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Abstract— We introduce the family of limited model infor-
mation control design methods, which construct controllers by
accessing the plant’s model in a constrained way, according
to a given design graph. This class generalizes the notion of
communication-less control design methods recently introduced
by one of the authors, which construct each sub-controller
using only local plant model information. We study the trade-
off between the amount of model information exploited by a
control design method and the quality of controllers it can
produce. In particular, we quantify the benefit (in terms of the
competitive ratio and domination metrics) of giving the control
designer access to the global interconnection structure of the
plant-to-be-controlled, in addition to local model information.

I. INTRODUCTION

Two challenges often face the control designer confronted

with a large-scale plant composed of interconnected subsys-

tems. The first challenge regards controller structure, and

stems from the requirement that the control signal sent to a

subsystem should depend only on the state of subsystems in

its immediate neighborhood. This requirement is due to the

high cost or impossibility of relaying measurements between

physically remote subsystems, and leads to the traditional

problem of decentralized or structured control [1]–[3].

The second control design challenge originates from the

same concern for localization, but pertains to model infor-

mation rather than plant measurements. Since one would

like to not modify sub-controller Ki if the characteristics

of a particular subsystem, which is not directly connected to

subsystem i, vary, and/or a precise model of other subsystems

in the plant may be unavailable when designing Ki in the first

place, it is natural to try and design controllers without the

full knowledge of a plant’s model or, even more specifically,

such that Ki depends solely on the description of subsystem

i’s model. When the latter situation holds, we say that control

design method is “communication-less”, to capture the fact

that subsystem i and subsystem j 6= i do not “communicate”

plant information with each other (even though they might

be dynamically coupled) during the control design phase.

The main goal of this paper is to study the trade-off be-

tween the amount of plant information exploited by a control

design method, and the quality of controllers it can produce.
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To do so, we look at limited model information control

design methods as elements of a particular class of maps

between the plant and controller sets, and characterize their

intrinsic limitations via the competitive ratio and domination

metrics introduced in [4]. The class of plants and limitations

on control design methods addressed in the present paper are

significantly larger than in this reference, since we consider

subsystems of arbitrary order, and we investigate the case

where, even though detailed subsystems’ model information

is not available, the global interconnection structure of the

plant (which we call the plant graph) is known at the time

of control design.

This paper is organized as follows. In Section II, we

formulate the problem of interest rigorously and define the

performance metrics. In Section III, we characterize the

best communication-less control design method according to

both competitive ratio and domination metrics, for various

possible plant graphs. In the case where the plant graph

contains no sink, we generalize the fact proven in [4]

that the deadbeat strategy is the best communication-less

control design method. However the deadbeat strategy is

dominated when the plant graph contains sinks, and we

exhibit a better, undominated, communication-less control

design method, which takes advantage of the knowledge of

the sinks location to lower closed-loop performance for all

plants. In Section IV, we show that achieving a strictly better

competitive ratio than this control design method requires a

complete design graph. Finally, we end with an illustrative

example of limited model information control design in

Section V and the conclusions in Section VI.

A. Notation

Sets will be denoted by calligraphic letters, such as P and

A. If A is a subset of M then Ac is the complement of A
in M, i.e., M\A.

Matrices are denoted by capital roman letters such as A.

Aj will denote the j th row of the A. Aij denotes a sub-matrix

of matrix A, the dimension and the position of which will

be defined in the text. The entry in the ith row and the j th

column of the matrix A is aij .

Let Sn
++ (Sn

+) be the set of symmetric positive definite

(positive semidefinite) matrices in R
n×n. A > (≥)0 means

symmetric matrix A ∈ R
n×n is positive definite (positive

semidefinite) and A > (≥)B means that A−B > (≥)0.

λ(Y ) and λ̄(Y ) denote the smallest and the largest eigen-

values of the matrix Y , respectively. Similarly, σ(Y ) and

σ̄(Y ) will denote the smallest and the largest singular values

of the matrix Y , respectively. Vector ei will denote the
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column-vector with all entries zero except the ith entry which

is equal to one.

All graphs considered in this paper are directed, possibly

with self-loops, with vertex set {1, ..., q} for some positive

integer q. If G = ({1, ..., q}, E) is a directed graph, we

say that i is a sink if there does not exist j 6= i such that

(i, j) ∈ E. A loop of length t in G is a set of distinct vertices

{i1, ..., it} such that (it, i1) ∈ E and (ip, ip+1) ∈ E for all

1 ≤ p ≤ t − 1. We will sometimes refer to this loop as

(i1 → i2 → ... → it → i1). The adjacency matrix S of

graph G is the q × q matrix whose entries satisfy

sij =

{

1 if (j, i) ∈ E
0 otherwise.

II. CONTROL DESIGN WITH LIMITED MODEL

INFORMATION

A. Plant Model

Let a graph GP = ({1, ..., q}, EP) be given, with adja-

cency matrix SP ∈ {0, 1}q×q. We define the following set

of matrices associated with SP :

A(SP ) = {Ã ∈ R
n×n|Ãij = 0 ∈ R

ni×nj for all

1 ≤ i, j ≤ q such that (sP)ij = 0}.

Also, for a given scalar ǫ > 0, we let

B(ǫ) = {B̃ ∈ R
n×n | σ(B̃) ≥ ǫ,B̃ij = 0 ∈ R

ni×nj

for all 1 ≤ i 6= j ≤ q}.

With these definitions, we can introduce the set P of

plants of interest as the space of all discrete time, linear

time invariant systems of the form

x(k + 1) = Ax(k) +Bu(k) ; x(0) = x0, (1)

with x0 ∈ R
n, A ∈ A(SP ), B ∈ B(ǫ). Clearly P is isomorph

to A(SP )×B(ǫ)×R
n and, slightly abusing notation, we will

thus identify a plant P ∈ P with the corresponding triple

(A,B, x0).

A plant P ∈ P can be thought of as the interconnection

of q subsystems, with the structure of the interconnection

specified by graph GP , i.e., subsystem j’s output feeds into

subsystem i only if (j, i) ∈ EP . As a consequence, we

refer to GP as the “plant graph”. For each 1 ≤ i ≤ q,

subsystem i is of dimension ni. Implicit in these definitions

is the fact that
∑q

i=1 ni = n. We will denote the ordered set

of state indices pertaining to subsystem i as Ii, i.e., Ii :=
(1 +

∑i−1
j=1 nj, . . . , ni +

∑i−1
j=1 nj). For subsystem i, state

vector and input vector are defined as xi = [xℓ1 · · · xℓni
]T

and ui = [uℓ1 · · · uℓni
]T where the ordered set of indices

(ℓ1, . . . , ℓni
) ≡ Ii, and dynamics specified by

xi(k + 1) =

q
∑

j=1

Aijxj(k) +Biiui(k).

B. Controller Model

Let a control graph GK be given, with adjacency matrix

SK. The control laws of interest in this paper are linear static

state-feedback control laws of the form

u(k) = Kx(k),

where

K ∈ K(SK) = {K̃ ∈ R
n×n|K̃ij = 0 ∈ R

ni×nj for all

1 ≤ i, j ≤ q such that (sK)ij = 0}.
In particular, when GK is the complete graph, K(SK) =
R

n×n and controllers are unstructured while, if GK is totally

disconnected with self-loops, K(SK) represents the set of

fully decentralized controllers. When adjacency matrix SK

is not relevant or can be deduced from context, we refer to

the set of controllers as K.

C. Control Design Methods

A control design method Γ is a map from the set of plants

P to a set of controllers K. Just like plants and controllers,

a control design method can exhibit structure which, in turn,

can be captured by a design graph. Let a control design

method be partitioned according to subsystems dimensions

as

Γ =







Γ11 · · · Γ1q

...
. . .

...

Γq1 · · · Γqq






(2)

and a graph GC = ({1, ..., q}, EC) be given, with adjacency

matrix SC . In (2), each block Γij represents a map A(SP )×
B(ǫ) → R

ni×nj .

We say that Γ has structure GC if, for all i,
the map [Γi1 · · · Γiq] is only a function of

{[Aj1 · · · Ajq], Bjj | (sC)ij 6= 0} . In words, a control de-

sign method has structure GC if and only if, for all i, the

subcontroller of subsystem i is constructed with knowledge

of the plant model of only those subsystems j such that

(j, i) ∈ EC . The set of all control design methods with

structure GC will be denoted by C. In the particular case

where GC is the totally disconnected graph with self-loops

(i.e., SC = Iq), we say that a control design method in C
is “communication-less”, so as to capture the fact that sub-

system i’s subcontroller is constructed with no information

coming from (and, hence, no communication with) any other

subsystem j, j 6= i. When GC is not the complete graph, we

refer to Γ ∈ C as being a “limited model information control

design method”.

Note that C can be considered as a subset of (A(SP ) ×
B(ǫ))K, since a design method with structure GC is not a

function of initial state x0. Hence, when Γ ∈ C we will write

Γ(A,B) instead of Γ(P ) for plant P = (A,B, x0) ∈ P .

D. Performance Metrics

The goal of this paper is to investigate the influence of

the plant and design graph on the properties of controllers

constructed by limited model information control design

methods. To this end, we will use two performance metrics
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for control design methods. These performance metrics are

adapted from the notions of competitive ratio and domination

first introduced in [4], so as to take plant, controller, and con-

trol design structures into account. We start by introducing

the (closed-loop) performance criterion.

To each plant P = (A,B, x0) ∈ P and controller K ∈ K,

we associate the performance criterion

JP (K) =

∞
∑

k=1

x(k)TQx(k) +

∞
∑

k=0

u(k)TRu(k), (3)

where Q ∈ Sn
++ and R ∈ Sn

++ are block diagonal matrices,

with each diagonal block entry belonging to Sni

++. We make

the following two standing assumptions:

Assumption 2.1: Q = R = I .

This is without loss of generality because the change of

variables (x̄, ū) = (Q1/2x,R1/2u) transforms the perfor-

mance criterion into

JP (K) =
∞
∑

k=1

x̄(k)T x̄(k) +
∞
∑

k=0

ū(k)T ū(k), (4)

without affecting the plant, controller, or design graph (due

to the block diagonal structure of Q and R).

Assumption 2.2: We replace the set B(ǫ) by its intersec-

tion with the set of diagonal matrices.

This assumption is without loss of generality. Indeed, con-

sider a plant P = (A,B, x0) ∈ P . Every sub-system’s Bii

matrix has a singular value decomposition Bii = UiiΣiiV
T
ii

with Σii ≥ ǫIni×ni
, as σ(B) ≥ ǫ for all B ∈ B(ǫ) by

definition. Combining these singular value decompositions

together results in a singular value decomposition for ma-

trix B = UΣV T where U = diag(U11, · · · , Uqq), Σ =
diag(Σ11, · · · ,Σqq), and V = diag(V11, · · · , Vqq). Using

the change of variable (x̄, ū) = (UTx, V Tu) results the

performance criterion of the form (4), because both U and V
are unitary matrices. Besides, because of the block diagonal

structure of matrices U and V , this change of variable does

not affect the plant, controller, or design graph.

We are now ready to define the performance metrics of

interest in this paper.

Definition 2.3: (Competitive Ratio) Let a plant graph GP ,

controller graph GK and constant ǫ > 0 be given. Assume

that, for every plant P ∈ P , there exists a controller

K∗(P ) ∈ K such that

JP (K
∗(P )) ≤ JP (K), ∀K ∈ K.

The competitive ratio (against P) of a control design method

Γ is defined as

rP (Γ) = sup
P=(A,B,x0)∈P

JP (Γ(A,B))

JP (K∗(P ))
,

with the convention that “ 0
0” equals one.

Note that the mapping K∗ : P → K∗(P ) is not itself

required to lie in the set C, as every component of the optimal

controller may depend on all entries of the model matrices A
and B. Also note that the existence and ease of computation

of K∗ depends on the nature of set K.

Definition 2.4: (Domination) A control design method Γ
is said to dominate another control design method Γ′ if

JP (Γ(A,B)) ≤ JP (Γ
′(A,B)), ∀ P = (A,B, x0) ∈ P ,

(5)

with strict inequality holding for at least one plant in P .

When Γ′ ∈ C and no control design method Γ ∈ C exists

that satisfies (5), we say that Γ′ is undominated in C for

plants in P .

E. Problem Formulation

With the definitions of the previous subsections in hand,

we can reformulate the main high-level question of this paper

regarding the connection between closed-loop performance,

plant structure, and limited model information control design

as follows. For a given plant graph, control graph, and design

graph, we would like to determine

argmin
Γ∈C

rP(Γ). (6)

Since several design methods may achieve minΓ∈C rP (Γ),
we are additionally interested in determining strategies in

the set (6) that are undominated.

In [4], this problem was solved when the plant graph GP

and the control graph GK are complete graphs, the design

graph GC is a totally disconnected graph with self-loops (i.e.,

SC = Iq), and B(ǫ) is replaced with {In}. In this paper, we

investigate the role of more general plant and design graphs.

We also extend the results in [4] for scalar subsystems into

subsystems of arbitrary order ni ≥ 1, 1 ≤ i ≤ q.

III. PLANT GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In this section, we study the relationship between the plant

graph and the achievable closed-loop performance in term of

the competitive ratio and the domination.

Definition 3.1: The deadbeat control design method Γ∆ :
A(SP )× B(ǫ) → K is defined as

Γ∆(A,B) = −B−1A, for all P = (A,B, x0) ∈ P .
This control design method is communication-less because

subsystem i’s controller gain [Γi1(A,B) · · · Γiq(A,B)]
equals to B−1

ii [Ai1 · · · Aiq]. The name “deadbeat” comes

from the fact that the closed-loop system obtained by apply-

ing controller Γ∆(A,B) to plant P = (A,B, x0) reaches the

origin just in one time-step [5].

Theorem 3.2: Let the plant graph GP contain no isolated

node and the control graph GK be a complete graph. Then

the competitive ratio of the deadbeat control design method

is rP (Γ
∆) = 1 + 1/ǫ2.

Proof: For any plant P = (A,B, x0) ∈ P , the optimal

controller K∗(P ) exists (because the plant is controllable

since B is invertible by assumption) and can be computed

using the unique positive definite solution to the algebraic

Riccati equation

X = ATXA−ATXB(I +BTXB)−1BTXA+ I. (7)

4699



The corresponding cost is JP (K
∗(A,B)) = xT

0 (X − I)x0.

Inserting the product BB−1 before every matrix A and

B−TBT after every matrix AT in Equation (7) results in

X−I = ATB−TBTXBB−1A

−ATB−TBTXB(I +BTXB)−1BTXBB−1A.
(8)

Naming BTXB as Y simplifies Equation (8) into

X − I = ATB−T [Y − Y (I + Y )−1Y ]B−1A. (9)

Note that Y is a positive definite matrix because X is positive

definite and B is full rank. Let us denote the right-hand

side of (9) by ATB−T g(Y )B−1A. Then we can make the

following two claims regarding the rational function g(.).
Claim 1: The function y 7→ g(y) = y/(y + 1) is a

monotonically increasing over R+.

Claim 2: Let Y ∈ Sn
++ and D, T be diagonal and

unitary matrices, respectively, such that Y = T TDT . Then

g(Y ) = T T diag(g(d11), . . . , g(dnn))T , where the dii are the

diagonal elements of D (and the eigenvalues of Y ).

Claim 1 is proved by computing the derivative of g over

R
+, while Claim 2 follows from the fact that all matrices

involved in the computation of g(Y ) can be diagonalized in

the same basis. Using these two claims, we find that, for all

Y with eigenvalues denoted by λ1(Y ), . . . , λn(Y )

X − I = ATB−T g(Y )B−1A

= ATB−TT T diag(g(λ1(Y )), . . . , g(λn(Y )))TB−1A

≥ (g(λ(Y )))ATB−TB−1A,
(10)

where λ(Y ) is a positive number because matrix Y is a

positive definite matrix. Now, according to [6],

λ(X) ≥ λ(AT (I+BBT )−1A+I) ≥ σ2(A)

1 + σ̄2(B)
+1. (11)

Using Equation (11) in inequality λ(Y ) ≥ σ2(B)λ(X) gives

λ(Y ) ≥ σ2(B)σ2(A)

1 + σ̄2(B)
+ σ2(B),

and

g(λ(Y )) ≥ σ2(B)[σ2(A) + σ̄2(B) + 1]

1 + σ̄2(B) + σ2(B)[σ2(A) + σ̄2(B) + 1]

≥ σ2(B)

σ2(B) + 1
.

(12)

Combining equations (10) and (12) results in

X − I ≥ σ2(B)

σ2(B) + 1
ATB−TB−1A,

and therefore

JP (Γ
∆(A,B))

JP (K∗(A,B))
=

xT
0 (A

TB−TB−1A)x0

xT
0 (X − I)x0

≤ 1 +
1

ǫ2
.

for all P = (A,B, x0) ∈ P .

To show that this upper-bound is attained, let us pick i1 ∈
Ii and j1 ∈ Ij where 1 ≤ i 6= j ≤ q and (sP)ij 6= 0 (such

indices i and j exist because plant graph GP has no isolated

node by assumption). Consider then matrix A defined as

A = ei1e
T
j1 and matrix B defined as B = ǫI . The unique

solution of the Riccati equation is X = I+[1/(1+ǫ2)]ej1e
T
j1

and J(A,B,ej1 )
(K∗(A,B)) = 1/(1 + ǫ2). On the other hand

Γ∆(A,B) = −[1/ǫ]ei1e
T
j1 and J(A,B,ej1)

(Γ∆(A,B)) =

1/ǫ2. Therefore, rP(Γ
∆) = 1 + 1/ǫ2.

There is no loss of generality in assuming that there is

no isolated node in the plant graph GP , since it is always

possible to design a controller for an isolated subsystem

without any model information about the other subsystems

and without impacting cost (3). In particular, this implies that

there are q ≥ 2 vertices in the graph.

With this characterization of Γ∆ in hand, we are now ready

to tackle problem (6).

A. First case: plant graph GP with no sink

In this subsection, we show that, when the plant graph

GP contains no sink, the deadbeat control method is un-

dominated by communication-less control design methods

for plants in P and that it exhibits the smallest possible

competitive ratio among such control design methods.

First, we state the following two lemmas, in which we

assume that the plant graph GP contains no isolated node,

the control graph GK is a complete graph, and the design

graph GC is a totally disconnected graph with self-loops only.

Lemma 3.3: A control design method Γ ∈ C has bounded

competitive ratio only if the following implication holds for

all 1 ≤ ℓ ≤ q and all j:

aij = 0 for all i ∈ Iℓ ⇒ γij(A,B) = 0 for all i ∈ Iℓ.
Proof: Assume that this claim is not correct, i.e., that there

exists a matrix A and indices ℓ, j, i0 ∈ Iℓ such that aij = 0
for all i ∈ Iℓ but γi0j(A,B) 6= 0. Consider matrix Ā such

that Āi = Ai for all i ∈ Iℓ and Āz = 0 for all z /∈ Iℓ. Based

on the definition of limited-model-information control design

methods, we know Γi(A,B) = Γi(Ā, B) for all i ∈ Iℓ and

Γi(Ā, B) = 0 for all i /∈ Iℓ (because Γi(A,B) = Γi(0, B)
for all i /∈ Iℓ and, as shown in [4], it is necessary that

Γ(0, B) = 0 for Γ to have a finite competitive ratio). For

x = ej , we have

J(Ā,B,ej)(Γ(Ā, B)) ≥
∑

i∈Iℓ

γij(Ā, B)2 =
∑

i∈Iℓ

γij(A,B)2

≥ γi0j(A,B)2 > 0.

Now, note that because the j th column of matrix Ā is

entirely zero, the j th column of the optimal controller

K∗(Ā, B) = −(I + BTXB)−1BTXĀ is also zero. Thus,

J(Ā,B,ej)(K
∗(Ā, B)) = 0 and, as result,

rP(Γ) ≥
J(Ā,B,ej)(Γ(Ā, B))

J(Ā,B,ej)(K
∗(Ā, B))

= ∞.

This proves the claim by contrapositive.

Lemma 3.4: Assume plant graph GP has at least one

loop. Then, rP (Γ) ≥ 1 + 1/ǫ2 for all limited model

information control design method Γ in C.
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Proof: Without loss of generality, let us assume that the

nodes of graph GP are numbered such that it admits the

following loop of length ℓ: 1 → 2 → · · · → ℓ → 1.

Let us choose indices i1 ∈ I1, i2 ∈ I2, . . . , iℓ ∈ Iℓ
and consider the one-parameter family of matrices A(r)
defined by ai2i1(r) = r, ai3i2(r) = r, . . . , aiℓiℓ−1

(r) =
r, ai1iℓ(r) = r, and all other entries equal to zero, for all

r. Let B = ǫI . Because of Lemma 3.3, the controller gain

entries γj2i1(A(r), B) for all j2 ∈ I2, γj3i2(A(r), B) for all

j3 ∈ I3, . . . , γjℓiℓ−1
(A(r), B) for all jℓ ∈ Iℓ, γj1iℓ(A(r), B)

for all j1 ∈ I1 can be non-zero, but all other entries of the

controller gain Γ(A(r), B) are zero for all r. As a result, the

characteristic polynomial of matrix A(r)+BΓ(A(r), B) can

be computed as:

λn−ℓ[λℓ + (−1)ℓ(r + ǫγi2i1(A(r), B)) · · ·
× (r + ǫγiℓiℓ−1

(A(r), B))(r + ǫγi1iℓ(A(r), B))].
(13)

Now, note that because Γ has a bounded competitive ratio

against P by assumption, this polynomial should be stable

for all r. Indeed, Γ can have a finite competitive ratio only

if A + BΓ(A,B) is stable for all matrix A, for otherwise

it would yield an infinite cost for some plants while the

corresponding optimal cost remains bounded since the pair

(A,B) is controllable for all plant in P . As a result, we must

have

|(r + ǫγi2i1(A(r), B)) · · · (r + ǫγi1iℓ(A(r), B))|
= |r + ǫγi2i1(A(r), B)| · · · |r + ǫγi1iℓ(A(r), B)| < 1

(14)

for all r. Let {rz}∞z=1 be a sequence of real numbers with

the property that rz goes to infinity as z goes to infinity.

From (14), we know that there exists an index m̄ such that

∀N, ∃z > N s.t. |rz + ǫγim̄⊕1im̄(A(rz), B)| < 1, (15)

where “⊕” designated addition modulo ℓ. Indeed, if this not

the case, it is true that

∀m, ∃Nm s.t. |rz + ǫγim̄⊕1im̄(A(rz), B)| ≥ 1, ∀z > Nm.

Then, for all z > maxm Nm and all m, |rz +
ǫγim̄⊕1im̄(A(rz), B)| ≥ 1, which contradicts (14). Without

loss of generality (since this just amounts to renumbering

the nodes in the plant graph), we assume that m̄ = 1. Using

(15), we can then construct a subsequence {rφ(z)} of {rz}
with the property that

|rφ(z) + ǫγi2i1 (A(rφ(z)), B)| < 1 for all z.

Now introduce the sequence of matrices {Ā(z)}∞z=1 defined

by Āi2i1(z) = rφ(z) for all z and every other row equal to

zero. For large enough z (and hence, large enough rφ(z)),

J(Ā(z),B,ei1)
(Γ(Ā(z), B)) ≥ γi2i1(Ā(z), B)2

= γi2i1(A(rφ(z)), B)2

≥ (|rφ(z)| − 1)2

ǫ2

and, thus,

J(Ā(z),B,ei1 )
(Γ(Ā(z), B))

J(Ā(z),B,ei1)
(K∗(Ā(z), B))

≥ (|rφ(z)| − 1)2/ǫ2

r2φ(z)/(1 + ǫ2)
.

This, in particular, implies that

rP (Γ) ≥ lim
z→∞

J(Ā(z),B,ei1)
(Γ(Ā(z), B))

J(Ā(z),B,ei1 )
(K∗(Ā(z), B))

≥ 1 + 1/ǫ2,

which finishes the proof.

Theorem 3.5: Let the plant graph GP contain no isolated

node and no sink, the control graph GK be a complete graph,

and the design graph GC be a totally disconnected graph with

self-loops. Then, the competitive ratio of any control design

strategy Γ ∈ C satisfies rP(Γ) ≥ 1 + 1/ǫ2.

Proof: From Lemma 1.4.23 in [7], we know that a directed

graph with no sink must have at least one loop. Hence, if

GP satisfies the assumptions of the theorem, it must contain

a loop. The result then follows from Lemma 3.4.

Theorem 3.5 shows that the deadbeat control design

method Γ∆ is a minimizer of the competitive ratio function

rP over the set of communication-less design methods. The

following theorem shows that it is also undominated by

methods of this type if and only if GP has no sink.

Theorem 3.6: Let the plant graph GP contain no isolated

node, the control graph GK be a complete graph, and the

design graph GC be a totally disconnected graph with self-

loops. The deadbeat control design method is undominated

in C for plants in P if and only if there is no sink in the

plant graph GP .

Proof: The “if” part of the proof is similar to that

of Theorem 3 in [4], with additional attention paid to the

fact that the plants chosen to establish undomination of

Γ∆ by any other design method Γ ∈ C has the structure

of a sink-less graph. For the “only if” part, we show that

the communication-less design method ΓΘ introduced later

dominates the deadbeat for plants in P , when plant graph

GP has at least one sink. See [8] for the detailed proof.

B. Second case: plant graph GP with at least one sink

In this section, we consider the case where plant graph GP

has c ≥ 1 distinct sinks. Accordingly, its adjacency matrix

SP is of the form

SP =

[

(SP )11 0(q−c)×(c)

(SP )21 (SP)22

]

, (16)

where

(SP)11 =







(sP)11 · · · (sP)1,q−c

...
. . .

...
(sP)q−c,1 · · · (sP)q−c,q−c






,

(SP)21 =







(sP)q−c+1,1 · · · (sP)q−c+1,q−c

...
. . .

...
(sP)q,1 · · · (sP)q,q−c






,

and

(SP)22 =







(sP)q−c+1,q−c+1 · · · 0
...

. . .
...

0 · · · (sP)qq






,
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if we assume, without loss of generality, that the vertices

are numbered such that the sinks are labeled q−c+1, · · · , q.

With these notations, let us now introduce the control design

method ΓΘ defined by

ΓΘ(A,B) = −diag(B−1
11 , . . . , B−1

q−c,q−c,

Wq−c+1(A,B), . . . ,Wq(A,B))A
(17)

for all (A,B) ∈ A(SP )× B(ǫ), and

Wi(A,B) = (I +BT
iiXiiBii)

−1BT
iiXii (18)

for all i ∈ {q− c+1, · · · , q} and Xii is the unique positive

definite solution of the following Riccati equation

AT
iiXiiAii −AT

iiXiiBii(I +BT
iiXiiBii)

−1BT
iiXiiAii

−Xii + I = 0.

The control design strategy ΓΘ applies the deadbeat to

every subsystem that is not a sink and, for every sink,

applies the same optimal control law as if the node were

decoupled from the rest of the graph. We will show that

when the plant graph contains sinks, control design method

ΓΘ has, in the worst case, the same competitive ratio as

the deadbeat strategy, but also has the additional property

of being undominated by communication-less methods for

plants on P .

We start with a lemma. In the following lemma, we assume

that the plant graph GP contains no isolated node, the control

graph GK is a complete graph, and the design graph GC is

a totally disconnected graph with self-loops.

Lemma 3.7: Let Γ be a communication-less control de-

sign method. Suppose that there exist i and j 6= i such that

(sP)ij 6= 0 and node i is not a sink; i.e., there exists ℓ 6= i
such that (sP)ℓi 6= 0. The competitive ratio of Γ against P
is bounded only if

ai1j1 + bi1i1γi1j1(A,B) = 0, for all i1 ∈ Ii and j1 ∈ Ij .
Proof: For ease of notation in this proof, we use [A]i =

[Ai1 · · · Aiq]. The proof is by contrapositive. Assume that

there exist matrices A and B and indices i1 ∈ Ii and j1 ∈ Ij
such that ai1j1 + bi1i1γi1j1(A,B) 6= 0. Choose an index

ℓ1 ∈ Iℓ. Consider the one-parameter family of matrices

Ā(r) defined by [Ā(r)]i = [A]i, āℓ1i1 = r, and all other

entries of Ā(r) being equal to zero for all r. We know that

[Γ(Ā(r), B)]i = [Γ(A,B)]i and Γℓ̄(Ā, B) = γℓ̄i1(r)e
T
i1

for

all ℓ̄ ∈ Iℓ (because of Lemma 3.3), [Γ(Ā, B)]z = 0 for all

z 6= i, ℓ. For x0 = ej1 , we have

J(Ā(r),B,x0)(Γ(Ā, B)) ≥ (ai1j1 + bi1i1γi1j1(A,B))2

× [γℓ1i1(r)
2 + (r + bℓ1ℓ1γℓ1i1(r))

2].

The minimum value of function y 7→ [y2 + (r+ bℓ1ℓ1y)
2]

is r2/(1 + b2ℓ1ℓ1). Hence, irrespective of function γℓ1i1 ,

J(Ā(r),B,ej1)
(Γ(Ā(r), B)) ≥ (ai1j1 + bi1i1γi1j1(A,B))2r2

1 + b2ℓ1ℓ1
.

Note that the term (ai1j1 +bi1i1γi1j1(A,B))2 is independent

from r because Γ is communication-less. In addition,

J(Ā(r),B,ej1)
(Γ∆(Ā(r), B)) =

∑

z∈Ii

ā2zj1
b2zz

=
∑

z∈Ii

a2zj1
b2zz

for all r and, thus, J(Ā(r),B,ej1 )
(Γ∆(Ā(r), B)) is also inde-

pendent from r. Then

rP(Γ) = sup
P∈P

JP (Γ(A,B))

JP (K∗(A,B))

= sup
P∈P

[

JP (Γ(A,B))

JP (Γ∆(A,B))

JP (Γ
∆(A,B))

JP (K∗(A,B))

]

≥ sup
P∈P

JP (Γ(A,B))

JP (Γ∆(A,B))
,

and, as a result,

rP(Γ) ≥
(ai1j1 + bi1i1γi1j1(Ā, B))2

(1 + b2ℓ1ℓ1)J(Ā(r),B,ej1)
(Γ∆(Ā(r), B))

lim
r→∞

r2.

Since (ai1j1 +bi1i1γi1j1 (Ā, B)) 6= 0 by assumption, we then

deduce that Γ has an unbounded competitive ratio, which

proves the theorem by contrapositive.

Theorem 3.8: Let the plant graph GP contain no isolated

node and at least one sink, and the control graph GK be a

complete graph. Then the competitive ratio of the control

design method ΓΘ in (17) is

rP (Γ
Θ) =

{

1, if (SP )11 = 0 and (SP )22 = 0,
1 + 1/ǫ2, otherwise.

Proof: Based on Theorem 3.2, we know that, for every

plant P = (A,B, x0) ∈ P

J(A,B,x0)(K
∗(A,B)) ≥ ǫ2

1 + ǫ2
xT
0 A

TB−TB−1Ax0, (19)

In addition, proceeding as in the proof of the “only if” part

of Theorem 3.6, we know that

J(A,B,x0)(Γ
∆(A,B)) ≥ J(A,B,x0)(Γ

Θ(A,B)). (20)

Plugging Equation (20) into Equation (19) results in

J(A,B,x0)(K
∗(A,B)) ≥ ǫ2

1 + ǫ2
J(A,B,x0)(Γ

Θ(A,B))

and, therefore, in

J(A,B,x0)(Γ
Θ(A,B))

J(A,B,x0)(K
∗(A,B))

≤ 1+
1

ǫ2
for all P = (A,B, x0) ∈ P .

As a result, rP (Γ
Θ) ≤ 1 + 1/ǫ2. To show that this upper-

bound is tight, we now exhibit plants for which it is at-

tained. We use a different construction depending on matrices

(SP)11 and (SP)22. If (SP)11 6= 0, two situations can occur.

• Case #1: (SP )11 has an off-diagonal entry; i.e., there exist

1 ≤ i 6= j ≤ q− c such that (sP)ij 6= 0. In this case, choose

indices i1 ∈ Ii and j1 ∈ Ij and define A = ei1e
T
j1

and

B = ǫI . Then, for x0 = ej1 , we find that

J(A,B,x0)(Γ
Θ(A,B))

J(A,B,x0)(K
∗(A,B))

=
1/ǫ2

1/(1 + ǫ2)
= 1 +

1

ǫ2

because the controller design ΓΘ acts like the deadbeat

control design method on this plant.

• Case #2: (SP)11 is diagonal and it has a nonzero diagonal

entry; i.e., there exists 1 ≤ i ≤ q − c such that (sP )ii 6= 0.

Choose an index i1 in the set Ii and consider A(r) =
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rei1e
T
i1 and B = ǫI . For x0 = ei1 , the optimal cost

J(A(r),B,x0)(K
∗(A(r), B)) is equal to

√
r4 + 2r2ǫ2 − 2r2 + ǫ4 + 2ǫ2 + 1 + r2 − ǫ2 − 1

2ǫ2
,

which results in

lim
r→0

J(A,B,x0)(Γ
Θ(A,B))

J(A,B,x0)(K
∗(A,B))

= 1 +
1

ǫ2
.

Now suppose that (SP)11 = 0. Again, two different

situations can occur.

• Case #1: (SP)22 is nonzero; i.e., there exists q − c+ 1 ≤
i ≤ q such that (sP)ii 6= 0. From the assumption that the

plant graph contains no isolated node, we know that there

must exist 1 ≤ j ≤ q− c such that (sP)ij 6= 0. Accordingly,

let us pick i1 ∈ Ii and j1 ∈ Ij and consider the 2-parameter

family of matrices A(r, s) in A(SP ) with all entries equal

to zero except ai1i1 , which is equal to r, and ai1j1 , which

is equal to s. Let B = ǫI . For any initial condition x0, the

corresponding closed-loop performance is

J(A(r,s),B,x0)(Γ
Θ(A(r, s), B)) = βΘx

T
0 a(r, s)

T a(r, s)x0,

where we have let a(r, s) = A(r, s)i1 and βΘ is

βΘ =

√
r4 + 2r2ǫ2 − 2ar2 + ǫ4 + 2ǫ2 + 1 + r2 − ǫ2 − 1

2ǫ2r2
.

Besides, the optimal closed-loop performance can be com-

puted as

J(A(r,s),B,x0)(K
∗(A(r, s), B)) = βK∗xT

0 a(r, s)
Ta(r, s)x0,

where βK∗ is

βK∗ =
ǫ2s2 + r2(1 + ǫ2)− (ǫ2 + 1)2 +

√
c+c−

2ǫ2(ǫ2 + 1)(s2 + r2)
,

c± = (ǫ2s2 + (r2 ± 2r)(ǫ2 + r) + (ǫ2 + 1)2).

Then,

rP(Γ
Θ) ≥ lim

r→∞, s
r
→∞

J(A(r,s),B,x0)(Γ
Θ(A(r, s), B))

J(A(r,s),B,x0)(K
∗(A(r, s), B))

= 1 +
1

ǫ2

• Case #2: (SP)22 = 0. Then, every matrix A ∈ A(SP) has

the form

[

0 0
∗ 0

]

and, in particular, is nilpotent of degree

2; i.e., A2 = 0. In this case, the Riccati equation yielding

the optimal control gain K∗(A,B) can be readily solved,

and we find that K∗(A,B) = −(I + BTB)−1BTA for all

(A,B). As a result, K∗(A,B) = ΓΘ(A,B) for all plant

P = (A,B, x0) ∈ P (since Wi(A,B) = (I +BT
iiBii)

−1BT
ii

for all q−c+1 ≤ i ≤ q), which implies that the competitive

ratio of ΓΘ is equal to one.

Theorem 3.9: Let the plant graph GP contain no isolated

node and at least one sink, the control graph GK be a

complete graph, and the design graph GC be a totally

disconnected graph with self-loops. If (SP )11 is not diagonal

or (SP)22 6= 0, then rP(Γ) ≥ 1+1/ǫ2 for any control design

method Γ ∈ C.

Proof: First, suppose that (SP )11 6= 0 and (SP )11 is not a

diagonal matrix. Then, there exist 1 ≤ i, j ≤ q− c and i 6= j

such that (sP)ij 6= 0. Choose indices i1 ∈ Ii and j1 ∈ Ij
and consider the matrix A defined by A = ei1e

T
j1

and B =
ǫI . From Lemma 3.7, we know that a communication-less

method Γ has a bounded competitive ratio only if Γ(A,B) =
−B−1A (because node i is a part of (SP)11 and it is not a

sink). Therefore

rP(Γ) ≥
J(A,B,ej1 )

(Γ(A,B))

J(A,B,ej1)
(K∗(A,B))

= 1 +
1

ǫ2

for any such method. Second, suppose that (SP)22 6= 0.

There thus exists q − c + 1 ≤ i ≤ q such that (sP)ii 6= 0.

Note that, there exists 1 ≤ j ≤ q − c such that (sP)ij 6= 0,

since there is no isolated node in the plant graph. Choose

indices i1 ∈ Ii and j1 ∈ Ij . Consider A defined as A =
rei1e

T
j1

+ sei1e
T
i1

and B = ǫI . For this particular family of

plants, ΓΘ is optimal global controller with limited model

information and based on the proof of Theorem 3.8, hence,

we know that rP ≥ 1 + 1/ǫ2.

Combining Theorem 3.8 and Theorem 3.9 implies that if

either (SP)11 is not diagonal or (SP)22 6= 0, control design

method ΓΘ exhibits the same competitive ratio as the dead-

beat control strategy, which is the smallest ratio achievable

by communication-less control methods. However, the next

theorem shows that ΓΘ is a more desirable control design

method than the deadbeat when plant graph GP has sinks,

since it is then undominated by communication-less design

methods for plants in P . The case where (SP)11 is diagonal

and (SP)22 = 0 is still open.

Theorem 3.10: Let the plant graph GP contain no iso-

lated node and at least one sink, the control graph GK be a

complete graph, and the design graph GC be a totally discon-

nected graph with self-loops. The control design method ΓΘ

is undominated by any other control design method Γ ∈ C
for plants in P .

Proof: See [8] for detailed proof.

As a final remark, we point out that for general weight

matrices Q and R appearing in the performance cost, the

competitive ratio of both Γ∆ and ΓΘ is 1+ σ̄(R)/(σ(Q)ǫ2).
In particular, the competitive ratio has a limit equal to one

as σ̄(R)/σ(Q) goes to zero. We thus recover the well-

known observation (e.g., [9]) that, for discrete-time linear

time-invariant systems, the optimal linear quadratic regulator

approaches the deadbeat controller in the limit of “cheap

control”.

IV. DESIGN GRAPH INFLUENCE ON ACHIEVABLE

PERFORMANCE

In the previous section, we have shown that communicat-

ion-less control design methods (i.e., GC is totally discon-

nected with self-loops) have intrinsic performance limita-

tions, and we have characterized minimal elements for both

the competitive ratio and domination metrics. A natural

question, then, is “Given plant graph GP , which design graph

GC is necessary to ensure the existence of Γ ∈ C with better

competitive ratio than Γ∆ and ΓΘ ?”. We tackle this question

in this section.
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Fig. 1. The floor plan of a half block of a student house in Sweden.
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Fig. 2. The plant graph GP of the system.

Theorem 4.1: Let the plant graph GP and design graph

GC be given. Assume that GP contains a path k → i → j,

for distinct nodes i, j, and k. If (j, i) /∈ EC , then rP(Γ) ≥
1 + 1/ǫ2 for all Γ ∈ C.

Proof: See [8] for detailed proof.

Corollary 4.2: Let both the plant graph GP and the

control graph GK be complete graphs. If the design graph GC

is not equal to the plant graph GP , then rP (Γ) ≥ 1 + 1/ǫ2

for all Γ ∈ C.

Proof: The proof is a direct application of Theorem 4.1.

Corollary 4.2 shows that, when GP is a complete graph,

achieving a better competitive ratio than the deadbeat design

strategy requires each subsystem to have full knowledge of

the plant model when constructing each subcontroller.

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate limited model information

control design through an example. Let us consider the prob-

lem of regulating the temperature in q different rooms. Let

us suppose that each room can be warmed by a single heater.

The goal is to maintain the temperature of each room at a

prescribed value. Let us denote the average temperature of

room i by x̄i. By applying Euler’s constant step discretization

scheme to the continuous-time model (both in time and

space), we obtain

x̄i(k+1) =
∑

j 6=i

aij(x̄j(k)− x̄i(k))+bi(x̄a− x̄i(k))+ui(k),

where x̄a is the ambient temperature, which is assumed to

be a known constant; bi and aij are constants representing

the average heat loss rates of room i to the ambient and to

room j, respectively. Applying a change of variable x(k) =
x̄(k)−xd around the vector of desired temperature xd results

in a dynamical equation in the form of Equation (1) with

B = I . In designing the controller, our aim is to minimize the

cost function in Equation (3) with cost matrices Q = R = I .

Note that when controlling the temperature in room i, the

temperature of room j 6= i may be measured, but the plant

model parameters bj and ajk for all k could be unknown.

Indeed, these parameters may depend on actions taking place

in the room (such as opening doors and windows, cooking

on a stove, etc...), which its owner may consider private and

be unwilling to share with the thermostat of other rooms.

Figure 1 shows the floor plan of a student house in

Sweden. The rooms are numbered from one to eleven.

The corridors and stairways are supposed to have x̄a as

ambient temperature. If two rooms are not adjacent, their

temperatures do not affect each other significantly, which

we can use to generate the corresponding plant graph. In

this particular problem, we have q = 11 rooms/subsystems

and each room’s dynamics is of dimension one. The plant

graph GP for this family of plants is shown in Figure 2.

There is no sink in the plant graph. Using Theorem 3.5 and

Theorem 3.6, we know that the deadbeat controller design

strategy is undominated and has the best competitive ratio.

Now suppose that room number six is a refrigerated cold

room that is perfectly isolated from all other spaces. This

refrigerator warms up other places proportionally to the

temperature difference, as it is cooling down room number

six. In this case, node number seven becomes a sink in the

new plant graph. Using Theorem 3.8 and Theorem 3.10,

we now know that controller design strategy ΓΘ in (17)

is undominated and it achieves the best cost ratio for this

problem.

VI. CONCLUSION

We presented a framework for the study of control de-

sign under limited model information, and investigated the

connection between the control performance achieved by a

design method and the amount of plant model information

available to it. We showed that the best achievable perfor-

mance by a limited model information control design method

crucially depends on the structure of the plant graph. Possible

future work will focus on extending the present framework

to situations where the control graph is not complete and to

plants with disturbances.
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