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Abstract— This paper reviews Fréchet sensitivity analysis
for partial differential equations with variations in distributed
parameters. The Fréchet derivative provides a linear map be-
tween parametric variations and the linearized response of the
solution. We propose a methodology based on representations
of the Fréchet derivative operator to find those variations
that lead to the largest changes to the solution (the most
significant variations). This includes an algorithm for computing
these variations that only requires the action of the Fréchet
operator on a given direction (the Gateaux derivative) and
its adjoint. This algorithm is applicable since it does not
require an approximation of the entire Fréchet operator, but
only typical sensitivity analysis software for partial differential
equations. The proposed methodology can be utilized to find
worst case distributed disturbances and is thus applicable to
uncertainty quantification and the optimal placement of sensors
and actuators.

I. INTRODUCTION
The primary objective of this paper is to develop efficient

algorithms for computing the most significant variations
of distributed parameters in physical systems and discuss
their utility in applications such as robust actuator/sensor
placement and uncertainty quantification. Our interest is in
physical systems modeled by partial differential equations
(PDEs) with uncertain parameters. This research specifically
targets infinite dimensional parameters such as spatially
varying material properties, boundary conditions or initial
conditions. In particular, we will develop a methodology to
better model uncertainty in spatially distributed parameters
when a precise characterization of the parametric uncertainty
is not available. The methodology is derived directly from
the mathematical model by considering the Fréchet derivative
operator of the model outputs with respect to the spatially
(and temporally) varying parameters, i.e. distributed pa-
rameters. A decomposition of this parameter-to-output map
can illuminate those parametric variations that produce the
greatest change to in the model solution (or state) and thus
are those variations that are the most important to account for
in actuator/sensor placement and uncertainty quantification.

A number of recent works have used the notion of “worst-
case spatial distribution of disturbances” to address the
actuator and sensor placement problem (see, e.g. Demetriou
et al. [1], [2]). In these studies, the methodology was demon-
strated by assuming the form of normalized distributions of
disturbances, then demonstrating the superiority of sensor
locations that minimize H2 and H∞ norms of the distur-
bance to state estimate transfer function. A methodology
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based on optimization was proposed in [3] to calculate worst-
case spatial disturbances. However, that approach often led
to challenging optimization problems and is not practical for
complex problems.

In this paper, we present a methodology for mathemati-
cally producing those spatial distribution functions that have
the most influence on the state using Fréchet sensitivity
analysis. We consider linear elliptic equations in this study.
Since the Fréchet derivative of the state with respect to
disturbance functions is often a Hilbert-Schmidt operator, we
can apply spectral analysis to identify the most significant
variations of disturbances. In other words, by computing
the dominant Schmidt pairs, this approach identifies those
variations that produce the largest changes in the state. By
including these variations in the design of controlled systems,
we complement the aforementioned developments to produce
robust state estimators. We provide a range of algorithms to
compute these Schmidt pairs, including one appropriate for
fine discretizations of the linear operator based on iteratively
computing sensitivity and adjoint solutions.

II. MODEL AND CONTROL DESIGN PROBLEM
Although the emphasis of our approach is finding worst-

case distributions in control problems, we introduce a model
problem to simplify the technical discussion and to illustrate
our ideas with preliminary results. Consider weak solutions
to the elliptic boundary value problem

−∇ · (p∇w) = f, w ∈ H1
0 (Ω) (1)

where f ∈ H−1(Ω), Ω is an open set with compact closure,
and

p ∈ P ≡
{
p ∈ H1(Ω)| p(x) ∈ (pmin, pmax),

‖∇p(x)‖∞ < dmax, a.e. in Ω} .

As a physical motivation for this problem, we can identify
w as the temperature, p as the material conductivity, and f
as a given heat source term. The analysis problem is well
understood, cf. [4], with more regularity of the solution w
with improved regularity of the data p and f . However,
if our interest was to quantify the uncertainty in solutions
to the analysis problem as part of the overarching goal of
quantifying the uncertainty in the simulation, we require
quantitative information on how w changes with changes in
p and f . If these changes are not prescribed, knowledge of
which variations in p and f produce the largest changes to
w (with additional knowledge of how likely these particular
variations are) would be useful in determining how well the
model output can be trusted.
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III. SENSITIVITY ANALYSIS

Loosely, the sensitivity of the state is the derivative of
a model solution or output with respect to parameters of
interest. Thus, we introduce the following definition.

Definition [Gateaux Derivative, Sensitivity Derivative]: For
any given p ∈ P , let w(·; p) ∈ H1

0 (Ω) be defined as the
solution to (1) and let h be an admissible variation of p (i.e.
p+ εh ∈ P for ε sufficiently small). Then the sensitivity of w
with respect to the variation h at the parameter p is defined
as

sh(x; p) = lim
ε→0

w(x; p+ εh)− w(x; p)

ε
for x ∈ Ω. (2)

We use the terminology: sh is the sensitivity of w to the
variation h.

By viewing (1) as a mapping from P ×H1
0 → H−1 we

can apply the implicit function theorem to derive a sensitivity
equation that describes sh. In particular, through implicit
differentiation of (1, with p → p + εh) with respect to ε
and assuming equality of mixed partial derivatives we have

−∇ · (p∇sh) = ∇ · (h∇w) , sh ∈ H1
0 (Ω), (3)

where f is independent of h. We point out that
• Regardless of the application, the sensitivity equation

is always linear in the sensitivity sh, regardless of
whether or not the partial differential equation model is.
Moreover, it shares the same Newton linearization as the
model equation. Thus, sensitivity equations can often
be approximated for a fraction of the cost of computing
approximations of the model equations.

• For parametric constants (p ∈ R), the scaled sensitiv-
ity is defined as spp0 where p0 is a nominal value
of the parameter p. Comparing magnitudes of scaled
sensitivity variables provides a means of determining
which parameters are important in the model [5]. When
comparing parametric variations, it is important that the
sizes of the variations are comparable: ‖h1‖ = ‖h2‖,
then ‖sh1

‖ � ‖sh2
‖ implies that the variation h1 has a

more significant influence on the solution.
• Equation (2) with small values of ε can be used to

estimate the solution at nearby parameter values by
using truncated Taylor series expansions [6], [7], [8].

A. Fréchet Sensitivity Analysis

A stronger notion than the (Gateaux) sensitivity derivative
above is the Fréchet derivative (cf. [9], [10] for a more
generic definition). Let P0 be a ball in W 1,∞ ∩H1.

Definition [Fréchet Derivative]: For any p ∈ P consider the
solution w(·; p) of (1) as a mapping from P → H1

0 . Then the
solution operator is Fréchet differentiable at p if there exists
a bounded linear operator [Dpw] : P0 → H1

0 such that

lim
‖h‖→0

‖w(·; p+ h)− w(·; p)− ([Dpw]h) (·)‖
‖h‖

= 0.

Then [Dpw] is the Fréchet differential at p.

Note that if the solution map is Fréchet differentiable, then
it is also Gateaux differentiable. This implies the following
useful result

w(x; p+ h̃) ≈ w(x; p) +
(

[Dpw] h̃
)

(x), x ∈ Ω,

holds for every small h̃. Replacing h̃ by εh in the expression
above gives the estimate that

w(x; p+ εh) ≈ w(x; p) + ε ([Dpw]h) (x)

and motivates the role of sensitivity analysis in uncertainty
quantification. In fact,

sh ≡ [Dpw]h. (4)

As above for the Gateaux derivative, we can derive an
equation for the Fréchet derivative operator. To simplify the
exposition, we will use the notation H1 = H1

0 and H2 =
H−1 and define A(p) : H1 → H2 for the (p dependent)
elliptic operator in (1) as A(p)w = −∇·(p∇w) (using weak
derivatives). Then, if f ∈ H2, the unique solution to the
equation A(p)w = f is

w = [A(p)]
−1
f.

We can derive the expression for [Dpw] acting on any h as

[Dpw]h = − [A(p)]
−1A(h) [A(p)]

−1
f (5)

or
[Dpw]h = − [A(p)]

−1A(h)w (6)

This expression can be derived directly from the sensitivity
equation for (1),

[A(p)] sh = −A(h)w or −∇ · (p∇sh) = ∇ · (h∇w)

which can be manipulated using (4) to give the expression
(6).

We now justify the formalism above by proving the
Fréchet differentiability of w with respect to p.

Theorem [Fréchet Differentiability of Solutions to (1)] Sup-
pose w ∈ H1

0 (Ω) is the solution to (1) where f ∈ H−1(Ω)
and p ∈ P . Then w is Fréchet differentiable with respect to
p.

Proof: For any variation h satisfying p + h ∈ P , let
wh be the unique solution to

−∇ · ((p+ h)∇wh) = f. (7)

Thus, using (1) and rearranging terms

−∇ · (p∇(wh − w)) = ∇ · (h∇wh). (8)

Multiplying both sides by (wh − w), integrating by parts,
and using the bounds on p leads to

pmin‖∇(wh − w)‖2 ≤ −
∫

Ω

h∇wh · ∇(wh − w).

Using the fact that h is bounded and Hölders inequality,

pmin‖∇(wh − w)‖ ≤ ‖h‖∞‖∇wh‖. (9)
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Similarly, multiplication of (7) by wh and integrating by parts
yields ∫

Ω

(p+ h)‖∇wh‖2IRd =

∫
Ω

fwh.

Since p+ h ∈ P and using the duality pairing

pmin‖∇wh‖2 ≤ ‖f‖−1‖wh‖1 ≤ C‖f‖−1‖∇wh‖ (10)

by Poincaré’s inequality. Combining (9) and (10),

‖∇(wh − w)‖ ≤ C‖h‖∞‖f‖−1. (11)

Let vh ≡ [Dpw]h be the solution to (6), then subtracting
−∇ · (p∇vh) = ∇ · (h∇w) from (8) leads to

−∇ · (p∇(wh − w − vh)) = ∇ · (h∇(wh − w)) .

Multiplying both sides by (wh−w−vh), integrating by parts
and applying similar arguments as above,

‖wh − w − vh‖1 ≤ C ′‖h‖∞‖∇(wh − w)‖
≤ C ′′‖h‖2∞‖f‖−1

using (11), where the constants C ′ and C ′′ depend on pmin

and Ω, but are independent of h. Using (4) and substitution
for vh, we see that

lim
‖h‖∞→0

‖wh − w − [Dpw]h‖1
‖h‖∞

≤ lim
‖h‖∞→0

C ′′‖h‖∞‖f‖−1

= 0.

Thus, the solution to (1) is Fréchet differentiable with respect
to p.

Note that the use of Fréchet derivatives for inverse prob-
lems is well known in geosciences, cf. [11]. Their use in
characterizing a first order relationship between (a finite set
of) model parameters and discrepancies between the model
and measured data is similar to the spirit of the uncertainty
quantification applications we have in mind. However, the
role of the Fréchet derivative in those applications is closely
tied to identifying parameters and the inversion of the deriva-
tive is equivalent to a root finding problem for identifying
the parameters. As geophysical models become more com-
plicated, and analytic expressions for the Fréchet operator are
no longer available, geoscientists turn toward sophisticated
optimization algorithms for the inversion problem.

We present a few of the approaches for finding ap-
proximations to the linear operator [Dpw] in the sections
below. These approaches illuminate the need to avoid direct
calculation of the operator for partial differential equations
of interest and motivate our methodology of using the
formalism of the Fréchet derivative operator to compute only
a few of the most significant variations. Note that if we have
access to an approximation of [Dpw], it would lead to fast
calculation of sh at the point p. However, our interest is to
estimate the dominant spectra and Schmidt vectors (defined
below) of the Fréchet derivative operator.

B. Direct Finite Element Approximation

Although considerably more expensive, we can compute
an approximation to [Dpw] in one monolithic calculation. If
we consider (6), and operate on both sides with A(p), we
have

A(p) [Dpw]h = −A(h)w.

We introduce finite element approximations to solve for the
action of the Fréchet operator on approximating subspaces.
Define ap(w, v) = (p∇w,∇v), then a weak form of the
Fréchet sensitivity equation has the form

ap([Dpw]h, v) = −ah(w, v) ∀v ∈ H1
0 (Ω).

Writing h =
∑n
j=1 φj(x)hj , w =

∑n
j=1 φj(x)wj , etc., in

Sn ⊂ H1
0 (Ω) and choosing v = φi leads to the Galerkin

finite element approximations of the Fréchet derivative

ah(w, v) =

∫
Ω

h∇w · ∇v =

∫
Ω

n∑
j=1

φjhj

n∑
k=1

wk∇φk · ∇φi

[Ah]ij =

∫
Ω

(
n∑
k=1

wk∇φk

)
· ∇φiφj

and thus, [Ahh]i = ah(w, φi) when w ∈ Sn. The com-
putation of ap(φj , φi) = [Ap]ij follows standard finite
element procedures, leading to a direct calculation for a
finite dimensional representation of [Dpw] as −A−1

p Ah.
Furthermore, sh = −A−1

p Ahh is the representation of sh
in the finite element basis.

C. Action on a Basis

Since [Dpw] is a linear operator, we can consider its
action on a (local, finite element) basis. Thus, if h ∈
span{φ1, . . . , φn} ≡ Sn ∈ P , then

h = [φ1 · · ·φn]h and [Dpw]h = [sφ1
· · · sφn

]h

where h ∈ IRn is the representation of h in Sn, and sφi

is the (Gateaux) sensitivity derivative of w with respect to
variation φi. Thus, the matrix [sφ1

· · · sφn
] provides the finite

dimensional representation of [Dpw] in Sn. Here we directly
see that direct computation of [Dpw] will not be feasible
except in demonstration problems, since we essentially need
to compute sensitivity variables for every function in the
basis.

D. Adjoint Methods

Rather than solving a sensitivity equation for each param-
eter, we could resort to adjoint methods (cf. [12]), as the
computational tradeoffs typically favor adjoint methods as
the number of “input variables” increases. This would be
the case if we are interested in output functionals but all
computational advantages of this approach vanishes when
there is an infinite dimensional output as well. If applicable,
the adjoint variables themselves would provide the desired
information on how variations would influence functionals
of interest.

Therefore, our interest in the formalism of the Fréchet
derivative operator is simply to motivate an approximate

1791



spectral decomposition that gives us a means to feasibly
compute a number of the most significant variations. As we
shall see, this methodology combines a solution algorithm for
solving sensitivity equations as well as the approximation of
adjoint operators.

E. Hilbert-Schmidt Operators and Their Decompositions

The fact that computing approximations to Fréchet deriva-
tive operators is intractable can be overcome for our purposes
by utilizing the following (cf. [9])

Theorem [Hilbert-Schmidt Decomposition] If F = [Dpw]
is a compact operator from H1 → H2, then it has the
representation

sh = [Dpw]h =

∞∑
i=1

ξiσi〈ψi, h〉

where {ψi} and {ξi} are eigenvectors of F∗F and FF∗,
respectively, and σi ≥ 0 are the square roots of the corre-
sponding eigenvalues. The Schmidt functions {ψi} and {ξi}
form orthogonal bases for H1 and H2, respectively.

Thus, compact operators have a decomposition that is
analogous to the singular value decomposition for matri-
ces. We can then seek the dominant Schmidt functions
{ψ1, ψ2, . . . , ψr} that describe the parameter variations lead-
ing to the most significant changes in the solution (measured
by the values of σ1, . . . , σr, respectively). Therefore, we refer
to these as the most significant variations. Our proposed
methodology is to utilize a subspace iteration algorithm that
approximates dominant eigenvectors for the operator F∗F .

For the elliptic boundary value problem (1), we can show
that the Fréchet derivative operator is compact and thus has
a Hilbert-Schmidt decomposition.

Theorem [Compactness of the Fréchet derivative operator]
The Fréchet derivative operator, [Dpw], defined in Section
III A, is compact.

A sketch of the proof follows.
Proof: Let ηn =

√
2 sin(nπx)/(

√
1 + n2π2), then

{ηn} is an orthonormal basis for P0 (in the H1-inner
product). Then sn = [Dqw]ηn solves (6). Multiplying both
sides by sn, integrating by parts and applying Hölder’s
inequality, we find

pmin‖∇sn‖2 ≤ ‖ηn∇w‖‖∇sn‖.

Applying the Poincaré inequality, we have the estimate that

‖sn‖ ≤ c‖∇w‖‖ηn‖∞.

Since each basis function is bounded (‖ηn‖∞ ≤
√

2/(nπ))
and w is fixed, {‖[Dpw]ηn‖} is an `2 sequence implying the
compactness of [Dpw].

IV. NUMERICAL RESULTS

In a preliminary study, we will use our model problem
to show the utility of the most significant variations. In this
problem, we show that one particular variation leads to large
solution sensitivity. Thus, if this variation is accounted for

in determining uncertainty quantification, we account for a
dominant portion of the solution sensitivity.

We now present most significant variations for one in-
stance of our Model Problem given in (1). We arbitrarily
chose functions p(x) = (1 +x)2 and f(x) = 27x4−72x3−
21x2 + 21x+ 6 over Ω = (0, 1). The finite element solution
is shown in Fig. 1.
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Fig. 1. Solution to (1) on left, first four most significant variations

For this problem we can easily compute finite dimensional
approximations to [Dpw] that can be used to find the most
significant variations to the parameter p(x). These are also
plotted in Fig. 1. Note that these variations are all normalized
so that ‖ψi‖ = 1. The dominant variation indicates that
the largest change in the solution would be realized if p
were varied somewhat sharply towards the left end. This
is the location where p is the smallest, but one would not
necessarily expect the solution to vary this dramatically (and
any intuition would have to weigh the values of f(x) and the
influence of the boundary conditions). Note that the dominant
singular values are 0.01488, 0.00394, 0.003284, 0.00233, . . .
indicating a substantial drop off from σ1 to σ2.

In Fig. 2, we compare the sensitivity of the solution w
with respect to a variation ψ1 (dashed) with sensitivities of
w with respect to a typical Fourier basis (scaled to have
unit L2-norm). We see that there is a dramatic difference
between the two sets and that a similar perturbation leads to a
larger variation in the solution if ψ1 is used. For comparison
purposes, we also compare sensitivities of the solution to
each of the first six most significant variations. Note that the
sensitivity of w to ψ1 is sψ1

= σ1ξ1.
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Fig. 2. Sensitivity of solution w with respect to Fourier basis compared
to the most significant variation ψ1 (left); and the sensitivity of w with
respect to the four most significant variations (right). Note the substantial
sensitivity the solution exhibits to ψ1 over any of the Fourier basis functions
even though all variations are scaled to have L2-norm one.

Note that the decay of the singular values can lead to
important conclusions about the uncertainty analysis. For
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example, small values changes of σi would lead to small
changes in w. Thus, there is no need to investigate the
contribution to the uncertainty intervals from components ψi
associated with these small values.

A. Proposed Algorithm for Approximating Most Significant
Variations

In this section, we will exploit the operator theoretic
properties of the Fréchet derivative to create an algorithm
for approximating the most significant/worst case parametric
variations. As outlined below, we develop a variant of the
power method for computing the dominant eigenfunctions
of the F∗F operator. As will be shown below, this can
be implemented by iterating between solutions to sensitivity
equations and adjoint equations.

It is, of course, not feasible to compute the Fréchet deriva-
tive operator in practical distributed parameter problems.
With the knowledge that the operator is Hilbert-Schmidt, it
makes sense to seek finite dimensional approximations of
the most significant variations and their associated influence
on the model solution. At the same time, we want to design
an algorithm that avoids the explicit formulation of F . This
leads us to the following natural first algorithm

Algorithm [Power Method] For the uncertainty quantifi-
cation problem, we are most interested in the dominant
eigenspaces of the operator F∗F = [Dpw]∗[Dpw]. It is then
natural to apply a power method to approximate the desired
eigenfunctions. Note that the application of F to a variation
h can simply be carried out by solving a linear sensitivity
equation. Similarly, it is straightforward to build the adjoint
equations associated with the linear sensitivity equations. We
outline the power method applied to one function below as
implemented for our model problem

1) Let h0 be a given function
2) for n = 1, . . . until convergence

• h̃n = [Dpw]hn−1: In other words, let h̃n be the
solution to

−∇ ·
(
p∇h̃n

)
= ∇ ·

(
hn−1∇w

)
• hn = [Dpw]

∗
h̃n: In other words, let hn be the

solution to the system

−∇ · (p∇r) = h̃n

hn = −∇w · ∇r

• hn := hn/‖hn‖. This step is for numerical stabil-
ity. Note that we can also keep track of

λn−1 = 〈hn−1, [Dpw]
∗

[Dpw]hn−1〉
= 〈[Dpw]hn−1, [Dpw]hn−1〉
= 〈h̃n, h̃n〉

as an approximation to the dominant eigenvalue.
3) ψ1 = hn

4) sψ1
= h̃n

5) σ1 ≈
√
λn−1

This algorithm converged to the values in Fig. 1 for our
simple model problem. The extension of the above algorithm
to multiple variations based on subspace iteration is natural.

V. CONCLUSIONS AND FUTURE WORK
As we see, there is a substantial difference in the output

of the solution with unit perturbations in the most significant
variations compared with other “natural” functions that could
be used. Thus, when applying the methodology in [1], [2],
accounting for the most significant variations could make a
dramatic difference in actuator/sensor locations.

A future study will be concerned with justifying the
theoretical properties of the Fréchet derivative for a wider
class of problem settings. This includes cases where the
parametric dependence occurs through boundary variations
as well as extensions to nonlinear and parabolic problems.
A first step towards the justification for time dependent
problems recently appeared in the literature [13]. However,
the predominant effort of the ongoing work will be in the
development and implementation of efficient software for
computing these most significant variations.

Note that in principle, the adjoint of the Fréchet derivative
operator needs to be worked out to implement our proposed
algorithm. It is possible that discretized adjoints would
work for this algorithm if their use could be justified. This
would allow the introduction of automatic differentiation
methods and allow for more reusable software. Therefore,
the consistency of the discrete adjoint is important for easy
applicability to a wide range of applications.
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