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Abstract—  Stable in vitro feedback control of cell 

behaviors using an observer to predict a cell’s future 

response to input cues based on real-time measurement 

of intracellular signaling molecules is presented. 
Biological cells, particularly mammalian cells, have a long 

latency time from receiving cues to producing output responses. 

Numerous steps of intracellular signal transductions are 

involved between cues and responses. This slow dynamics is a 

major obstacle for close-loop control based on measurement of 

the output response. This paper presents a promising approach 

to coping with the slow dynamics and forming a stable 

feedback loop. A molecular signaling observer and predictor is 

designed for estimating the intracellular state and predict the 

cell’s future response so that input cues can be accommodated 

proactively before observing the output response. First, a brief 

background description on relevant cell biology and in vitro 

micro-fluidics is provided, followed by the basic concept of 

molecular signaling observer and predictor. Cue-signal-

response processes are modeled as a time-delay system with 

noise dynamics. A k-step ahead predictor is obtained as a 

conditional mean, and a closed-loop control system is formed 

based on the future error of the predicted output response. 

Prediction error and its effect on control performance are 

analyzed. The method is applied to angiogenic endothelial cell 

sprouting and migration process. Numerical examples 

demonstrate the effectiveness of the method. 

I. INTRODUCTION 

ANI pulating cell behaviors via feedback control is 

one of the major contributions that the control 

community can make to the realm of biological engineering. 

The recent progress of in vitro technologies, including 

microfluidics, imaging, and synthetic biology, has allowed 

us to develop methodologies for manipulating and guiding 

cells under tightly regulated conditions. Endothelial cells 

(EC), for example, can be guided towards proper angiogenic 

sprouting via feedback control in microfluidic environment 
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[Wood, et al 2009]. It is known that accommodating input 

cues, e.g. growth factors and physical environment, can alter 

EC cell’s phenotype transition and migration behaviors. 

Coordinated control of these cues has the potential to 

manipulate the angiogenic sprouting process, leading to in-

vitro culturing of blood vessels, which will be a 

breakthrough in tissue engineering [Das et al, 2010; Wood et 

al, 2010-a].  

A challenge in forming a feedback loop in the proposed 

application is the cells’ long latency time. Specifically it 

takes a long time for a cell to respond to input cues. EC 

cells, for example, has a latency time on the order of hours.  

Several hours after changing a growth factor concentration, 

EC cells just begin to sprout out and migrate towards the 

source of grow factor. The cell’s sprouting and migration 

process can be monitored with an imaging system, and a 

feedback loop can be formed from the measurement of the 

sprout. Nonetheless, the long latency time hinders the 

feedback control based on the phenomenological cell 

observation. Before reaching the observable sprouting and 

migration, the cells make a number of intracellular state 

transitions along their signal transduction pathways. 

Changing the input cues after observing the 

phenomenological output response is basically too late to 

alter the course of cell behaviors. The cell might have made 

a decision to take a particular phenotype transition that 

would be propagated across the intracellular signaling 

pathway, which would appear as an output response a few 

hours later. Such slow internal dynamics may result in 

instability and unwanted oscillation, leading to failure of cell 

guidance and regulation. 

Understanding signaling pathways is crucial in cell 

biology, and the control community has been making 

significant contribution to dynamic modeling of signal 

transductions [Del Vecchio, 2010; Buzi et al, 2010; Motee et 

al, 2010].  

This paper presents feedback control of cue-signal-

response processes based on real-time measurement of key 

signaling molecules and a predictor to predict the cell’s 

future response from the signaling measurement. Despite 

slow dynamics, delay-free feedback loop will be constructed 

by evaluating the future error based on the prediction. The 

proposed method is general and is applicable to broad 

problems. However, the method will be presented in the 

context of angiogenic cell migration control for clarity and 

practicality. 
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II. BACKGROUND 

A. In Vitro Closed-Loop Control of Cell Migration  

      Cells migrate to create or repair a tissue construct, the 

process termed morphogenesis. Blood vessels, for example, 

are constructed as Endothelial Cells (EC) migrate to form a 

tubular network. In angiogenesis, Endothelial Cells sprout 

out from an existing blood vessel when exposed to growth 

factors, create a hole in the extracellular gel matrix, and 

extend the hole towards a higher growth factor 

concentration. The sprouting cell recruits other cells, guide 

them towards the hole, and fill the wall of the hole to make a 

functional lumen that transport blood. Coordinated migration 

must be regulated properly for successful vascular network 

formation. 

Recent progress in microfluidic device technology 

allows us to develop an in vitro experimental apparatus for 

culturing cells in 3-dimensional environment. See Fig.1.  

Unlike traditional on-the-gel 2-dimensional culturing, this 

new technology not only provides an in vitro environment 

that is closer to in vivo environment, but it also facilitates to 

closely observe cell behaviors, such as 3-D time-lapse 

images of angiogenic sprouting and migration, as well as to 

guide the cells by precisely delivering growth factors to the 

microfluidic chambers.  

 
Fig.1 Microfluidic device for angiogenic sprouting 

experiment 

 

Fig. 2 shows the confocal microscope image of a 

sprouting process of endothelial cells in a microfluidic 

chamber. It is observed that the extending sprout is led by a 

tip cell that creates a hole and recruits other cells to fill the 

wall. Fig.3 shows a closed-loop control system for guiding 

sprouting cells using the microfluidic device. Multiple 

growth factors are mixed and fed to the sprouting site 

through microfluidic channels filled with media. Vascular 

Endothelial Growth Factor (VEGF), the key growth factor 

for angiogenesis, is provided through two channels with 

different concentrations. VEGF diffuses to the gel between 

the two channels and thus creates a gradient of concentration 

across the gel region. Endothelial cells seeded on one side of 

the gel migrate towards the higher VEGF concentration. The 

author’s group has recently found that the velocity of the tip 

cell, which creates a hole in the gel matrix and which 

recruits and guides other cells, must be regulated properly in 

order to construct a successful blood vessel [Wood et al, 

2010-b]. Therefore, the specific objective of the feedback 

control system is to regulate the tip velocity by controlling 

the growth factor concentration. The tip cell velocity is 

observable in the microfluidic environment using cell tracker 

biomarker and confocal microscope. 

 

 
Fig.2 Confocal image of endothelial cell sprouting process 

 

 
Fig.3 Feedback control of sprouting process 

B. Signal Transduction Pathways and FRET Biosensors   

As described previously, the challenge in forming a 

closed-loop control is that the cell has a significantly long 

time delay in responding to changes to growth factors. After 

growth factors bind to specific receptors on the cell 

membrane, numerous steps of molecular signal transductions 

occur before reaching specific responses, such as cell 

migration. Fig.4 shows a simplified version of signal 

transduction pathways from VEGF receptor-2 leading to a 

series of intracellular remodeling and interactions with the 

extracellular matrix, which result in cell migration. Several 

authors have model this cue-signaling-response process. 

There are a few important properties to note in modeling the 

cue-signaling-response process: 

• Signaling path ways are highly redundant. Principal 

component analysis and other statistical methods have 

revealed that the cue-signal-response process can be 

approximated to a low-order model of 80~90% accuracy 

with just a few principal components. 

• Among a number of signaling molecules involved in 

the intracellular signal transductions, a much fewer number 
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of key molecules play critical roles that determine the cell 

behaviors. For example, Src contributes to cell protrusion 

and migration in many ways. Src can phosphorylate 

p130cas, which recruits Crk and DOCK180 through the 

interaction of SH3 domain on Crk and PXXP motif on 

DOCK180. DOCK180 subsequently binds to ELMO and 

activates Rac, which leads to the activation of 

Wave1/Scar1(Rodriguez, Schaefer et al. 2003).  Recent 

results indicate that Src can also directly phosphorylate 

Scar1(Ardern, Sandilands et al. 2006). Activated Scar1 can 

bind to and activate Arp2/3, which causes the branching 

growth of actin filaments and the formation of actin arcs 

adjacent to the plasma membrane (Rodriguez, Schaefer et al. 

2003). 

Signaling molecules represent the intracellular state. In 

particular, measurement of some key signaling molecules 

would allow us to identify the cell state and even predict a 

future state. 

 
Fig.4 Simplified molecular signaling pathways 

 

 Signaling molecules are in general difficult to measure 

in real-time. However, a recent breakthrough has been made. 

Effective biosensors to detect key signaling molecules, 

including Src, Rac, and FAK, have been developed [Ouyang 

et al, 2008]. The new technology uses Fluorescence 

Resonance Energy Transfer (FRET) for measuring 

interactions between two proteins and the functional 

activities of different enzymes. Fig.5 shows a time-lapse 

experiment result of the Src signaling molecule distribution 

in a live mammalian cell exposed to a step change of VEGF 

concentration detected by the FRET biosensor. Fig.6 shows 

the time lapse data of the FRET intensity of Src signaling 

molecule. The results indicate that these improved and 

highly sensitive biosensors can allow the monitoring and 

visualization of dynamic molecular events at subcellular 

levels. 

 
Fig. 5 FRET biosensor 

 
Fig.6 Step response of cell to VEGF 

III. MODELING 

 Fig.7 shows a simple cue-signal-response model 

considered in this paper. Let ( )u t be an input cue, such as 

VEGF concentration, that can be regulated with the 

microfluidic device as described previously. Let ( )y t be a 

scalar output response, such as tip cell velocity, to be 

controlled so as to follow a reference input ( )r t . Between 

the cue and the response there is a molecular signaling ( )s t

that is measurable in real-time. As described above, various 

species of signaling molecules have been measured with 

FRET biosensors. Although diverse FRET biosensors are 

usable for off-line system identification, use of multiple 

biosensors concurrently is not allowed. For real-time control 

we have to target one molecular signaling and use a specific 

biosensor to detect it in real-time. Therefore, the model in 

the figure consists of only one signaling variable ( )s t .  

 
Fig.7 Linear cue-signal-response model 
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  Experimental data are available for identifying the 

signaling dynamics in response to an input cue. Fig.6 shows 

a transient response of the Src biosensor to a step input cue 

of VEGF concentration. The data show that the transient 

response can be modeled as a linear system with a stable 

discrete time transfer function ( )SG q : ( ) ( ) ( )Ss t G q u t  , 

where q is time shift operator: ( 1) ( )u t qu t  .  

The dynamics of output response ( )y t to input signaling 

( )s t has not yet been identified. However, references show 

that the response can be approximated to a linear system 

within a limited range of operation [Asada, 2010; Janes et al 

2004]. In this paper we assume a linear transfer function 

( )RG q for the signal-response process. Characteristic to the 

signal-response process is a significantly long time delay. 

The transfer function ( )RG q contains k-time steps of time 

delay between input and output: 

( ) ' ( )k

R RG q q G q     (1) 

where ' ( )RG q is a time-delay free transfer function. 

 The main objective of this paper is to overcome the long 

time delay associated with the signal-response process. A 

prediction-based method will be presented in the following 

section to virtually eliminate the effect of time delay in 

closing the loop.  Prediction will be made based on signaling 

measurement ( )s t and the signal-response model subject to 

noise dynamics. As addressed in the literature [Das et al, 

2009; Wood et at, 2009], cell behaviors are stochastic. Even 

under tightly controlled conditions of in vitro microfluidic 

experiments, endothelial cell sprouting and migration exhibit 

significant diversity. Stochasticity is central to modeling and 

control of cell behaviors. Therefore, we include noise 

dynamics in the signaling-response process, as shown in 

Fig.7.  

Let ( )e t be an uncorrelated random process and ( )H q be a 

monic, inversely stable transfer function representing the 

noise dynamics: 

 
1

( ) 1 ( ) lH q h l q






   

The observed output response ( )y t is then given by 

 ( ) ( ) ( ) ( ) ( )Ry t G q s t H q e t   

 

IV. DELAY-FREE CLOSED LOOP CONTROL BASED ON 

PREDICTION 

Direct output feedback from observed ( )y t to input cue 

( )u t is likely to cause instability and oscillation due to the 

long time delay kq . The objective of this section is to 

develop an effective control algorithm to virtually eliminate 

the time delay based on k-time step ahead prediction. 

Prediction inevitably incurs some error. It is important to 

examine how such prediction error may degrade control 

performance. The following control law and its analysis will 

provide a time-delay free feedback control with limited 

prediction error, which can be attenuated with a proper 

predictor and feedback mechanism. 

Let ˆ( | )y t k t be k-step ahead prediction of output 

response based on output observation ( )y   and signaling 

observation ( )s   for 1 t  , and known input cues ( )u   

for 1 1t   ; 

 

ˆ( | )

( ) | ( ),1 1; ( ), ( ),1

y t k t

E y t k u t y s t    



     
 (4) 

In Fig.7 the output response consists of deterministic 

component ( ) ( ) ( )R SG q G q u t and a random process:  

 ( ) ( ) ( ) ( ) ( ) ( )Rv t H q e t y t G q s t           (5) 

which is a correlated (colored), zero-mean random process. 

Let ( )F q be a stable prediction filter to predict the k-step 

ahead value of ( )v t : 

 ˆ( | ) ( )[ ( ) ( ) ( )]Rv t k t F q y t G q s t          (6) 

The output prediction is then given by 

 
ˆ( | )

( ) ( ) ( ) ( )[ ( ) ( ) ( )]R S R

y t k t

G q G q u t k F q y t G q s t



  
  (7) 

where the first term ( ) ( ) ( )S RG q G q u t k includes only the 

input sequence at most up to time t-1 because of time delays 

involved in ( ) ' ( )k

R RG q q G q  as well as in ( )SG q , 

( ) ( ) ( ) ' ( ) ( ) ( )R S R SG q G q u t k G q G q u t  .      (8) 

 
Fig.8 Prediction based delay-free feedback control 

 

We construct the current input ( )u t based on the 

discrepancy between the k-step ahead reference ( )r t k and 

the predicted output response ˆ( | )y t k t . 

 ˆ( ) ( )[ ( ) ( | )]Cu t G q r t k y t k t            (9) 

where ( )CG q is a proper dynamic compensator. From (7) 

and (9), 

 

( ) ( )
( ) ( )

1 [ ( ) ( ) ( )] ( ) ( )

( ) ( ) ( )
( )

1 [ ( ) ( ) ( )] ( ) ( )

k

C S

k

R R s C

s C

k

R R s C

q G q G q
s t r t

q G q F q G q G q G q

G q G q F q
y t

q G q F q G q G q G q


 


 

  (10) 

From (1), the term ( )k

Rq G q  becomes a delay-free transfer 

function: '( )G q . Substituting (10) into (3) yields 

( )CKG q ( )SG q ( )RG q

( )H q

( )r t
( )r t k

( )e t

( )y t( )u t ( )s t+
_

+

+
kq

Predictor
ˆ( | )y t k t
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( ) ( ) ' ( )
( ) ( )

1 ( ) ( ) ' ( )

( ) ( ) ( ) ( )
1 ( ) ( )

1 ( ) ( ) ' ( )

S C R

S C R

S C R

S C R

G q G q G q
y t r t

G q G q G q

G q G q F q G q
H q e t

G q G q G q




 
   

 

  (11) 

 

Proposition Consider a cue-signal-response process with k-

step time-delay and correlated, zero-mean noise dynamics 

given by (3). The feedback control (9) based on the k-step 

ahead output prediction (7) has the following properties: 

a) The output response to reference input ( )r t is free of 

time delay with a transfer function given by: 

( ) ( ) ' ( )
( )

1 ( ) ( ) ' ( )

S C R

S C R

G q G q G q
R q

G q G q G q



       (12) 

where ' ( ) ( )k

R RG q q G q   has no time delay. ( )R q does 

not depend on the prediction filter ( )F q . 

b) If no prediction filter is used; ( ) 0F q  , the output 

response is perturbed 100% by the noise ( ) ( )H q e t

added to the output. With the prediction filter the 

output response error is attenuated to 

( ) ( ) ( ) ( )
( ) 1

1 ( ) ( ) ' ( )

S C R

S C R

G q G q F q G q
W q

G q G q G q
 


     (13) 

 
 The prediction filter is to be designed to suppress the 

noise. If the noise dynamic ( )H q is available, the filter can 

be optimized to minimize the conditional mean of prediction 

error [Ljung, 1999]. From (2), the k-step ahead correlated 

noise ( | )v t k t can be expressed by two terms: one 

depending on future random noise, ( 1), , ( )e t e t k  , and 

the other determined by already observed noise,

( ), ( 1),e t e t  . Therefore, 

 

 

 

1

0

1

ˆ( | ) ( | )

( ) [ ( )] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

k
k

k

k k R

v t k t E v t k t

h l E e t k l h l q e t l

H q e t H q H q y t G q s t

 

 



  

    

  

   (14) 

where 

 
0

( ) ( ) l

kH q h l k q






             (15) 

Therefore, the prediction filter is given by 

 1( ) ( ) ( )kF q H q H q             (16) 

where ( )H q is inversely stable. 

 In case the noise dynamic model is not available, a 

standard state observer using ( )y t and ( )s t can be built to 

estimate the state associated with the signal-to-response 

dynamics. Let A and C are an observable pair of state 

transition and observation matrices associated with the 

signal-to-response process, and L be an observer gain. The 

prediction filter is then given by 
1( ) ( )kF q CA qI A L   .          (17) 

 

V. SIMULATION EXPERIMENT 

 

The dynamics of the cue-signal process of an EC cell has 

been identified based on experimental data of the FRET 

biosensor [Ouyang et al, 2008]. The step response data of Fig.6  

was used for identifying the transfer function ( )SG q . It has been 

found that a second-order model can approximate the response with 

an excellent goodness of fit, 
2 0.985r  : 

 

1 2

1 2

0.08603 0.0786
( )

1 1.798 0.8476
S

q q
G q

q q

 

 




 
       (18) 

 
Fig. 9  Step response of delay-free feedback control based on k-step 

ahead predictor, 0.063, 3a K   

 

In this stage the signal-response process has not yet been 

identified. Instead it is assumed that it is given by the 

following form: 

 
1

( )
1

k

R

q
G q

aq







              (19) 

where 0 1a  . Simulation was performed for this delayed 

first order system. 
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Fig.10  Step response without prediction, 0.063, 3, 3a K k    

Fig.9 shows the step response of the prediction-based 

delay-free feedback control system. For simplicity, only a 

simple proportional control is used. The system is stable and 

converges quickly. In contrast, Fig. 10 shows the case 

without prediction-based control. Even with a short time 

delay, the system becomes oscillatory, and it becomes 

unstable as the feedback gain K and the delay time k 

increase. 
 

VI. CONCLUSION 

A new approach to in vitro closed-loop control of cell 

behaviors based on key signaling molecule measurement has 

been presented. A prediction-based control is developed to 

overcome a cell’s long time delay in signal-to-response 

dynamics. The effect of prediction error on the output 

response is analyzed based on noise dynamic model. An 

optimal prediction filter is also obtained from the noise 

dynamic model. 

 The author’s group is currently working on the 

identification of the cue-signaling-response process by using 

the FRET biosensors with a long term goal of closed loop 

control of angiogenic sprouting processes. 

REFERENCES 

[Ardern st al, 2006] 

Ardern, H., E. Sandilands, et al. (2006). "Src-dependent 

phosphorylation of Scar1 promotes its association with the 

Arp2/3 complex." Cell Motil Cytoskeleton 63(1): 6-13. 

[Asada, 2010] 

Asada, H., “Reduced-Order Cue-Signal-Response Modeling for 

Angiogenic Cell Migration Control: A Principal Signal 

Approach”, Proceedings of 2010 ASME Dynamic Systems and 

Control Conference, Cambridge MA, September 2010. 

 [Buzi et al, 2010] 

Buzi, G, Topcu, U, Doyle, J., “Quantitative Nonlinear Analysis 

of Autocatalytic Networks with Applications to Glycolysis”, 

Proceedings to 2010 American Control Conference, pp.3592-

3597, July 2010. 

[Das et al, 2009] 

Das, A., Lauffenburger, D., Asada, H., and Kamm, R., “A 

Hybrid Continuum–Discrete Modeling Approach to Predict and 

Control Angiogenesis: Analysis of Combinatorial Growth Factor 

and Matrix Effects on Vessel-Sprouting Morphology”,  

Philosophical Transactions of the Royal Society A: 

Mathematical, Physical, and Engineering Sciences, vol. 368, no. 

1921, pp. 2937-2960, June 2010 

 [Del Vecchio, 2010] 

Del Vecchio, D., “The Impact of Retroactivity on the 

Input/Output Static Characteristics of a Signaling Components”, 

Proceedings of 2010 ASME Dynamic Systems and Control 

Conference, September 2010. 

[Janes et al, 2004] 

Janes, K., Kelly, J.R., Gaudet, S., Albeck, J.G., Sorger, P.K., and 

Lauffenburger, D., 2004. “Cue-Signal-Response Analysis of 

TNF-Induced Apoptosis by Partial Least Square Regression of 

Dynamic Multivariate Data”, Journal of Computational Biology, 

11(4), pp.544-561. 

[Ljung, 1999] 

Ljung, Lennart, “System Identification: Theory for the User, 

Second Edition”, Prentice-Hall, 1999. 

 [Motee, et al, 2010] 

Motee, N, Bamieh, B., Khammash, M., “Stability Analysis of a 

Class of Biologica Network Models”, Proceedings of 2010 

American Control Conference, pp.5939-5941, July 2010. 

[Ouyang et al, 2008] 

ouyang, M., Sun, J., Chien, S., and Wang, Y., “Determination of 

Hierarchical relationship of Src and Rac at Subsellular Locations 

with FRET Biosensors”, Proceedings of the National Academy 

of Sciences (PNAS), Vol.105, No.38, pp.14353 – 14358, 2008. 

[Rodriguez  et al, 2003] 

Rodriguez, O. C., A. W. Schaefer, et al. (2003). "Conserved 

microtubule-actin interactions in cell movement and 

morphogenesis." Nat Cell Biol 5(7): 599-609. 

 [Wood et al, 2009] 

Wood, L., Das, A., Kamm, R. and Asada, H., “A Stochastic 

Broadcast Feedback Approach to Regulating Cell Population 

Morphology for Microfluidic Angiogenesis Platforms”, IEEE 

Transactions on Biomedical Engineering, Vol.56, Issue 9, Part 2, 

pp.2299-2303, September, 2009 

 [Wood et al, 2010-a] 

Wood, L., Kamm, R., and Asada, H., “Stochastic Modeling and 

Identification of Emergent Behaviors of an Endothelial Cell 

Population in Angiogenic Pattern Formation”, accepted for 

publication in the International Journal of Robotics Research, 

Special Issue on Stochasticity in Robotics and Biological 

Systems, September 2010 

[Wood et al, 2010-b] 

Wood, L., Kamm, R., and Asada, H., “Time Lapse Observation-

Based Modeling and Identification of Cell Behaviors in 

Angiogenic Sprout Development”, Proceedings of 2010 ASME 

Dynamic Systems and Control Conference, Cambridge MA, 

September 2010. 
 

 

Y
(t

) C
lo

se
d

-l
o

o
p

 T
ra

n
sf

er
 F

u
n

ct
io

n
 

Time(min)

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

 (sec)

2319


