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Abstract— This paper describes a new algorithm for the iden-
tification of single-input single-output Hammerstein systems
using the multivariable output error state space (MOESP) class
of subspace identification algorithms. The algorithm consists
of three main steps. First, the MOESP algorithm is used to
determine the system order and estimate two of the state space
model matrices. Second, a least squares problem is solved
to minimize the prediction error. Finally, the global search
optimization is needed to be used to estimate optimal values
for the remaining parameters. Performance of the model was
evaluated by simulating a model of ankle joint reflex stiffness, a
well known Hammerstein system. The results demonstrate that
the algorithm estimated the model parameters very accurately
in the presence of additive, output noise.

I. INTRODUCTION

The Hammerstein structure consists of a static nonlinearity

followed by a linear system [1] as illustrated in Fig. 1. Many

physical systems can be modeled using the Hammerstein

structure including the reflex stiffness in human ankle joint

[2] and neural integrator model of the human VOR [3].

Consequently, the problem of identifying models of Ham-

merstein structure is an active research area. A variety of

methods have been proposed for this purpose including the

stochastic method, the separable least square method (SLS),

the subspace method, etc [4], [5], [6], [7], [8]. Some of these

methods are available in a MATLAB toolbox [9].

MOESP is a class of subspace model identification (SMI)

methods that estimates state space models of linear systems

using only input and output measurements. The methods

require no a priori knowledge of the order of the system,

are computationally efficient, and can be extended to iden-

tify systems with different types of noises [10], [11]. The

MOESP algorithm was proposed in [12] and [13] and is

available as part of MATLAB SMI toolbox [14]. The linear

MOESP was extended to deal with multiple-input multiple-

output (MIMO) Hammerstein systems [7]. The method

works by transforming the SISO nonlinear system into a

MISO linear system. It is important to note that the algorithm

estimates the order of each linear pathway as well as their

parameters. Consequently, there is no need to know the order

a priori as is the cases with other parametric methods such

as those based on ARMA models.

K. Jalaleddini is with the Department of Biomedical Engineering,
McGill University, 3775 University, Montréal, Québec H3A 2B4, Canada.
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The resulting Hammerstein models using subspace algo-

rithm have excellent predictive capabilities but its parameters

are difficult to relate to the nonlinearity and/or linear dynam-

ics of the original nonlinear SISO system. This is because

the transformed MISO system has many more parameters

than the SISO system and each MISO parameter depends

on both the nonlinearity and the linear dynamics. Thus,

when the method described in [7] was used in [15], [16]

to estimate a state space model for joint stiffness, a number

of additional steps were required to determine the underlying

nonlinearity and linear dynamics. In particular, the estimated

state space model was simulated using the experimental

input to predict the noise-free outputs and then time-domain

approaches were used to estimate the linear dynamics and

shape of the nonlinearity [15], [16].

In the present paper, a MOESP algorithm similar to that

presented in [7] was selected due to its potential of extension

to closed-loop or time-varying system [12], [13], [17]. Two

state space matrices that relate the states to the derivative of

the states (A in Fig. 1) and the one that relates the states

to the output (C in Fig. 1) are derived using the approach

provided in [7]. At the next step, an algorithm proposed to

estimate the nonlinearity as well as the state space model

matrices that relate the input to the states (B in Fig. 1) and

the input to the output of the system (D in Fig. 1). This

approach uses the mathematical framework in [18], proposed

for identification of sandwich systems comprising two static

nonlinear elements surrounding a linear dynamic block. The

optimality of the algorithm is then investigated by imposing

certain conditions on the input signal.

There are some significant differences between the al-

gorithm presented here and that proposed in [18]. The

linear component of the Hammerstein system is modeled

by its state space in this paper whereas in [18] it was

modeled as impulse response function (IRF). Therefore,

using the MOESP algorithm reduce the number of unknown

parameters dramatically. Thus, the unknown parameters in

[18] were the total IRF samples as well as the coefficient

of nonlinearities whereas the unknown parameters in our

method are part of the state space matrix elements as well

as the coefficient of nonlinearity. This should result in better

estimates in the presence of noise.

The major advantage of the proposed algorithm over the

previously developed MOESP-based algorithm [5], [15], [16]

is that it does not over parameterize the system model.

Consequently, it gives explicit information on the coefficient

of nonlinearity and the state space model of the linear com-

ponent. In other words, using the approach presented here,
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Fig. 1. Hammerstein system model.

the continuous-time representation of the nonlinearity and

the (IRF) of the linear component can be easily computed.

The other advantage of this algorithm over stochastic and

correlation-based algorithms is that it has the potential of

extension to closed-loop systems. This is due to the fact that

MOESP algorithm and in particular, error in variable (EIV-

MOESP) provides unbiased result in closed-loop case. The

proposed algorithm is simple and inexpensive in computation

since it is not iterative.

The paper is organized as follows. Section II formulates

the Hammerstein system model. Section III presents the

new identification algorithm, Section IV presents simulation

results that demonstrate the efficiency of the method. Finally,

Section V concludes the paper with some summary remarks.

II. PROBLEM FORMULATION

This section formulates the Hammerstein model used for

the identification algorithm. In this model, the nonlinearity

is expressed using a basis function expansion and the linear

subsystem is described using a state space model.

Consider a SISO Hammerstein discrete system as shown

in Fig. 1. This system comprises a static nonlinear block

followed by a dynamic linear system. The nonlinearity is

assumed to be a static nonlinear function given by:

w(k) = f (u(k)) =

n∑

i=1

αigi (u(k)) (1)

where, gi(·) is the ith basis function expansion of the nonlin-

earity which can be power polynomial, Tchebyshev, Hermite,

etc and αi is the corresponding ith coefficient. Assume also

that N samples are recorded, i.e., k ∈ {0, · · · , N − 1}
for the input, u(k), and output y(k) of the Hammerstein

system. The signal w(k) is an intermediate signal that is not

available and cannot be recorded. Further, assume that the

linear component can be described by the state space model:
{

x(k + 1) = Ax(k) +Bw(k)

y(k) = Cx(k) +Dw(k)
(2)

where, x(k) is the state of the linear subsystem and assumed

to be a m× 1 vector. Moreover, Am×m, Bm×1, C1×m and

D1×1 are state space model matrices and y(k) is the output

of the system. Assume the elements of matrices B and D

are represented as:

B = [b1, · · · , bm]
T

D = [d] (3)

The measured output ỹ(k) is contaminated with additive

noise, n(k):
ỹ(k) = y(k) + n(k) (4)

Define the following vectors:

α = [α1, · · · , αn]
T

(5)

U(k) = [g1 (u(k)) , · · · , gn (u(k))]
T

(6)

Substituting (5) and (6) into (2) with (1) yields:

{

x(k + 1) = Ax(k) +BαU(k)

y(k) = Cx(k) +DαU(k)
(7)

where Bα and Dα are given by:

Bα =






b1α1 · · · b1αn

...
. . .

...

bmα1 · · · bmαn




 (8)

Dα =
[
dα1 · · · dαn

]
(9)

Note that this parametrization of the system is not unique.

For any arbitrary scalar β, the vectors βB, βD and β−1α

represent the same matrix Bα and Dα. This means that the

identification algorithm cannot distinguish between these two

sets. The following constraint will be used in the rest of the

paper to obtain a unique parameterization.

Assumption 1: Let || [α1, · · · , αn]
T
|| = 1, where || · || is

the two norm. Moreover, α1 must be positive.

Note that in (7), the total Hammerstein system is modeled

as a multi-input single-output (MISO) system, so that the new

input to the new system is U(k) which is a n×1 vector. On

the other hand, the matrices estimated with the identification

algorithm have the following structure:

{

x̂T (k + 1) = ÂT x̂(k) + B̂TU(k)

ŷ(k) = ĈT x̂T (k) + D̂TU(k)
(10)

where, the subscript T in (10) is due to the fact that the

identification is achieved up to a similarity transform with the

transformation matrix T . The hat symbol is used to indicate

that the estimates may have associated errors. Based on the

similarity transform, the following can be shown:

B̂T ≃ T−1Bα =






b
′

1α1 · · · b
′

1αn

...
. . .

...

b
′

mα1 · · · b
′

mαn




 (11)

D̂T ≃ Dα =
[
dα1 · · · dαn

]
(12)

The vector B
′

=
[

b
′

1, · · · , b
′

m

]T

represents the effect of

similarity transform i.e, B
′

= T−1B.

III. IDENTIFICATION ALGORITHM

First, the MOESP algorithm is applied to the constructed

input (6), and the measured noisy output ŷ(k), to determines

the system order at the first step, and then estimate the system

matrices ÂT and ĈT . This estimation is described in [12],

[13], [10] and [7] and is not repeated here. The objective

now is to estimate the matrices B̂T , D̂T and the coefficient

of basis expansion of the nonlinear block α.
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The output of a system like (10) can be expressed using

the state space representation matrices at each discrete time

[10]:

ŷ(k) =

k−1∑

τ=0

ĈT Â
k−1−τ
T B̂TU(τ) + D̂TU(k) (13)

Definition 1: The Kronecker product of two matrices F ∈
Rp×q and G ∈ Rr×s is denoted by F ⊗G ∈ Rpr×qs and is

given by [19]:

F ⊗G =






F11G · · · F1qG
...

. . .
...

Fp1G · · · FpqG




 (14)

One of the properties of Kronecker product is:

vec (FGH) =
(
HT ⊗ F

)
vec(G) (15)

where F , G and H are matrices with arbitrary dimension

and the function vec(·) stacks the columns of a matrix on

top of each other in a tall vector.

Now using the Kronecker product expressed in (15), the

output of the system given in (13) can be expressed as:

ŷ(k) =

[
k−1∑

τ=0

UT (τ)⊗ ĈT Â
k−1−τ
T

]

vec
(

B̂T

)

+
[
UT (k)⊗ Il

]
vec

(

D̂T

)

(16)

where Il is identity matrix with dimension l = 1. Define the

following matrices:

Y0,N,1 = [ỹ(0), · · · , ỹ(N − 1)]
T

∆0,N,1 = [n(0), · · · , n(N − 1)]
T

ΓN =

[

0, · · · ,
N−2∑

τ=0

UT (τ)⊗ CAN−2−τ

]T

ΦN =
[
UT (0)⊗ Il, · · · , U

T (N − 1)⊗ Il
]

B̄ = vec(B̂T )

D̄ = vec(D̂T ) (17)

θαb′d =






b
′

1α1, · · · , b
′

mα1, dα1

...
. . .

...
...

b
′

1αn, · · · , b
′

mαn, dαn






Now, (16) can be rewritten as a matrix equation:

Y0,N,1 = Ψθ +∆0,N,1 (18)

where the matrix Ψ is a N × n(m+ 1) data matrix:

Ψ = [ΓN ,ΦN ] (19)

and the vector θ contains the unknown parameters stacked

in a single vector:

θ =

[
B̄

D̄

]

=

[
vec(B̂T )

vec(D̂T )

]

(20)

Algorithm 1: This algorithm estimates the unknown pa-

rameters b
′

1, · · · , b
′

m, d, α1, · · · , αn as follows.

(a) Initialization:

Construct the matrix:

Ξ =[Ψ1, · · · ,Ψm,Ψnm+1,Ψm+1, · · · ,

Ψ2m,Ψnm+2,Ψ2m+1, · · · ,Ψn(m+1)]
T (21)

where, Ψi is the ith column of Ψ, the data matrix

defined in (19). This rearranges the data matrix Ψ to be

consistent with the structure of a new unknown vector.

In this unknown vector, the first m+1 parameters cor-

respond to α1, the second m+1 parameters correspond

to α2, etc. In other words, the new unknown vector is

[b
′

1α1, · · · , b
′

mα1, dα1
︸ ︷︷ ︸

m+1

, · · · , b
′

1αn, · · · , b
′

mαn, dαn
︸ ︷︷ ︸

m+1

]T

(b) Main algorithm:

– Perform the following least square estimation:

ξ̂ =
(
ΞTΞ

)−1
ΞTY0,N,1

=[ξ̂1, · · · , ξ̂n(m+1)]
T (22)

– Construct the following matrix:

θ̂αb′d =






ξ̂1 · · · ξ̂m+1

...
. . .

...

ξ̂m(n−1)−1 · · · ξ̂n(m+1)




 (23)

– Perform the singular value decomposition (SVD):

θ̂αb′d = Uαb
′
dΣαb

′
dV

T

αb
′
d

(24)

– Let u1 be the first column of Uαb
′
d and v1 be the

first column of Vαb
′
d. Let also s be the sign of the

first element of u1.

s = sgn (u1(1)) (25)

– The unknown system parameters can now be esti-

mated using the following:

[α̂1, · · · , α̂n] =su1

[b̂
′

1, · · · , b̂
′

m, d̂] =sΣαb
′
d(1)v1 (26)

where, Σαb
′
d(1) is the first element of Σαb

′
d.

Lemma 1 [18]: Let Θ ∈ Rn×(m+1) be nonzero and Θ =

UΣV T =
∑min(n,m+1)

i=1 µiσiv
T
i be its SVD decomposition,

where:

U = [µ1, · · · , µn]

V = [v1, · · · , vm+1]

σ1 ≥ · · · ≥ σmin(n,m+1) (27)
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Fig. 3. Identified Hammerstein system: (a) Estimated nonlinearity; (b)
Impulse response of the linear component.
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Fig. 4. Measured output along with the estimated output.

It is evident that there is good agreement between coeffi-

cients estimated for the nonlinearity (α̂) and the one that

are originally used used in the simulation (40) and (37).

This can also be seen in Fig. 3(a) which shows that the

estimated nonlinearity closely resembles a half wave rectifier.

To test the efficiency of the algorithm on the identification

of the linear component of the Hammerstein system, the

impulse response of the estimated system was computed and

is superimposed on the impulse response of the simulated

system in Fig. 3(b). It is evident again that there is an

excellent agreement between two IRFs.

Variance accounted for (VAF) was then calculated based

between the predicted output and the noise-free, simulated

output using the equation:

VAF =

(

1−
var (ŷ − y)

var (y)

)

(41)

where, var(·) is the variance estimator. The VAF was 99.99%

for this identification demonstrating that the model was

estimted very accurately despite the presence of noise. Fig. 4

shows a five second segment of the simulated and predicted

torques.

V. CONCLUSION

An algorithm for identification of Hammerstein is pre-

sented. The algorithm consists of three main steps. First,

MOESP algorithm is used to determine the system order

and estimate two of state space model matrices. Second, a

least square problem is solved to minimize the prediction

error. Finally, global search optimization for estimation of
parameters is modeled as a singular value decomposition

problem to estimate optimal value for the rest of parameters.

Performance of the model was evaluated by simulating a

model of ankle joint reflex stiffness, a well known Hammer-

stein systems. The results demonstrated that the algorithm

estimated the model parameters very accurately despite the

presence of additive, output noise.
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