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Abstract— Motivated by the distributed control of fleets
of identical linear subsystems, we consider the stability of
block upper-triangular switched linear systems with switching
delay, when switching between stable modes. Proving globally
uniformly asymptotic stability (GUAS) of a switched block
upper-triangular linear system can be reduced to proving
GUAS for each of its block diagonal subsystems. We derive a
scalable LMI-based test for GUAS under arbitrary switching,
with complexity linearly dependent on the number of block
diagonal elements of the system. If the system is not GUAS
under arbitrary switching, we partition the state-space into
regions in which switching will preserve GUAS despite a delay
between the state measurements and switching time. Although
we tailor these results to block upper-triangular switched linear
systems, they are applicable to any switched linear system with
switching delay. Two examples include control of a formation
of identical vehicles under supervisory discrete control, and a
switched linear system under remote control.

I. INTRODUCTION

We consider stability of switched linear systems [1],
[2], [3] with application to distributed control of identical
subsystems, motivated by problems in large decentralized
systems such as military battle systems with heterogeneous
autonomous fighters, formation flight in uncertain environ-
ments, or distributed power systems. Many systems under
distributed control cannot be described through continuous
state-space models alone – discrete modes may characterize
distinct modes of operation, or may arise from the use
of a hybrid controller (e.g., one which has both a fast
response time and good noise rejection properties [4], a key
property for many real-world systems). However, without
efficient computational tools to analyze and control switched,
distributed systems, the potential performance and robustness
benefits of these advanced control techniques cannot be
exploited.

We focus on proving GUAS of distributed systems under
cooperative control in which each subsystem is a switched
linear system. Distributed systems comprised of identical
subsystems under cooperative control can be transformed to
have a block upper-triangular structure [5], [6]. Recent work
in vehicle formation control [5], [6], [7], [8], consensus and
swarming [9], [10], [11], mobile sensor networks [12], [13],
[14], control over uncertain channels [15], [16], [17], and
optimal control [18], [19], all under topological constraints,
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assume that the dynamics of each subsystem can be repre-
sented by a continuous system. We extend techniques from
[5], [6] to prove stability of distributed systems with switched
linear subsystem dynamics.

While finding a global quadratic Lyapunov function
(GQLF) to prove global uniform asymptotic stability
(GUAS) under arbitrary switching, or finding a piecewise
quadratic Lyapunov function (PQLF) to prove GUAS under
switching constraints, can be accomplished by solving a set
of Linear Matrix Inequalities (LMIs) [2], [20], for distributed
systems (such as a formation of hundreds of vehicles), this
approach may be computationally infeasible. Solving LMIs
is typically fast and efficient, however for systems with very
high dimension an unreasonable amount of memory may be
required.

To preserve block upper-triangular structure, we assume
that the continuous controllers are implemented in a dis-
tributed manner, whereas mode switches are dictated by a
centralized, supervisory discrete controller. We show that
proving GUAS under a given switching scheme for block
upper-triangular systems is equivalent to proving GUAS
for each of its block diagonal subsystems under this same
switching scheme. In cases in which a system is only
GUAS under constrained switching, we synthesize state-
based constraints for switching which guarantee GUAS de-
spite a switching delay. This switching delay could model
communication delays inherent to most distributed systems.

Our main contributions are 1) a scalable, computation-
ally efficient test for GUAS under arbitrary switching of
block upper-triangular systems, 2) a proof that for state
constraint-based switching, only that subset of the state
space corresponding to the block diagonal subsystems that
are not GUAS under arbitrary switching need to be taken
into consideration, and 3) a method of synthesizing state
constraints that guarantee GUAS despite a switching delay.

In this paper, Section II presents the problem formation. In
Section III, we show that a block upper-triangular switched
linear system is GUAS under a given switching scheme if
and only if each of its block diagonal subsystems is GUAS
under that switching scheme as well. Section IV presents
a method for synthesizing state constraints that guarantee
GUAS despite a switching delay. Section V provides two
examples: 1) cooperative control of a large vehicle formation
under discrete supervisory control and 2) remote supervisory
control of a switched linear system. Section VI provides
conclusions and directions for future work.
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II. PROBLEM FORMULATION

Consider a fleet of N identical vehicles in which the
three position variables are decoupled, and the acceleration
in each direction is controlled separately. We can thus limit
our analysis without loss of generality to vehicles moving in
one dimension. The ith vehicle’s dynamics are given by

ẋi = Axi +Bui (1)

with xi ∈ R2, ui ∈ R, and A =

[
0 1
0 0

]
, B =

[
0
1

]
.

Furthermore assume a local full-state feedback controller
is implemented on each vehicle such that the closed loop
dynamics Acl of the individual vehicles are stable.

The formation dynamics of a fleet of linear vehicles with
dynamics (1) can be described by [5], [6]

ẋ = (IN ⊗Acl + L⊗BK)x (2)

for which IN is the N × N identity matrix, ⊗ denotes
the Kronecker product, x = [xT1 , x

T
2 , · · · , xTN ]T ∈ R2N ,

K ∈ R1×2 is the linear formation feedback controller,
identical for all vehicles, and L ∈ RN×N is the graph
Laplacian describing the fixed communication topology of
the formation. Consider the case in which a supervisory logic
controller switches the linear formation feedback controller
of all of the vehicles according to a piecewise constant
switching signal σ : [0,∞)→ P ⊂ N, such that K = Kσ .

Applying the transformation T = U ⊗ I2 to (2), with
a Schur transformation matrix U as in [5], [6], such that
L̃ = U−1LU is upper triangular and the diagonal entries of
L̃ are the eigenvalues of L, results in a block upper-triangular
system in the transformed coordinates x = T−1x.

ẋ = (IN ⊗Acl + L̃⊗BKσ)x (3)

We assume that Kp has been chosen such that (7) is Hurwitz
for all p ∈ P and all eigenvalues of L.

More generally, consider a switched linear system

ẋ = Mσx (4)

with x ∈ Rn, σ : [0,∞) → P ⊂ N a piecewise constant
switching signal, and M := {Mp ∈ Rn×n : p ∈ P}
a family of block upper-triangular Hurwitz state matrices
indexed by p.

Definition 1: A family of block upper-triangular state
matrices is denoted M := {Mp ∈ Rn×n : p ∈ P ⊂ N},
indexed by p. The state matrix

Mp =


A1
p X12 · · · X1N

0 A2
p · · ·

...
...

...
. . . X(N−1)N

0 0 · · · ANp

 (5)

consists of square blocks Aip ∈ Rni×ni ,
N∑
i=1

ni = n,

i ∈ {1, ..., N}, and non-zero, off-diagonal elements Xij

of appropriate dimension. For Ai := {Aip ∈ Rni×ni :
p ∈ P}, xi ∈ Rni the corresponding subset of the state

vector x ∈ Rn, and σ(·) : [0,∞)→ P a piecewise constant
switching signal,

ẋi = Aiσxi (6)

is the ith block diagonal subsystem of the switched linear
system (4).

For the vehicle formation (3), the block diagonal subsys-
tems (6) are

ẋi = (Acl + λiBKσ)xi (7)

with λi an eigenvalue of L.
Definition 2: (From [2].) The system (4) is globally uni-

formly asymptotically stable (GUAS) under Σ∗, a set of
piecewise constant switching signals, if there exist constants
c, µ > 0 such that the solution x(t) = Φσ(t, 0)x(0) with state
transition matrix Φσ(t, 0) satisfies the equivalent conditions

‖x(t)‖ ≤ ce−µt‖x(0)‖
‖Φσ(t, 0)‖ ≤ ce−µt

(8)

for all t ≥ 0, any initial state x(0), and any switching signal
σ(·) ∈ Σ∗.

Remark 1: For Σ∗ = {p}, p ∈ P , (i.e. σ(t) ≡ p),
Definition 2 is equivalent to GUAS of a linear system.

Remark 2: For Σ∗ the set of all piecewise constant switch-
ing signals, (4) is GUAS under arbitrary switching.

For distributed systems under cooperative control, block
diagonal subsystems (6) have the same number of states as
the individual subsystems. Thus, an approach for proving
the stability of (4) by solely analyzing its block diagonal
subsystems would be highly scalable, as its complexity
would be linear in the number of subsystems.

In addition, communication and other types of delays are
often present. Delays can arise from a remote supervisory
discrete controller (such as a human operator triggering
mode changes) receiving delayed measurements, or the time
required to synchronize a simultaneous mode switch amongst
several subsystems. Consequently, we assume that there is
a switching delay TD between the state measurements and
switching time – the discrete controller will only have access
to a delayed state measurement x(τ − TD). If (4) is not
GUAS under arbitrary switching, it is of interest to determine
whether a switching scheme robust to a delay between state
measurements and switching time, or a switching delay, can
be developed.

Problem 1: Given a switched linear system (4), synthesize
a state constraint-based switching scheme which preserves
GUAS despite a switching delay, by analyzing the stability
of its block diagonal subsystems (6).

Sub-problem 1: Show that a switched linear system (4) is
GUAS for a given set of switching signals by analyzing the
stability of its block diagonal subsystems (6).

In solving these problems, we obtain a scalable method
of guaranteeing GUAS of a switched linear system (4) in
a manner that is robust to a switching delay. We begin by
addressing Sub-problem 1, and then use these results to solve
Problem 1.
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III. STABILITY UNDER ARBITRARY SWITCHING

A switched linear system (4) withM a family of Hurwitz
upper-triangular state matrices is GUAS under arbitrary
switching [2], [21], [22], [23]. We extend these results to the
case whereM is a family of Hurwitz block upper-triangular
systems, and prove that (4) is GUAS under a given switching
scheme if and only if each block diagonal subsystem of (4)
is also GUAS under this switching scheme.

With ||H|| := max
x6=0

||Hx||
||x||

for H ∈ Rm×n, x ∈ Rn, we

have ||Hx|| ≤ ||H|| · ||x||. Recall that for a linear system
ẋ = Ax+Bu with Hurwitz matrix A, the system is GUAS if
the input u is exponentially decaying, i.e. there exist positive
constants c, µ satisfying ||u(t)|| ≤ ce−µt||u(0)||.

Theorem 1: A switched linear system (4) is GUAS under
a set of piecewise constant switching signals Σ∗, if and only
if each block diagonal subsystem (6) is GUAS under Σ∗.

Proof: Assume without loss of generality that

Mp =

[
A1
p Bp

0 A2
p

]
(9)

with Aip ∈ Rni×ni , n1 + n2 = n, Bp ∈ Rn1×n2 , and x =
[xT1 , x

T
2 ]T , with x1 ∈ Rn1 , x2 ∈ Rn2 .

If : Assume ẋ1 = A1
σx1 and ẋ2 = A2

σx2 GUAS under Σ∗,
then from Definition 2, ‖x2(t)‖ ≤ c2e−µ2t‖x2(0)‖, ∀σ(·) ∈
Σ∗ for some c2, µ2 > 0. Treating x2 as an exponentially
decaying input to x1,

x1(t) = Φ1
σ(t, 0)x1(0) +

∫ t
0

Φ1
σ(t, τ)Bσ(τ)x2(τ)dτ

(10)
with ‖Φ1

σ(t, τ)‖ ≤ ae−µ(t−τ), ∀σ(·) ∈ Σ∗, for a, µ > 0,
from Definition 2. Since ‖Bσ(τ)‖ ≤ max

p∈P
‖Bp‖ := ‖Bmax‖,

‖x1(t)‖ ≤ ‖Φ1
σ(t, 0)‖ · ‖x1(0)‖

+ ‖Bmax‖
∫ t
0
‖Φ1

σ(t, τ)‖ · ‖x2(τ)‖dτ
≤ c1e

−µ1t‖x1(0)‖, ∀σ(·) ∈ Σ∗

(11)
for c1, µ1 > 0, hence (4) is GUAS under Σ∗.

Only if: Assume (4) is GUAS under Σ∗, then by Definition
2, there exist c, µ > 0 such that ‖x(t)‖ ≤ ce−µt. This
holds for x(t) if and only if it holds for all subsets xi(t) of
x(t). If there do not exist positive constants ci,µi, satisfying
‖xi(t)‖ ≤ cie

−µit‖xi(0)‖ ∀σ(·) ∈ Σ∗ for i = {1, 2}, then
c, µ do not exist, resulting in a contradiction.

An extension to N block upper-triangular matrices of
arbitrary dimension proceeds by induction, beginning with
the bottom block diagonal subsystem.

Corollary 1: A switched linear system (4) is GUAS un-
der arbitrary switching if and only if each block diagonal
subsystem (6) is GUAS under arbitrary switching.

Consider a P mode, N block system (4), with each sub-
system (6) of dimension n. Analysis of (4) as a whole would
involve solving P + 1 LMIs – P to ensure stability of each
mode, and one to ensure positive definiteness of the decision
variable – in RNn×Nn. For large N this quickly becomes
prohibitively expensive in terms of memory requirements.
However, applying Corollary 1, we solve N sets of (P + 1)
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Fig. 1. Number of decision variables required by Matlab’s LMI toolbox to
solve an LMI to prove GUAS under arbitrary switching for a) a two mode
distributed system with 100 subsystems (4) of total dimension 100n, and
b) a single block diagonal two mode subsystem (◦) of dimension n, for
n ∈ {2, · · · , 10}.

LMIs in Rn×n, each easily computed. Figure 1 depicts the
number of decision variables Matlab’s LMI toolbox requires
to prove GUAS under arbitrary switching for a full system, as
opposed to for an individual subsystem. Clearly, lowering the
dimension of the matrices involved has a significant impact
on the number of decision variables required to solve the
LMI.

The derivation of Theorem 1 and Corollary 1 hinges on
three key assumptions: (1) a fixed communication topology,
(2) all vehicles are identical at all times and (3) all vehicles
have linear dynamics. These assumptions are required to
preserve the properties of Kronecker multiplcation so that
the system can be transformed into block upper-triangular
form. If the communication topology changes, then the graph
Laplacian will as well, requiring a new coordinate transfor-
mation to apply Theorem 4. However, if the communication
topology is fairly reliable, this should not cause instability
– so long as topology changes do not occur too quickly,
a dwell time argument [24] can be used to show that this
will not destabilize the system. Once the new communication
framework has been established, our results can once again
be applied to prove GUAS under arbitrary switching.

IV. STABILITY UNDER STATE CONSTRAINED SWITCHING
WITH SWITCHING DELAY

Suppose that no GQLF can be found for one or more of
the block diagonal subsystems. By Theorem 1, if a switching
scheme can be generated such that these block diagonal
subsystems (6) are GUAS under constrained switching, then
(4) will be GUAS under constrained switching as well.
Hence, only that subset of the state-space corresponding to
the block diagonal subsystems that are not GUAS under
arbitrary switching need to be taken into consideration,
potentially simplifying implementation and relaxing switch-
ing restrictions as compared what would be required from
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analysis of the entire system. However, in contrast to Section
III, the switching delay must be explicitly accounted for.

Consider the ith block diagonal subsystem (6), and for
ease of notation, omit the i (sub)superscript. For each mode
p ∈ P , let Vp(x) = xTPpx be the associated Lyapunov
function, with x ∈ Rn and Pp = PTp > 0 is real valued.
Additionally define Qp(q) := −(ATq Pp+PpAq) to track the
evolution of the Lyapunov function in mode q while σ(t) =
p. Note that Qp(q) = QTp (q) for all p, q ∈ P .

Theorem 2: Consider a delay free switched system (6).
Let Σ∗ be the set of all piecewise constant switching signals
σ(·) : [0,∞)→ P for which

Vσ(τ−)(x)− Vσ(τ)(x) > 0 (12)

for each switching time τ (where τ− := limt↑τ t). Then (6)
is GUAS under Σ∗.

Proof: As in [25], Theorem 2.7.

A. Stability despite switching delay

To determine whether (12) will be violated if a mode
switch occurs at time τ , we bound the possible variations in
Lyapunov functions during the switching delay, and define a
set of switching signals ΣTD such that (6) is GUAS under
ΣTD despite the switching delay TD.

Lemma 1: For a switched system (4), assume that σ(t) ≡
p for t ∈ [τ − TD, τ), τ ≥ TD. Then there exists ci, µi > 0
such that for all t ∈ [τ − TD, τ),

‖xi(t)‖ ≤ cie−µi(t−(τ−Td))‖xi(τ − TD)‖ (13)

for any xi corresponding to the ith block diagonal subsystem.

Proof: Consider ‖[xTi+1, ..., x
T
N ]T ‖ an exponentially

decaying input to ẋi, and apply Remark 1.

Theorem 3: Let ΣTD be the set of piecewise constant
switching signals σ(·) : [0,∞) → P such that, for each
switching instant τ , x(τ − TD) ∈ S(σ(τ−), σ(τ)), where

S(p, q) :=
{
x ∈ Rn :

xT (Pp−Pq)x
‖x‖2 > γ(q, p)

}
, (14)

γ(p, q) = Θ(p) · Λ(p, q) (15)

with Θ(p) =
c2p
2λp

(1 − e2λpTD ), Λ(p, q) = λmax(Qp(p)) −
min(0, λmin(Qq(p))), and cp, λp > 0 are constants deter-
mined by Definition 2 for mode p. Then (6) is GUAS under
ΣTD .

Proof: By Theorem 2, a sufficient condition for σ(·) ∈
Σ∗ is that for all τ with σ(τ−) = p and σ(τ) = q,

Vp(x(τ))− Vq(x(τ)) > 0 (16)

We show that ΣTD ⊆ Σ∗ by finding a lower bound for
(16) given only x(τ − TD), and partitioning the state space
accordingly. Since

Vp(x(τ)) = Vp(x(τ − TD)) +
∫ τ
τ−TD

V̇p(x(t))dt

= Vp(x(τ − TD))−
∫ τ
τ−TD

xT (t)Qp(p)x(t)dt
(17)

and λmin(Qp(p)) > 0, and by the Courant-Fischer theorem
λmin(Qp(p))‖x‖2 ≤ xTQp(p)x ≤ λmax(Qp(p))‖x‖2, we
obtain obtain a lower bound

Vp(x(τ)) ≥ Vp(x(τ − TD))
−
∫ τ
τ−TD

λmax(Qp(p))‖x(t)‖2dt
≥ Vp(x(τ − TD))

−Θ(p)λmax(Qp(p))‖x(τ − TD)‖2
(18)

using Lemma 1. Similarly, to find an upper bound,

Vq(x(τ)) = Vq(x(τ − TD))−
∫ τ
τ−TD

xT (t)Qp(q)x(t)dt

≤ Vq(x(τ − TD))
−
∫ τ
τ−TD

λmin(Qp(q))‖x(t)‖2dt
(19)

If λmin(Qp(q)) < 0, the integral term is positive, and we
use the upper bound for ‖x(t)‖ given by Lemma 1 to obtain
a result similar to (18). However, if λmin(Qp(q)) ≥ 0, the
integral term is negative, and we require a lower bound for
‖x(t)‖ to further bound (18). In general, such a lower bound
is unavailable, but can be conservatively approximated as 0.
Hence an upper bound for (19) is

Vq(x(τ)) ≤ Vq(x(τ − TD))−Θ(p)Γ(p, q)‖x(τ − TD)‖2
(20)

with Γ(p, q) = min(0, λmin(Qp(q))). Combining (18), (20),
and (16),

Vp(x(τ − TD))− Vq(x(τ − TD)) > γ(q, p) · ‖x(τ − TD)‖2
(21)

Defining S(p, q) as the subset of Rn where (21) holds, we
obtain (14). For any piecewise constant switching signal
σ(·) ∈ ΣTD , we have σ(·) ∈ Σ∗, thus ΣTD ⊆ Σ∗.

The sets S(p, q) thus partition the state-space into regions
where switching from mode p to mode q will not violate
(12) despite a switching delay TD.

Remark 3: For λmin(Pp − Pq) > γ(p, q), S(p, q) = Rn.
Similarly, for λmax(Pp − Pq) < γ(p, q), S(p, q) = ∅. By
computing the minimum (maximum) eigenvalues before-
hand, it can quickly be determined if a given mode switch
at time t = τ will always (never) be guaranteed to maintain
GUAS despite a switching delay. Finally, if TD = 0, then
γ(p, q) = 0 and S(p, q) corresponds to a partitioning of the
state-space according to (12).

V. EXAMPLES

A. Cooperative control of vehicle formations

Recall the fleet of vehicles (3) with block diagonal sub-
systems (7) under arbitrary switching. Applying Theorem
1, LMI solvers can be employed on the block diagonal
subsystems, rather than to the entire system, to show GUAS
under arbitrary switching. For a P mode system, we have
thus reduced the problem to N sets of P + 1 LMIs in R2×2

as opposed to P + 1 LMIs in R2N×2N .
1) Five vehicle fleet: Consider a five vehicle system with

Acl =

[
0 1
−1 −1

]
K1 = [−20 − 5]
K2 = [−4 − 6]

(22)
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Fig. 2. Simulation results for the five vehicle system given by (3), (22)
and Laplacian (23), with mode switches occurring according to the arbitrary
switching signal σ shown in the bottom plot. By Corollary 1, GUAS under
arbitrary switching for (3) was proven by showing GUAS under arbitrary
switching for each block diagonal subsystem (7). Shown are the position
(top plot, solid) and velocity (top plot, dashed) variables of each of the
vehicles.

and

L =


4 −1 −1 −1 −1
0 2 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 0 2

 (23)

switching randomly between K1 and K2. The block diagonal
subsystems are given by (7), with λi ∈ {3.0108, 4.6180,
4.6180, 2.3819, 2.3819}. For each of the five block diagonal
subsystems, a GQLF was found by solving three LMIs in
R2×2 to obtain a symmetric positive definite matrix Pi.

P1 =

[
88.8184 −27.8822
−27.8822 64.5339

]
P2 = P3 =

[
0.0041 −0.0099
−0.0099 0.0831

]
P4 = P5 =

[
1.6822 −3.3996
−3.3996 22.0348

] (24)

By Corollary 1, the GQLFs V i(xi) = xTi Pixi, i ∈
{1, · · · , 5} prove GUAS under arbitrary switching for the full
10-dimensional system. Figure 2 shows simulation results
(top plot) for an arbitrary switching signal (bottom plot).

2) 100 vehicle fleet: Consider a 100 vehicle system with
the same Acl, K1 and K2 as in (22). The Laplacian L (not
presented) is normalized such that all of its eigenvalues lie
within a disk of radius 1 centered at 1 + 0j in the complex
plane (cf. Proposition 2 in [5]), and strongly connected such
that its zero eigenvalue is simple (cf. Proposition 3 of [5]),
a necessary condition for the stability of such systems. For
both K1 and K2, the block diagonal subsystems given by
(7) are stable for all eigenvalues of L.

Solving three LMIs in R200×200 in Matlab was not pos-
sible on a dual core 2.40Ghz Intel-based machine with 4GB
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4
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Fig. 3. In (x1, x2) coordinates, for (26) with time delay TD = .01s, sets
S(1, 2) (white) and S(2, 1) (black) in which safe switching is allowed, and
S(1, 2)c

⋂
S(2, 1)c (grey), the set in which switching may cause instability.

RAM due to the dimensionality of the system and ensuing
memory requirements. Exploiting Corollary 1, we solve 100
sets of three LMIs to obtain a GQLF for each block diagonal
subsystem and prove GUAS under arbitrary switching. The
LMIs solved are in R2×2 for block diagonal subsystems for
which λi is real, and are in R4×4 when λi is complex.

B. Remote Supervisory Control of a Switched Linear System

Consider the following two mode switched linear system,
modified from [25],

ẋ = Aσx (25)

with switching delay TD = 0.01 s, and A := {A1, A2} with

A1 =

[
−.1 1
−10 −.1

]
A2 =

[
−.1 10
−1 −.1

]
(26)

Applying the Converse Lyapunov theorem, it can be shown
that no GQLF exists for this switched linear system. Accord-
ing to Theorem 3, we partition the state space into regions
S(1, 2) and S(2, 1), which provide switching restrictions to
maintain GUAS despite a switching delay. Figure 3 shows
S(1, 2) (white), S(2, 1) (black), and S(1, 2)c

⋂
S(2, 1)c

(grey), the subset of the state-space in which switching may
cause instability. Figure 4 shows a trajectory in the phase
space generated by system (26), switching according to a
signal σ(·) ∈ ΣTD , with subsets of the trajectory evolving
according to ẋ = A1x plotted in black (dark), and those
evolving according to ẋ = A2x plotted in cyan (light).

VI. CONCLUSION AND FUTURE WORK

Motivated by problems in distributed systems such as
fleets of remotely supervised vehicles, we consider switched
linear systems with switching delay. Communication delays
and human response time could potentially destabilize the
system, hence this paper presents an attempt to compensate
a priori, in the design stage, for potential delays in large
distributed systems.
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Fig. 4. Trajectory in the phase space generated by system (26), switching
according to a signal σ(·) ∈ ΣTD , with subsets of the trajectory evolving
according to ẋ = A1x plotted in black (dark), and those evolving according
to ẋ = A2x plotted in cyan (light).

We exploited the structure of block upper-triangular
switched linear systems to show that a system is GUAS under
a given switching scheme if and only if each of its block
diagonal subsystems is GUAS under this switching scheme
as well. As a consequence, only the subset of the state space
corresponding to the block diagonal subsystems that are
not GUAS under arbitrary switching need to be considered
when synthesizing state constraint based switching signals. A
scalable, computationally efficient LMI-based test for GUAS
under arbitrary switching enables proofs of stability for large
systems (e.g., 100 vehicles). In the case in which a common
quadratic Lypaunov function does not exist for one or more
subsystems, we presented a method of determining state
constraints to ensure GUAS despite a switching delay.

The case of addressing fleets of either non-identical or
nonlinear systems is much more difficult, and one potential
avenue of future work. The properties of the Kronecker
product break down, and the system can no longer be
transformed into block upper-triangular form, although some
preliminary results based on Lyapunov and optimal control
theory do exist. We also hope to consider the restriction
of simultaneous mode switches among subsystems, as in
real-world applications this may prove to be an unrealistic
assumption.
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