the pendulum velocity θ̇p
achieve the constant reference 2π[rad/sec]. From Fig. 10
to Fig. 15, the input force, estimated states are updated at
the quantizer transition time. The estimated states achieve
the real states.

VI. DISCUSSION

In the control system design, we assume that measurement
states are changed when the quantizer output changed. The
other states are estimated by using the measured states at
the same time. Inputs to the system are determined by the
measured states and the estimated states.

The above cart-pendulum model don’t consider viscous
friction at the joint of the pendulum. In order to consider
effect of the viscous friction to discretization by Lebesgue
sampling, we derive cart-pendulum model that includes the
viscous friction force −Cpθ̇p Nm at the joint of the pendu-
lum. The equation of motion of the pedulum with the viscous
friction force is given by

mprp cos θpẍc +
(
Jp +mpr

2
p

)
θ̈p = mpgrp sin θp − Cpθ̇p.

(33)

Now we focus on right term of (33), Cpθ̇p. In order to
discretize by Lebesgue sampling, both term of (33) are
integrated same way as (7). However the integrated right term
of (33),

∫ θp[k+1]

θp[k]
Cpθ̇pdθp , can NOT be solved analytically

because θ̇p is NOT constant. Therefore the discretization
of system by Lebesgue sampling can be performed for the
system can be solved analytically same way as (7).

VII. CONCLUSION

In this paper, first of all, a discretization with Lebesgue
sampling has been considered for a type of nonlinear system
such as a cart-pendulum system. For example the cart-
pendulum system was converted into the corresponding
discrete system (12), which was a time-invariant linear or
time-varying linear system, by the proposed method. Hence
many current control design schemes can be applied to the
discrete system. On the other hand, the implementation of
the controller was a crucial problem, and to overcome this
problem, in this paper, an impulsive Luenberger observer was
introduced. This observer require basically the mapping of
the current state to the one-step ahead state of the nonlinear
system, and then a numerical integration method based on
Runge-Kutta was also derived to give such mapping. Hence
the controller implemented was given by the combination of
the impulsive Luenberger observer and the numerical inte-
gration method. With the controller, the output of the closed-
loop system was controlled to be a desired value even though
the controller worked only when the quantization occurred.
The numerical simulation showed the effectiveness of the
proposed system. As future works, we’re now interested in
the class of nonlinear systems to which the proposed system
can be applied. A combustion engine piston-crank model
might be an example.
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