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Abstract—The present paper proposes a sliding mode ob-
server (SMO) for detection and isolation of actuator faults
for a class of uncertain nonlinear systems (Lipschitz nonlinear
systems). The sufficient condition of stability of the proposed
SMO has been derived and expressed as Linear Matrix Inequal-
ities (LMIs). The design parameters of the proposed SMO are
determined by using LMI techniques. The constraint of the
switching gain has been determined such that the proposed
SMO satisfies the reachability condition. Then the equivalent
output error injection is employed to reconstruct the actuator
fault based on the structure of the uncertainty. The effectiveness
of the proposed SMO in reconstructing actuator fault has been
illustrated considering an example of a single-link flexible joint
robot system and has been found to be satisfactory even with
the presence of sensor noise.

I. INTRODUCTION

Fault detection and isolation (FDI) has received consid-

erable attention during the last two decades and the related

literature can be found in [1]–[4] and the references there in.

The approaches of FDI developed in the past can essentially

be grouped into two main categories such as: signal-based

FDI and model-based FDI. Signal-based FDI approaches

employ statistical operations on the measurements or train

some artificial network to extract the information regarding

faults. The model-based FDI approaches generally compare

the actual system’s behavior with the predicted or esti-

mated behavior based on its mathematical model [5]–[8].

The difference of these behaviors, referred to as residuals

are very sensitive to any faults and therefore being used

for fault detection. An alarm is triggered when the actual

process behavior deviates from its expected behavior; more

precisely, when the residuals exceed some predefined thresh-

olds. However, due to the high dependence of the residual

generation FDI to the corresponding mathematical models,

any discrepancies between the actual process and its model

can cause a misleading alarm, which often make the FDI

ineffective.

One of the method to deal with the system uncertainty

is to use the idea of sliding mode techniques. Sliding mode

theory has been recognized as a promising robust control

approach to confront uncertain or perturbed systems [9]–

[11]. Several authors have reported sliding mode observer

design methods. In [10], a discontinuous observer strategy

has been used where the error between the estimated and

measured outputs is forced to exhibit a sliding mode and
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measurement noise effects are reduced. Walcott and Zak

used a Lyapunov-based approach to formulate an observer

design where asymptotic stability can be obtained under

certain assumptions in the presence of bounded nonlinearities

or uncertainties [12]. Early work of applying the SMO for

FDI was shown in [13] where a sliding mode observer

approach is considered with the assumption that the states

of the system are available. Hermans and Zarrop attempted

to design an observer such that in the presence of a fault the

sliding motion was destroyed [14]. However, the observer

proposed in [15], which is similar to that of [12] can maintain

the sliding mode even after the presence of faults. The

actuator fault can therefore be reconstructed by the so-called

equivalent output injection under certain conditions. Later it

was extended to sensor fault reconstruction in [16]. Notice

that the precise fault reconstruction shown in [15] and [16]

was only for linear systems without uncertainties. When

there are uncertainties, [17] provides a method to reconstruct

faults for linear systems. It should be emphasized that the

above work only consider linear systems. For nonlinear

systems, the synthesis and computation of the switching

gain of the SMO are much more difficult. In [18], an

actuator fault detection and isolation scheme for a class of

nonlinear systems with certain uncertainties was considered.

[19] designed an adaptive method to update the sliding mode

observer gain for counteracting uncertainty, so the upper

bound of the uncertainty was not needed. In [20], a bank

of observers were designed to isolate actuator faults for both

linear and nonlinear systems. LMI techniques were used in

[21] to design the SMO for a class of nonlinear systems with

uncertainties.

In this paper, a different type of observer, based on prin-

ciples of sliding mode has been proposed for reconstruction

of actuator faults for nonlinear Lipschitz systems. The main

contribution of the present work are the following: 1. The

discontinuous switching component which induces a sliding

motion and has been used for linear systems in [15] has been

extended to nonlinear systems; 2. A new sufficient condition

for the existence and stability of the SMO is derived and

expressed in LMI form and 3. Actuator fault reconstruction

has been carried out.

The paper is organized as follows: Section-II briefly de-

scribes the mathematical preliminaries required for designing

SMO. Section-III describes the design procedure of the

proposed SMO and derives the stability condition based on

Lyapunov approach. The constraint of the switching gain is

determined which satisfies the reachability condition. The

procedure of reconstructing the actuator fault is presented in
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section-IV. The results of simulation considering the example

of single-link flexible joint robot system is shown in section-

V with conclusions in section-VI.

II. PROBLEM FORMULATION

Consider a nonlinear system described by

ẋ(t) = Ax(t) + f(x, t) + Bu(t) + E∆ψ(x, t) + Dfa(t)

y(t) = Cx(t) (1)

where x ∈ Rn, u ∈ Rm and y ∈ Rp denote respectively

the state variables, inputs and outputs ; A ∈ Rn×n, B ∈
Rn×m, C ∈ Rp×n, D ∈ Rn×q and E ∈ Rn×r(q ≤ p <
n) are known constant matrices with C and D both being

of full rank and the nonlinear term f(x, t) is assumed to

be known. The unknown nonlinear term ∆ψ(x, t) models

lumped uncertainties and disturbances experienced by the

system; the unknown function fa(t) represents actuator faults
that is assumed to be bounded by a known function:

‖fa(t)‖ ≤ ρ(t) (2)

Assumption 1. The matrix pair (A,C) is detectable.
It follows the assumption that there exists a matrix L ∈
Rn×p such that A − LC is stable, and thus for any Q > 0
the Lyapunov equation

(A − LC)T P + P (A − LC) = −Q (3)

has an unique solution P > 0 [18].

Assume that P ∈ Rn×n, Q ∈ Rn×n are in the form:

P =

[

P1 P2

PT
2 P3

]

, Q =

[

Q1 Q2

QT
2 Q3

]

(4)

It follows from P > 0 and Q > 0 that P1 ∈
R(n−p)×(n−p) > 0, P3 ∈ Rp×p > 0, Q1 ∈ R(n−p)×(n−p) >
0 and Q3 ∈ Rp×p > 0.

Assumption 2. The nonlinear term f(x, t) is assumed to

be known and Lipschitz about x uniformly, i.e., ∀x, x̂ ∈ X ,

‖f(x, t) − f(x̂, t)‖ ≤ Lf‖x − x̂‖ (5)

where Lf is the known Lipschitz constant.

Assumption 3. The function ∆ψ(x, t) representing the

structured modeling uncertainty is unknown but bounded,

and it satisfies

‖∆ψ(x, t)‖ ≤ ξ(x, t) (6)

where bounding function ξ(x, t) is known and Lipschitz

about x uniformly, i.e., ‖ξ(x, t) − ξ(x̂, t)‖ ≤ Lξ.

Assumption 4. There exist arbitrary matrices F1 ∈ Rr×p

and F2 ∈ Rq×p such that:

[

ET

DT

]

P =

[

F1

F2

]

C (7)

Assumption 4 implies that rank[D E] ≤ p. This property
allows to decouple the dynamics of the observer error from

the system uncertainty and fault.

Without loss of generality, it is assumed that the output

matrix C has the form:

C =
[

0 Ip

]

(8)

However, if C does not have such a structure, there

always exists a nonsingular transformation matrix Tc such

that CT−1
c = [0 Ip] since it has full row rank [22]. Assume

that the triple (A,E,D) has the following structure:

A =

[

A1 A2

A3 A4

]

, E =

[

E1

E2

]

, D =

[

D1

D2

]

(9)

where A ∈ R(n−p)×(n−p), E1 ∈ R(n−p)×r and D1 ∈
R(n−p)×q . Then system (1) can be rewritten as:

ẋ1 = A1x1 + A2x2 + f1(x, t) + B1u(t) + E1∆ψ + D1fa

ẋ2 = A3x1 + A4x2 + f2(x, t) + B2u(t) + E2∆ψ + D2fa

y = x2 (10)

where x = col(x1, x2) with x1 ∈ Rn−p, f1(x, t) ∈ Rn−p is

the first n−p rows of f(x, t) and f1(x, t) ∈ Rn−p represents

the remaining rows.

Lemma 1. If P and Q have been partitioned as in (4),

then the following two conclusions are obvious :

1) P−1
1 P2E2 +E1 = 0 and P−1

1 P2D2 +D1 = 0 if (7) is

satisfied;

2) The matrix A1 + P−1
1 P2A3 is stable if Lyapunov

equation (3) is satisfied.

Proof. See [18]

III. SLIDING MODE OBSERVER DESIGN

The design of sliding mode observer begins by introducing

a new linear change of coordinates z = Tx so as to impose

specific structures on the uncertainty and fault distribution

matrices, where

T :=

[

In−p P−1
1 P2

0 Ip

]

(11)

Using the conclusion (1) of Lemma 1, the system (10) can

be transformed into the the new coordinate system z as :

ż1 = Ã1z1 + Ã2z2 + B̃1u(t)

+ f1(T
−1z, t) + P−1

1 P2f2(T
−1z, t)

ż2 = Ã3z1 + Ã4z2 + B̃2u(t) (12)

+ f2(T
−1z, t) + E2∆ψ(T−1z, t) + D2fa

y = z2

where

TAT−1 =

[

Ã1 Ã2

Ã3 Ã4

]

, TB =

[

B̃1

B̃2

]

TE =

[

0
E2

]

, TD =

[

0
D2

]
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Ã1 = A1 + P−1
1 P2A3

Ã2 = A2 − A1P
−1
1 P2 + P−1

1 P2(A4 − A3P
−1
1 P2)

Ã3 = A3

Ã4 = A4 − A3P
−1
1 P2

Based on the transformed system (12), the present study

proposes the follwing sliding mode observer described as :

˙̂z1 = Ã1ẑ1 + Ã2z2 + B̃1u(t)

+ f1(T
−1ẑ, t) + P−1

1 P2f2(T
−1ẑ, t)

˙̂z2 = Ã3ẑ1 + Ã4ẑ2 + B̃2u(t) (13)

+ f2(T
−1ẑ, t) + (Ã4 − A0)ey + ν

ŷ = ẑ2

where ẑ1, ẑ2 and ŷ denote respectively the estimated states

and output; ẑ := col(ẑ1, y); A0 ∈ Rp×p is a stable design

matrix; ey = y− ŷ and the discontinuous vector ν is defined

by

ν =

{

k(t, y, u)
P0ey

‖P0ey‖
if ‖ey‖ > 0.0001

0 otherwise
(14)

where P0 ∈ Rp×p is the symmetric definite Lyapunov matrix

for A0. 0.0001 in (14) is the threshold on the norm of ey

that can be chosen arbitrarily small. Note that the similar

form of the discontinuous vector ν has been used in linear

systems [15]. In the present study it has been extended to

nonlinear systems. The positive scalar function k(·) : R+ ×
Rp ×Rm → R+ satisfies:

k ≥ ‖E2‖ξ(T
−1ẑ, t) + ‖E2‖Lξ‖e1‖

+ ‖D2‖ρ + Lf2
‖e1‖ + η (15)

where η is a positive constant.

If the state estimation errors are defined as e1 = z1 − ẑ1

and e2 = z2 − ẑ2, then the state estimation error dynamical

system can be obtained as:

ė1 = Ã1e1 +
[

In−p P−1
1 P2

] (

f(T−1z, t) − f(T−1ẑ, t)
)

(16)

ėy = Ã3e1 + A0ey + f2(T
−1z, t) − f2(T

−1ẑ, t)

+ E2∆ψ(T−1z, t) + D2fa − ν (17)

For error system (16)-(17), consider a sliding surface

S = {(e1, ey)|ey = 0} (18)

The objective of the study is to derive the sufficient

condition for the stability of the SMO of (13). This requires

the analysis of the dynamical behavior of the state estimation

error e1(t).

Lemma 2. Consider the system descried in (12) and

the observer described in (13). Let a0 and c0 be pos-

itive constants such that ‖eÃ1t‖ ≤ c0e
−a0t. If a0 ≥

c0Lf‖[ In−p P−1
1 P2 ]‖, where Lf is the Lipschitz con-

stant given in (5), then the bound of the state estimation

error e1(t) is independent of the system input and output

and satisfies:

‖e1(t)‖ ≤ c0‖e1(0)‖exp{(c0Lf‖[ In−p P−1
1 P2 ]‖−a0)t}

(19)

Proof. From (16). we can obtain:

e1(t) = eÃ1te1(0) +

∫ t

0

eÃ1(t−τ)
[

In−p P−1
1 P2

]

·
(

f
(

T−1z, τ
)

− f
(

T−1ẑ, τ
))

dτ (20)

From the fact that ẑ := col(ẑ1, y), we have:

∥

∥T−1z − T−1ẑ
∥

∥ =

∥

∥

∥

∥

T−1

[

e1

0

]
∥

∥

∥

∥

= ‖e1‖ (21)

Therefore
∥

∥f
(

T−1z, t
)

− f
(

T−1ẑ, t
)∥

∥ ≤ Lf ‖e1‖ (22)

Using (5) and the triangle inequality, we can obtain that

for any t > 0

‖e1(t)‖ ≤ c0e
−a0t ‖e1(0)‖ + c0e

−a0tLf ·

∥

∥

[

In−p P−1
1 P2

]∥

∥

∫ t

0

ea0τ ‖e1(τ)‖ dτ (23)

Applying Gronwall-Bellman inequality [23] to (23) with

α = c0 ‖e1(0)‖, u(t) = ea0t ‖e1(t)‖ and β(t) =
c0Lf

∥

∥

[

In−p P−1
1 P2

]
∥

∥, we can obtain

ea0t ‖e1(t)‖ ≤ c0 ‖e1(0)‖ exp
{

c0Lf

∥

∥

[

I P−1
1 P2

]∥

∥ t
}

(24)

Multiplying both sides of the above inequality by e−a0t,

(19) can be obtained.

Remark 1. a0 and c0 are positive constants chosen to

ensure that ‖eÃ1t‖ ≤ c0e
−a0t. According to conclusion (2)

of Lemma 1, Ã1 is stable. Therefore such constants a0 and

c0 always exist [23]. Since e1 is bounded, we can assume

that

‖e1‖ ≤ γ (25)

Proposition 1. Under the Assumption 1-4, the system (16)-

(17) is asymptotically stable if there exist matrices P0 > 0,
P1 > 0, A0, P2 and a positive scalar α satisfying M :=
[

ÃT
1 P1 + P1Ã1 + 1

α P̄1P̄
T
1 + α(Lf )2I AT

3 P0

P0A3 AT
0 P0 + P0A0

]

< 0 (26)

where Ã1 = A1 + P−1
1 P2A3, P̄1 = P1

[

In−p P−1
1 P2

]

.

Proof. Assume V1(e1) = eT
1 P1e1 and V2(ey) = eT

y P0ey .

Consider V (e1, ey) = V1(e1) + V2(ey) as a Lyapunov
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candidate. The time derivative of V1, V2 along the trajectories

of system (16)-(17) can be shown to be equal to:

V̇1 = ėT
1 P1e1 + eT

1 P1ė1

= eT
1 (ÃT

1 P1 + P1Ã1)e1 + 2eT
1 P̄1

(

f(T−1z, t) − f(T−1ẑ, t)
)

(27)

Since the inequality 2XT Y ≤ 1
αXT X + αY T Y is true

for any scalar α > 0, then

V̇1 ≤ eT
1 (ÃT

1 P1 + P1Ã1)e1 +
1

α
eT
1 P̄1P̄

T
1 e1

+ α
(

f(T−1z, t) − f(T−1ẑ, t)
)T

·
(

f(T−1z, t) − f(T−1ẑ, t)
)

≤ eT
1 (ÃT

1 P1 + P1Ã1)e1 +
1

α
eT
1 P̄1P̄

T
1 e1

+ α(Lf )2‖e1‖
2

= eT
1

(

ÃT
1 P1 + P1Ã1 +

1

α
P̄1P̄

T
1 + α(Lf )2In−p

)

e1

(28)

V̇2 = eT
1 AT

3 P0ey + eT
y P0A3e1 + eT

y (AT
0 P0 + P0A0)ey

+ 2eT
y P0

(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

(29)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν

From the Cauchy-Schwartz inequality and (15), we can

impose a bound on the last four terms of (29).

2eT
y P0

(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν

≤ 2 ‖P0ey‖
(

Lf2
‖e1‖ + ‖E2‖ ξ(T−1z, t) + ‖D2‖ ρ − k

)

≤ −2η ‖P0ey‖ (30)

Therefore we can derive that

V̇ = V̇1 + V̇2

≤ eT
1

(

ÃT
1 P1 + P1Ã1 +

1

α
P̄1P̄

T
1 + α(Lf )2In−p

)

e1

+ eT
1 AT

3 P0ey + eT
y P0A3e1 + eT

y (AT
0 P0 + P0A0)ey

− 2k ‖P0ey‖

≤ eT
1

(

ÃT
1 P1 + P1Ã1 +

1

α
P̄1P̄

T
1 + α(Lf )2In−p

)

e1

+ eT
1 AT

3 P0ey + eT
y P0A3e1 + eT

y (AT
0 P0 + P0A0)ey

= eT Me

< 0 (31)

It follows that e → 0 exponentially, namely, the error

dynamical system (16)-(17) is asymptotically stable.

Remark 2. The inequality (26) can be transformed into the

following LMI problem: find matrices P0, P1, P2, Y and a

scalar α such that:








Θ + α(Lf )2In−p P1 P2 AT
3 P0

PT
1 −αIn−p 0 0

PT
2 0 −αIp 0

P0A3 0 0 Y + Y T









< 0 (32)

where Θ := AT
1 P1+P1A1+AT

3 PT
2 +P2A3 and Y = P0A0.

If Lf is known, then the problem of finding P0, P1, P2, Y
to satisfy (32) is a standard LMI feasibility problem.

After getting the sufficient condition for the error system

(16)-(17) to be asymptotically stable, the next objective is to

determine the scalar gain function k(·) in (14) such that the

system can be driven to the sliding surface S in finite time

and a sliding motion can be maintained.

Proposition 2. Under the Assumption 1-4, the error system

(16)-(17) is driven to the sliding surface (18) in finite time

if the gain k(·) is chosen to satisfy

k ≥ (‖A3‖ + ‖E2‖Lξ + Lf2
)γ + ‖D2‖ρ

+ ‖E2‖ξ(T
−1ẑ, t) + γ0 (33)

where ‖e1‖ ≤ γ (25), γ0 is a positive scalar.

Proof. Consider a Lyapunov candidate function V2(ey) =
eT
y P0ey.

V̇2 = eT
1 AT

3 P0ey + eT
y P0A3e1 + eT

y (AT
0 P0 + P0A0)ey

+ 2eT
y P0

(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν

≤ eT
1 AT

3 P0ey + eT
y P0A3e1

+ 2eT
y P0

(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

+ 2eT
y P0E2∆ψ(T−1z, t) + 2eT

y P0D2fa − 2eT
y P0ν

≤ 2 ‖P0ey‖ (‖A3‖‖e1‖ + Lf2
‖e1‖ + ‖E2‖ ξ(T−1z, t)

+ ‖D2‖ ρ − k) (34)

From (33) and (34) it follows that

V̇2 ≤ −2γ0 ‖P0ey‖ ≤ −2γ0

√

λmin(P0)V
1/2
2 (35)

where λmin(P0) is the smallest eigenvalue of P0. This

shows that the reachability condition [10] is satisfied. As

a consequence, an ideal sliding motion will take place on

the surface S and after some finite time ts,

e1 = ė1 = 0, ∀t > ts (36)

IV. RECONSTRUCTION OF ACTUATOR FAULT

Given a sliding mode observer which satisfies (26) and

(33), the task in this section is to reconstruct the actuator

fault using the so-called equivalent output injection [15].

Assumption 5. There exists a nonsingular matrix G ∈
Rp×p such that

G
[

E2 D2

]

=

[

H1 H2

0 H3

]

(37)

where H1 ∈ R(p−q)×r and H3 ∈ Rq×q is nonsingular.

Remark 3. The matrix structure G in Assumption 5

guarantees that the actuator can be distinguished from the

system uncertainty, which makes actuator fault reconstruc-

tion possible.
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Multiplying both sides of (17) by G, yields

Gėy = GA3e1 + GA0ey + G
(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

+

[

H1 H2

0 H3

] [

∆ψ(T−1z, t)
fa

]

− Gν (38)

After reaching the sliding surface, the sliding motion will be

maintained thereafter, i.e., ey = 0 and ėy = 0, therefore (38)
becomes

0 = GA3e1 + G
(

f2(T
−1z, t) − f2(T

−1ẑ, t)
)

+

[

H1 H2

0 H3

] [

∆ψ(T−1z, t)
fa

]

− Gνeq (39)

where νeq is the equivalent output error injection signal rep-

resenting the average behavior of the discontinuous function

ν. Since limt→∞ e1 = 0, f2(T
−1z, t)−f2(T

−1ẑ, t) will also
tends to zero. This implies (from (39)) that

fa → H−1
3 G2veq as t → ∞ (40)

where G2 represents the last q rows of G.

The equivalent output error injection signal can be approx-

imated as:

νeq = k(t, y, u)
P0ey

‖P0ey‖ + δ
(41)

where δ is a small positive scalar to reduce the chattering

effect. It can be shown that νeq can be approximated to any

degree of accuracy by (41) for a small enough choice of δ.
The actuator fault can accordingly be approximated by

f̂a ≈ k(t, y, u)H−1
3 G2

P0ey

‖P0ey‖ + δ
(42)

V. SIMULATION RESULTS

The example of a single-link flexible joint robot system

has been considered to demonstrate the effectiveness of the

proposed SMO in reconstructing actuator faults. A dynamical

model for the robot can be described by ( [21], [24])

θ̇1 = ω1

ω̇1 =
1

J1
(k1(θ2 − θ1) + k2(θ2 − θ1)

3) −
Bv

J1
ω1 +

Kτ

J1
ω1 +

Kτ

J1
u

θ̇2 = ω2

ω̇2 =
1

J2
(k1(θ2 − θ1) + k2(θ2 − θ1)

3) −
mgh

J2
sinθ2

+ ψ(θ1, ω1, θ2, ω2, t) (43)

where θ1 and ω1 are the motor position and velocity, respec-

tively; θ2 and ω2 are the link position and velocity; J1 is

the inertia of the DC motor, J2 is the inertia of the link,

2h is the length of the link while ml represents its mass,

Bv is the viscous friction, k1 and k2 are positive constants

and Kτ is the amplifier gain. It is assumed that the motor

position, motor velocity and the sum of link velocity and

link position can be measured. The values of the parameters

used in this simulation are: J1 = 3.7 × 10−3kg · m2,

J2 = 9.3 × 10−3kg · m2, h = 1.5 × 10−1m, m = 0.21kg,

Bv = 4.6 × 10−2m, k1 = k2 = 1.8 × 10−1Nm/rad and

Kτ = 8 × 10−2Nm/V .

To illustrate the effectiveness of the prosed SMO and

to reconstruct the actuator faults, a nonlinear uncertainty

is added to the system which satisfies the bound ‖ψ‖ ≤
0.023(sinθ2)

2. For the illustration purpose, a linear state

feedback controller u = [−14.1 − 25.6 − 16.2 − 12.1]z has

been utilized to stabilize the system. Suppose that a fault

fa occurs in the input channel, where fa = 0.05t (t < 2)
and fa = 0.5sin(2πt) (2 ≤ t). Therefore the fault distribu-
tion matrix D will be equal to the input matrix. Reorder

the system variables and let x = col(x1, x2, x3, x4) :=
col(θ2, ω2, θ1, ω1), then the output distribution matrix C
becomes:

C =





1 1 0 0
0 0 1 0
0 0 0 1





Notice that C does not have the form in (8). A nonsingular

transformation matrix Tc = [1 0 0 0; 1 1 0 0; 0 0 1 0; 0 0 0 1]
is therefore introduced to obtain CT−1

c = [0 Ip] and

accordingly

A =









−1.0000 1.0000 0 0
−20.3548 1.0000 19.3548 0

0 0 0 1.0000
48.6486 0 −48.6486 −12.4324









f(x) =









0
−19.3548(x1 − x3)

3 − 33.1935sinx1

0
48.6486(x1 − x3)

3









C =
[

0 I3

]

, E =









0
1
0
0









, D =









0
0
0

21.6216









Imposing the stability constraint described in (26), and

formulating the problem in a LMI framework gives the

following solutions:

α = 4.7220

P1 = 3.2719

P2 =
[

−0.0018 0 −0.0001
]

P0 =





0.1210 0 0
0 4.6859 0
0 0 0.0519





A0 =





−28.4926 0 0
0 −0.5000 0
0 0 −63.2322





It is verified that the conclusion of Lemma 1 and Proposi-

tion 1 are all satisfied. The transformation matrix T is deter-

mined and the system is transformed into a new coordinate z
and all the parameters of the proposed SMO (13) are obtained

. The simulation results are shown in Fig-1, Fig-2 and Fig-
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Fig. 1. Fault signal
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Fig. 2. Reconstructed fault signal

3. From the figures, it can be seen that the fault signal can

accurately be reconstructed using the proposed sliding mode

observer even in the presence of sensor noise.

VI. CONCLUSIONS

A new scheme for robust fault estimation for a class of

nonlinear Lipschitz system using a sliding mode observer has

been proposed in this work. The stability and reachability

condition of the proposed sliding mode observer has been

studied. The design parameters of the observer are obtained

by LMI techniques. Under certain conditions, the actuator
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Fig. 3. Reconstructed fault signal with sensor noise of 30dB

fault can be reconstructed to any degree of accuracy even in

the presence of nonlinear uncertainties. The effectiveness of

the proposed SMO has been demonstrated considering the

example of a single-link flexible joint robot system.
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