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Abstract— In this paper, we establish a Bode sensitivity
integral formula for a class of feedback closed-loop systems with
stochastic switched plants and controllers. Using information
theory, we study the information conservation law, based on
which a log integral theorem is obtained for the closed loops of
interest. Furthermore we develop several algebraic conditions
to explicitly capture the performance limitations. Application
of this theoretical framework to Networked Control Systems
(NCS) is used as an illustrative example.

I. INTRODUCTION

Recent results on fundamental limitations of feedback

control in the presence communication channels presented

a fairly general and complete approach, in discrete-time

setting, towards unification of information theory and control

theory, [1], [2]. Entropy rate inequalities corresponding to the

information flux in a typical causal closed-loop configuration

were derived towards obtaining a Bode-like integral formula.

Prior to this, extensions of Bode’s theorem have been claimed

for certain discrete-time nonlinear systems and linear time-

varying systems respectively, [3], [4].

In this paper, we extend the framework from [2] to closed

loops with stochastic switched plants. While switched control

systems have been studied from various perspectives [5],

it is still not clear how to characterize their fundamental

limitations within an appropriate framework. We address the

problem here by using an information theoretic framework

towards obtaining a Bode integral formula, under the as-

sumptions that the switching sequence is an ergodic Markov

chain. We first derive a closed-loop information conserva-

tion law by using information theoretic arguments similar

to [6] and [2]. Then under some stationarity assumption,

a Bode integral-like theorem is obtained, characterizing a

lower bound on the performance limitations. To enable the

simplified calculation of the resulting lower bound, some Lie

algebraic conditions are developed.

To demonstrate the usefulness of the theoretical result,

we propose an application with NCS with random packet

dropouts, which has been widely used in control literature

to model typical computer network protocols, such as TCP

and UDP [7]. We develop a Bode integral to show that the

degree of instability of the plants determines the lower bound

of the performance limitation.

The paper is organized as follows. In Section II we intro-

duce the closed-loop feedback configuration and some basic

definitions and facts from information theory and the theory

of stochastic processes. Section III studies a general feedback

scheme, within which we develop a mutual information

inequality and a Bode-type integral formula. Section IV

applies Bode’s integral to NCS. The paper is concluded in

Section V.

Notation:

• R denotes the field of real numbers; C stands for

complex plane; C− and C+ stand for the left half and

right half of C respectively.

• Random variables defined in appropriate probability

spaces are represented using boldface letters, such as

x, y. If not otherwise stated, the random variables take

values in R throughout the paper.

• If x(k), k ∈ N+, is a discrete time stochastic process,

we denote its segment {x(k)}uk=l by xu
l , and use xn

0 :=
xn for simplicity.

• E[·] is the expectation operator of a random variable.

• (·)+ = max{·, 0} and (·)− = min{·, 0}.

• ℜ(·) gives the real part of a complex number.

• λj(·) gives the eigenvalues of a square matrix.

• h(·) stands for (differential) entropy and I(·; ·|·) for

conditioned mutual information; h̄ and Ī stand for the

entropy rate and mutual information rate respectively.

• When A is a finite set, |A| gives the number of elements

in A.

• sp{·} denotes the spectrum of an operator.

II. PRELIMINARIES & PROBLEM FORMULATION

A list of useful properties of entropy and mutual informa-

tion are given here, and are frequently used in the upcoming

arguments.

(P1) Symmetry and nonnegativity:

I(x;y) = I(y;x) = h(x)−h(x|y) = h(y)−h(y|x) ≥
0 .

(P2) Kolmogorov equality:

I(x; (y, z)) = I(x; z) + I(x;y|z)

(P3) Data processing inequality:

I(x;y|z) ≥ I(x; g(y)|z)

The equality holds, if g(·) is invertible.

(P4) Invariance of mutual information (entropy)

I(x;y|z) = I(x+ g(z);y|z) , h(x|z) = h(x+ g(z)|z),

where g(·) is a function.

(P5) Chain rule:

h(xn|y) =
n
∑

k=1

h(xk|y,x
k−1)

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2843



(P6) Maximum entropy: Consider x ∈ R
m and the covari-

ance matrix given by V := E[xx⊤]. Then we have

h(x) ≤ h(x̄) =
1

2
log((2πe)m det V ) ,

where x̄ is a Gaussian process with the same covariance

as x. Equality holds, if x is Gaussian.

Throughout the paper we consider the feedback configuration

depicted in Fig. 1.

e(k)
+

+

y(k)

P(σ(k))

u(k)

n(k)

d(k)

K

Fig. 1. Basic Feedback Scheme

Several assumptions are made:

• The plant P is modeled by the following stochastic

difference equation

x(k + 1) = A(σ(k))x(k) +B(σ(k))e(k) , x(0) = x0 ,

y(k) = C(σ(k))x(k) , k = 0, 1, 2....
(1)

Here x(k) ∈ Rm, and x0 is assumed to have finite

differential entropy or h(x0) < ∞, and σ(k) ∈
{1, 2, ..., N} =: N is a finite state ergodic Markov

process given by

P (σ(k + 1) = j|σ(k) = i) := pij ≥ 0 ,

where pij is named as transition probability from state

i to j, and
∑

j pij = 1 for all i ∈ N . The stationary

distribution of the Markov chain σ, denoted as π =
[π1, ..., π|N |], is obtained by solving

π
⊤[pij ]i,j∈N = π

⊤ , and [1, .., 1]π = 1 .

We also assume A(n), n ∈ N is not singular.

• The disturbance d(k) is a stochastic process, and n(k)
is a stochastic process that models the controller noise.

We assume that σ(k), d(k), n(k) and x0 are mutually

independent.

• The controller K is given as a deterministic causal map

such that

K : (k,yk−1,nk) 7→ u(k) .

Definition 2.1 (Wide Sense Stationary Process): A zero-

mean stochastic process x(k) ∈ Rn, t ≥ 0, is stationary,

if for all k ≥ 0 its covariance function, defined by

Rx(l) = E[x(k + l)x⊤(k)], l ∈ N
+ ,

is independent of l. Throughout this paper, wide sense

stationary is abbreviated as stationary for convenience.

Definition 2.2: The spectral density of a stationary pro-

cess v is given as the following Fourier transform

fv(ω) =
1

2π

∞
∑

k=0

v(k)e−jωk

Definition 2.3 (Sensitivity-like Function): A sensitivity-

like function of the closed loop is defined as

Sd,e(ω) =

√

fe(ω)

fd(ω)
,

where e and d are stationary and stationarily correlated.

Remark 2.4: The function Sd,e(ω) is the stochastic ana-

logue of the sensitivity function |S(jω)| in Bode’s original

work [8].

Throughout, we adopt the following stability definition.

Definition 2.5 (Mean-square Stability): The closed loop

given in Fig. 1 is said to be mean-square stable, if

sup
k≥0

E[x⊤(k)x(k)] < ∞ . (2)

Definition 2.6 (Lie Algebra): A Lie algebra is denoted as

g := {A(n) : n ∈ N}LA ,

which is generated by the matrices A(n), n ∈ N , with

respect to the standard Lie bracket

[A(1), A(2)] := A(1)A(2)−A(2)A(1) .
We say that the Lie algebra g is solvable if the following

derived series

g > [g, g] > [[g, g], [g, g]] > ...

becomes 0 in finite operations, where [·, ·] denotes the algebra

generated by Lie bracket and “>” denotes the relation of

sub-algebra

Theorem 2.7: [Simultaneous triangularization] The matri-

ces {A(n) : n ∈ N} can be simultaneously triangularized

by some linear operator T ∈ Cm×m, if and only if the Lie

algebra g is solvable.

III. BODE-LIKE INTEGRAL DISCRETE TIME CASE

In this section we develop the information conservation

law of the closed loop system depicted in Fig. 1. In turn,

an analogue of Bode’s formula is obtained with stationarity

assumption.

A. Information conservation law

The following lemma is introduced to characterize the

closed loop causality.

Lemma 3.1:

I(d(i); (ui,x0,σ
i)|di−1) = 0 , ∀ i ≥ 1. (3)

Proof:

I(d(i); (ui,x0,σ
i)|di−1)

(a)

≤ I(d(i); (ui,ni,σi,x0)|d
i−1)

(b)

≤ I(d(i); (di−1,ni,σi,x0)|d
i−1)

(c)
= I(d(i); (ni,σi,x0)|d

i−1)

(d)
= 0

Here, (a) follows from (P3); (b) also follows from (P3), since

ui is a function of (di−1,ni,σi,x0); (c) follows from (P4),
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and (d) is implied because n, σ, x0 and d are mutually

independent.

In what follows we use the result from Lemma 3.1 to

achieve an equality, revealing a key relationship among

signals residing in 1.

Lemma 3.2: Consider the closed loop in Fig. 1. The

following inequality holds

h(ek) = h(dk)+I((x0,σ
k); ek)+

k
∑

i=1

I(ui; e(i)|ei−1,x0,σ
k)

(4)

Proof: We break down the equality (3) by

0 = I(d(i); (ui,x0,σ
i)|di−1)

(a)
= I(d(i);ui,x0,σ

i,di−1)− I(d(i);di−1)

(b)
= I(d(i);ui,x0,σ

i, ei−1)− I(d(i);di−1)

(c)
= −h(d(i)|ui,x0,σ

i, ei−1) + h(d(i)|di−1)

(d)
= −h(e(i)|ui,x0,σ

i, ei−1) + h(d(i)|di−1)

(e)
= −h(e(i)|ei−1) + I((x0,σ

i)); e(i)|ei−1)+

I(ui; e(i)|ei−1,x0,σ
i) + h(d(i)|di−1) .

Here (a) follows from (P3), (b) follows from the fact that

ei−1 = ui−1+di−1, (c) follows from (P1), (d) follows from

(P4) and (f) from (P5). Summing up the above equality from

1 to k and using (P5), we have (4).

Remark 3.3: The term
∑k

i=1 I(u
i; e(i)|ei−1,x0,σ

k) is

alternatively represented as the directed information from u

to e conditioned by (x0,σ
k) [9].

Theorem 3.4: Consider the closed loop shown in Fig. 1.

The following entropy rate inequality holds

h̄(e) ≥ h̄(d) + Ī((x0,σ); e) . (5)

Proof: Considering the nonegativeness of the mutual

information, from (4) we have

h(ek) ≥ h(dk) + I((x0,σ
k); ek) .

The proof is completed by dividing both sides of the above

equality by k and letting k → ∞.

Remark 3.5: The inequality in (5) has been derived in

both information theory and control theory literature in

different setups and with different generalities. Here we only

assume causality of the closed loop.

B. Evaluating an important information rate

As it can be seen in (5), the mutual information rate

Ī((x0,σ); e) plays an important role in the conservation law.

In this subsection we establish some nontrivial lower bounds

for Ī((x0,σ); e) assuming some algebraic conditions.

Theorem 3.6: Consider the closed loop in Fig. 1. The

following inequality holds.

Ī((x0,σ); e) ≥ lim inf
k→∞

1

k
E
∑

j

ℜ (logλj (Fk))
+
, (6)

where Fk := A(σ(k))A(σ(k − 1)) · · ·A(σ(0)).

Proof: We first consider the dynamics of the plant

x(k + 1) = x(k)A(σ(k)) +B(σ(k))e(k) ,

which can be solved as

x(k + 1) =

(

k
∏

i=0

A(σ(i))

)

x0+

k
∑

i=0

(

k
∏

l=i

A(σ(l))

)

B(σ(i))e(i)

= Fk(x0 − x̂0(k + 1)),

where

x̂0(k + 1) :=

−

(

k
∏

i=0

A(σ(i))

)−1
k
∑

i=0

(

k
∏

l=i

A(σ(l))

)

B(σ(i))e(i) .

Fk can be decomposed into the following form by a linear

transformation Tk:

T−1
k FkTk =

[

Fku 0
0 Fks

]

,

where Fku is unstable and Fks is stable. The same linear

transformation can be applied to x0 and x̂0 to have

Tkx0 =

[

xu0

xs0

]

and Tkx̂0 =

[

x̂u0

x̂s0

]

.

We note that xu0 and xs0 are functions of k, however this

argument is omitted for notational simplicity.

We then establish the lower bound of I(x0,σ
k; ek) as

follows

I(x0,σ
k; ek)

= I(x0;σ
k) + I(x0; e

k|σk)

= I(x0; e
k|σk)

= I(x0; e
k,σk)

= I(xu0,xs0; e
k,σk)

= h(xu0,xs0)− h(xs0|e
k,σk)− h(xu0|xs0, e

k,σk)

≥ h(xu0,xs0)− h(xs0)− h(xu0|xs0, e
k,σk) ,

where we have used the assumption that x0 σ are indepen-

dent. To evaluate the term h(xu0|xs0, e
k,σk), we note that

h(xu0|xs0, e
k,σk)

= h(xu0 − x̂u0|xs0, e
k,σk)

≤ h(xu0 − x̂u0)

≤ log(2πe)lk − logE| detFku|+ logE detxu0(k)x
⊤
u0(k)

≤ log(2πe)lk −E log | detFku|+ logE detxu0(k)x
⊤
u0(k),

where 0 ≤ lk ≤ m is the dimension of xu0, xu0(k) is the

vector formed by the first lk elements of Tkx(k) and the last

inequality follows form Jensen’s inequality.

Therefore we have

I(x0,σ
k; ek) ≥ − log(2πe)lk +E log | detFku|

− logE detxu(k)x
⊤
u (k) .
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Note that the stability of the closed loop system implies that

E detxu(k)x
⊤
u (k) < ∞ , ∀k. Then we have

Ī(x0,σ
k; ek) ≥ lim inf

k→∞

1

k
E log | detFku|

= lim inf
k→∞

1

k
E
∑

j

ℜ (logλj (Fk))
+
.

Remark 3.7: The right hand side of (6) is actually a Lya-

punov exponent for the dynamic system (1). For a complete

treatment of Lyapunov exponents for stochastic switching

systems, one is referred to [10].

To overcome the difficulty of obtaining

lim infk→∞
1
k
E
∑

j ℜ (logλj (Fk))
+

by using Lyapunov

exponent method, we exploit the algebraic structure of

the matrices A(n), n ∈ N . From Theorem 2.7 we know

that the solvability of g implies that {A(n)} , n ∈ N ,

can be simultaneously triangularizable by some linear

transformation T ∈ Cm×m:

T−1A(n)T =









λ
(n)
1 ⋆ ⋆

0
. . . ⋆

0 0 λ
(n)
m









, ∀n ∈ N . (7)

Now we divide the index set {1, ...,m} into two distinct

sets Mu and Ms, defined by

Mu :=

{

j :
∏

n∈N

|λ
(n)
j |πn > 1 , j = 1, 2, ...,m

}

,

Ms := {1, ...,m} \Mu .

Corollary 3.8: Suppose that the Lie algebra g is solvable.

Then we have

Ī((x0,σ); e) ≥
∑

n∈N

∑

j∈Mu

πn log |λ
(n)
j |

Proof: We start with a mutually disjoint partition of

the index set {1, 2, ...,σ(k)}, given by

{1, 2, ...,σ(k)} =
⋃

n∈N

Kn ,

where Kn := {i : σ(i) = n, i = 1, 2, .., k}. Then we

claim that the eigenvalues of Fk take the form λj(Fk) =
∏

n∈N

∏m

j=1

(

λ
(n)
j

)|Kn|

, where λ
(n)
j is the diagonal en-

try from (7). Indeed it is easy to see that T−1FkT =
T−1A(σ(k))TT−1A(σ(k− 1))T · · ·T−1A(σ(0))T is a tri-

angular matrix for all k. Further, the jth diagonal entry of

T−1FkT can be calculated as

λj(Fk) =

k
∏

i=0

λ
(σ(i))
j =

∏

n∈N

(

λ
(n)
j

)|Kn|

Using the above relation and Fatou’s Lemma we have

lim inf
k→∞

1

k
E
∑

j

ℜ (logλj (Fk))
+

= lim inf
k→∞

E
1

k

∑

j

ℜ (logλj(Fk))
+

≥ E lim inf
k→∞

1

k

∑

j

ℜ (logλj(Fk))
+
.

Furthermore,

lim inf
k→∞

1

k

∑

j

ℜ (logλj(Fk))
+

= lim
k→∞

1

k

∑

j

ℜ (logλj(Fk))
+

=
∑

j

ℜ

(

∑

n

πn logλ
(n)
j

)+

=
∑

n∈N

∑

j∈Mu

πn log |λ
(n)
j | ,

where the second equality follows from ergodicity of σ(k).

Remark 3.9: As explained in [5], this modern algebraic

approach, though mathematically appealing, shows a sig-

nificant drawback for its lack of robustness, i.e. even a

very small perturbation of system parameters can violate the

solvability condition. One may conduct perturbation analysis

to relax the algebraic structure requirement, though it is not

trivial in general.

Here we propose yet another way to determine the

Lyapunov exponent lim infk→∞
1
k
E
∑

i ℜ (logλi (Fk))
+

by

using operator semigroup theory. To start with, we consider

the semigroup generated by matrices {A(n) , n ∈ N} with

respect to the matrix multiplication. The following lemma

from [11] gives a sufficient condition for the permutability

of the spectra of the product of the operators.

Theorem 3.10: If for all n1, n2, n3 ∈ N ,

sp(A(n1)A(n2)A(n3)) = sp(A(n2)A(n1)A(n3)) , (8)

then for any sequence A(n1), ..., A(nk) , n1, ..., nk ∈
N , the following identity holds for any permutation τ of

{n1, ..., nk}

sp

{

k
∏

i

A(ni)

}

= sp







τ(k)
∏

τ(i)

A(nτ(i))







.

The following corollary is now straightforward to prove.

Corollary 3.11: Suppose that the condition in (8) is sat-

isfied. Then we have

Ī((x0,σ); e) ≥
∑

j

ℜ

(

log λj

(

∏

n∈N

A(n)πn

))+

.

Proof:
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Theorem 3.10 implies that

sp(Fk) = sp

{

∏

n∈N

A|Kn|(n)

}

= sp

{

∏

n∈N

A|Kτ(n)|(τ(n))

}

= {λ̂
(k)
1 , . . . , λ̂(k)

m }

for any permutation τ(·), where λ̂
(k)
j =

∏

n∈N

(

λ
(k)
j

)|Kn|

.

Following the same argument in the proof of Corollary 3.8,

we have

lim inf
k→∞

1

k
E
∑

j

ℜ (logλj (Fk))
+ ≥

E lim inf
k→∞

1

k

∑

j

ℜ
(

log λ̂
(k)
j

)+

and

lim inf
k→∞

1

k

∑

j

ℜ
(

log λ̂
(k)
j

)+

= lim
k→∞

1

k

∑

j

ℜ
(

log λ̂
(k)
j

)+

=
∑

j

ℜ

(

∑

n

πn logλ
(n)
j

)+

=
∑

j

ℜ

(

logλj

(

∏

n∈N

A(n)πn

))+

.

The theorem is proved.

C. Bode’s Integral

Theorem 3.12: Consider the closed loop in Fig. 1. If d

and e form Gaussian stationary processes, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥ lim inf
k→∞

1

k

∑

i

ℜ (logλi (Fk))
+
.

Proof: This result is evident by considering the follow-

ing relation, followed by Kolmogrov’s formula

h̄(d) = log(2πe) +
1

4π

∫ π

−π

log fd(ω)dω ,

h̄(e) = log(2πe) +
1

4π

∫ π

−π

log fe(ω)dω ,

together with Theorem 3.6.

Since we have obtained various lower bounds for

Ī(x0,d,σ; e) in the previous subsection, the following corol-

laries can be readily obtained.

Corollary 3.13: Consider the closed loop in Fig. 1. If d

and e form Gaussian stationary processes, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥ log
∏

n∈N

|detA(n)|πn .

Corollary 3.14: Consider the closed loop in Fig. 1. If

d and e form Gaussian stationary processes, and the Lie

algebra g is solvable, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥
∑

n∈N

∑

j∈Mu

πn log |λ
(n)
j | .

Corollary 3.15: Consider the closed loop in Fig. 1. If d

and e form Gaussian stationary processes, and the condition

in (8) is satisfied, then

1

2π

∫ π

−π

log (Sd,e(ω)) dω≥
∑

j

ℜ

(

logλj

(

∏

n∈N

A(n)πn

))

+

Remark 3.16: Similar to its deterministic counterpart,

Bode’s integral in this stochastic setting also captures the

performance limitation of a closed loop in frequency domain.

The lower bound of the achievable performance is inherent

from its open loop plant instability.

Remark 3.17: Though it is hard to determine whether the

closed loop in Fig. 1 is stationary in general, some results

for LTI systems can be found in [12] and [13].

D. Data Rate Inequality

Another inequality, resulting from the closed loop causal-

ity, is developed here. The following lemma provides a lower

bound for the mutual information rate Ī((x0,d);u), which

accounts for total information rate flow in the loop. Further

insight into Ī((x0,d);u) can be found in [2] and [14].

Lemma 3.18: Consider the closed-loop system shown in

Fig. 1. We have the following inequality:

Ī((x0,d,σ);u) ≥ Ī(x0,σ; e) + Ī(d;u) .
Proof: Using Kolmogorov’s formula (P2), we have

I((x0,d
k,σk);uk) = I(x0,σ

k;uk|dk) + I(uk;dk) ,

where k ∈ N+ is an arbitrary time instance. We can lower

bound I((x0,d
k);uk) as

I((x0,σ
k,dk);uk)

(a)
= I(x0,σ

k; ek|dk) + I(uk;dk)

(b)
= I(x0,σ

k; ek)− I(x0,σ
k;dk)+

I(x0,σ
k;dk|ek) + I(uk;dk)

(c)
= I(x0,σ

k; ek) + I(x0,σ
k;dk|ek) + I(uk;dk)

(d)

≥ I(x0,σ
k; ek) + I(uk;dk) .

Here (a) follows from the fact that I(x0;u
k|dk) =

I(x0;u
k+dk|dk) = I(x0; e

k|dk); (b) follows from (P2); (c)

follows from the independence of d and x0; and (d) follows

from the fact that I(x0,σ
k;dk|ek) ≥ 0. We have obtained

the following inequality:

I((x0,d
k,σk);uk) ≥ I(x0,σ

k; ek) + I(uk;dk) . (9)

The conclusion is readily obtained by dividing the terms on

both sides of (9) by k and taking the limit as k → ∞.

IV. EXAMPLE: NETWORKED CONTROL SYSTEMS WITH

RANDOM PACKET DROPOUTS

In this section, we apply the framework from the previous

section to examine the performance limitation problems in

the networked control systems (NCS). To be specific, we

only consider the control systems with a lossy communica-

tion channel placed between the sensor and the controller,
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which has been studied in various papers [15] [16] [17]. In

this paper we adopt a structure similar to [16], shown in Fig.

2, where a switch is placed after the output to model packet

dropouts.

e(k) +
+

+

y(k)

P

u(k)

n(k)

d(k)

K

C

Fig. 2. A networked control system

The packet dropouts are compensated for by an output

of an LTI system, which has to be designed. The controller

can be represented by any causal map from yk
0 to u(k).

The sequence of ON’s and OFF’s of the erasure channel

is modeled as a two-state Markov chain with transition

probability matrix

P =

[

1− p p

q 1− q

]

, 0 ≤ p, q ≤ 1 .

One can calculate the stationary distribution as π =
[

q
p+q

, p
p+q

]

. Let the state space realization of the plant and

the channel compensator be

[

A B

C 0

]

and

[

Ac Bc

Cc 0

]

respectively. We can then regard the dashed box in Fig. 2 as

a generalized “plant” with state matrices

Ã(1) =

[

A 0
BcC Ac

]

, Ã(2) =

[

A 0
0 Ac +BcCc

]

for

the “ON” and “OFF” of the erasure channel respectively.

To simplify the subsequent analysis, we further assume

that the compensator is chosen such that Ac and Ac+BcCc

are stable. Under these additional conditions and with ac-

count of Theorem 3.6 we have the corresponding Bode’s

integral theorem.

Theorem 4.1: Consider the NCS in Fig. 2, and assume

that the signal u is Gaussian and stationary. The following

relation holds for all causal controllers K

1

2π

∫ π

−π

log (Sd,e(ω)) dω ≥
∑

j

ℜ (log λj (A))
+
. (10)

Proof: The proof is a simple application of Theorem

3.12, and is therefore omitted here.

Remark 4.2: This theorem characterizes the control de-

sign limitation for NCS with random packet dropout. Given

the stable compensator, the right hand side in (10) shows

that the lower bound of the closed loop performance is

determined solely by the degree of instability of A. This

observation suggests that, considering the relatively loose

definition of stability in (2), packet dropout does not make

the system “more” unstable. However, the dropout may add

up to the performance limitation in other forms, for which a

close scrutiny is required.

V. CONCLUSIONS

This paper has developed a relatively complete Bode’s

integral formula for stochastic switched closed loops. Infor-

mation theory has been employed as machinery to obtain a

relationship among different system variables, which has in

turn resulted in Bode’s integral for stationary cases. Various

algebraic conditions have been proposed to capture tight

performance bounds. An example of applying this theoretic

framework to the field of NCS illustrates the usefulness of

this fundamental result.
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