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Abstract— Buildings account for about 40% of total energy
use in the United States, according to the U.S. Department
of Energy. Consequently, there has been a growing interest
in green buildings, i.e., energy-efficient buildings, particularly
control strategies for their HVAC systems. In this paper,
we present a receding-horizon supervisory control strategy
for optimizing total electric cost, which is the sum of an
energy usage cost and an infinity-norm-like demand charge.
The controller utilizes an optimizer to minimize an objective
function whose evaluation involves simulation of the building
energy system. This paper also presents a Matlab toolbox we
developed for co-simulation and simulation-based optimization
with the building energy simulation software EnergyPlus. The
toolbox was applied to a benchmark example showing the
potential of the proposed controller.

I. INTRODUCTION

A heating, ventilation, and air conditioning (HVAC) sys-

tem provides heating, ventilation and/or cooling within a

building to control its indoor climate. According to the U.S.

Department of Energy, buildings account for about 40% of all

energy use in the United States ([1]). For this reason, green

buildings (i.e., energy-efficient buildings) have been of strong

interest not only in the buildings and HVAC community but

also in the control community. From the control perspective,

a building energy system is a highly complex and stochastic

system that needs to be controlled and optimized efficiently.

There are many factors affecting the performance of such

a system that need to be accounted for, e.g., occupancy

schedule and weather condition. Consequently, advanced

supervisory control is necessary to fully address problems

in designing low-energy buildings.

Model Predictive Control (MPC) is a control strategy that

uses a model of the plant to predict its future behavior so

as to optimize an objective function in a receding-horizon

manner ([2]). Interest in MPC for buildings and HVAC

control is growing quickly despite its heavy computational

requirement and the need for a good building model ([3],

[4], [5], [6], [7]). In this paper, we developed a receding-

horizon optimal supervisory control strategy for the HVAC

system of a building in order to minimize the total electric

cost. While the aforementioned papers only considered as

the objective function either energy cost (the charge for the

amount of energy used) or demand charge (the charge for the
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maximum demand during peak demand periods), we sought

to minimize the sum of these costs. This total cost is the

actual amount billed to the customer by the utility company.

The optimization problem becomes more difficult to solve

because its objective function now consists of a sum and

an infinity-norm-like value which spans the entire billing

period instead of the much shorter prediction horizon of the

controller. To resolve this difficulty, we re-formulated the

optimization problem with a trade-off parameter between the

two cost components, as to be discussed in section III. In [8],

the author approached the same problem by assuming a fixed

upper bound on the peak demand and minimizing only the

energy cost. This approach is certainly less flexible than ours

because of the hard constraint on demands, which could lead

to significant increase in energy cost or even infeasibility of

the optimization. To the extent of our knowledge, our paper

is the first attempt to directly minimize the total cost.

In order to solve the optimization problem within the

supervisory controller, we employed simulation-based opti-

mization method, which has been investigated in the litera-

ture for design and control of building energy systems ([9],

[10], [11], [6], [5]). Similar to [6], EnergyPlus was used to

carry out the building energy simulation. However, instead

of using a third-party optimization program, e.g., GenOpt as

in [6], we used the so-called co-simulation technique ([12]),

in which Matlab directly executes the EnergyPlus model and

exchanges data with it on-the-fly. This allows us to utilize the

standard Global Optimization Toolbox ([13]) in Matlab for

optimization. As a result, a Matlab toolbox was developed

to facilitate simulation-based optimization and control for

buildings and HVAC systems.

The optimal supervisory control problem of HVAC sys-

tems is introduced and formulated in the next section.

Section III develops our receding-horizon supervisory control

strategy. Section IV presents an implementation of the pro-

posed control strategy in a Matlab toolbox. The effectiveness

of this control strategy is demonstrated by simulation results

for a benchmark small office building in section V. The

final section concludes the contributions of this paper and

describes possible future research directions.

II. OPTIMAL SUPERVISORY CONTROL PROBLEM

An optimal supervisory controller for an HVAC system

determines the optimal control modes and set-points that

minimizes energy cost, or total energy input, of the system

while maintaining a comfortable and healthy environment

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 4416



in the building ([14], [15]). The problem of designing such

a controller is significantly complex due to a large num-

ber of factors such as HVAC system type (electric-driven

system, gas-driven system, with or without energy storage,

etc.), equipment characteristics, utility rate structure, weather

condition, load profile, occupancy schedule, etc.

In this paper, we consider the optimal supervisory control

problem for an electric-driven HVAC system with the ob-

jective function being the total electric cost of the HVAC

system. In a demand-based tariff for commercial energy

customers, the electric cost for a billing period (often a

month) consists of three parts:

• Basic charge: the fixed meter charge;

• Energy charge: the charge for the amount of energy

used by the customer during the billing period;

• Demand charge: the charge for the maximum electric

demand of the customer during the peak demand hours

of the billing period.

Electric power demand and energy are measured over fixed

time intervals ∆T (often 15 minutes or one-half hour). The

total cost can then be written as follows ([14]):

cost = Cb +
∑N−1

k=0
Cu,kPk∆T +maxk∈P {Cd,kPk} (1)

In (1), N is the number of time intervals in a billing period

and Cb is the fixed basic charge. For each time interval

k, 0 ≤ k ≤ N − 1, Pk is the average electric demand

of the HVAC system (kW), Cu,k is the cost per unit of

energy used ($/kWh), Cd,k is the cost per unit of demand

($/kW), and P ⊆ {0, . . . , N − 1} is the set of peak demand

intervals (or critical intervals) over which the demand charge

is imposed. On the right hand side of (1), the second term

is the energy charge and the last term is the demand charge.

Here, Cd,k is usually much higher than Cu,k, for example

by approximately 240 times in Pennsylvania, USA ([16]).

The objective of the supervisory controller is to determine

temperature set-points such that the total electric cost of the

HVAC system is minimized.

A. Problem Formulation

Let tk ≥ 0 be the instant at the beginning of time interval

k, k = 0, . . . , N − 1. We introduce the following variables

• xk ∈ R
n, n ∈ N, is the state of the HVAC system at

time tk (e.g., xk includes zone temperatures at tk);

• uk ∈ R
m, m ∈ N, are the zone temperature set-points

during time interval k;

• wk ∈ R
p, p ∈ N, is the disturbance to the HVAC system

at time tk (e.g., outside air temperature, solar radiation,

internal heat generated by humans and machines). In

most cases, predictions of wk are available, for instance

through weather forecast services and operation sched-

ules. Thus, the actual disturbance can be written as

wk = w̄k + ǫk where w̄k is the prediction of wk and ǫk
is the prediction error at tk.

The HVAC system is a dynamical system. To formulate

a mathematical representation of the optimal supervisory

control problem, we assume that the exact dynamics of the

HVAC system were known. Of course, such an assumption

cannot be satisfied in practice; however, it will be addressed

in the next section. For now, let us suppose that the exact

dynamics is available and is given by function f : R
n ×

R
m × R

p → R
n such that xk+1 = f(xk, uk, wk) for

k = 0, . . . , N − 1. Let g : R
n × R

m × R
p → R+ be a

function that computes the average electric demand of the

HVAC system during an interval, i.e., Pk = g(xk, uk, wk).
The optimal supervisory control problem can be formulated

as the following optimization:

minimize
u0,...,uN−1

J =

N−1
∑

k=0

Cu,kPk∆T +max
k∈P

{Cd,kPk} (2)

subject to xk+1 = f(xk, uk, wk), k = 0, . . . , N − 1

Pk = g(xk, uk, wk), k = 0, . . . , N − 1

xk ∈ Xk, uk ∈ Uk, k = 0, . . . , N − 1

in which:

• Xk is the state constraint, e.g., the range of zone

temperatures to maintain thermal comfort;

• Uk is the set of permissible set-point values; and

• constant Cb is dropped in the objective function J .

An optimal solution of (2) represents a trade-off between

the energy charge and the demand charge components of the

total cost. In order to reduce demand charge, i.e., to reduce

peak demand during critical periods, a load-shifting strategy

is often employed in which the cooling (heating) temperature

set-point is lowered (raised) during a certain period before

the peak demand hours so as to move part of the cooling

(heating) load to non-critical hours. Load-shifting certainly

increases energy usage, consequently energy charge, and may

thus increase the total cost. Finding a balance between the

two cost components, so that to minimize their sum, is the

objective of the optimal supervisory controller.

B. System Model

As mentioned above, one issue in formulating and solving

the optimization (2) is the impractical assumption that an

exact model of the HVAC system is available. Furthermore,

even if an exact model were available, it would be too com-

plex to be used directly. One could obtain an approximate

abstraction of the dynamics of the HVAC system by means of

system identification and model calibration ([17], [18], [14]).

A parametric mathematical model, in the form of ordinary

differential equations, of the system is derived using the first-

principles and its parameters are determined from the system

specifications and experiments ([17]). Usually the dynamics

f is approximated by a linear system of the form

xk+1 = Axk +Buuk +Bwwk

and function g is linear, as assumed in [7]. In this case, (2)

can be solved using mathematical programming, for example

using convex programming ([19]) if (2) is convex.

Using black-box models for f is another approach that

has been investigated in the literature. Typically, learning

algorithms are used to train a model of the HVAC system
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that empirically maps inputs to outputs ([14]). The method

employed in this paper is to use a specialized simulator (e.g.,

EnergyPlus) to simulate the HVAC and building system,

given concrete inputs and weather conditions, and compute

the objective value J . An advantage of this simulation-based

approach is the rigorousness of the model built inside the

simulator, which allows for higher accuracy of the com-

putation of J . However, because black-box models are not

differentiable, a derivative-free optimization algorithm (e.g.,

a direct search algorithm or an evolutionary algorithm) needs

to be used to solve (2), which usually results in considerable

computational inefficiency. Therefore, a trade-off between

model accuracy and optimization efficiency often needs to

be made. More details will be discussed in section IV.

III. RECEDING-HORIZON CONTROL

Another obstacle in solving optimization problem (2) is its

large size. With 15-minute time intervals (∆T = 15-minutes)

and one-month billing period, the number of variables could

be of the order of thousands. Combined with a simulation-

based optimization algorithm, it becomes very inefficient to

solve (2) directly. Furthermore, acceptable predictions w̄k of

disturbance wk are often available only for a short horizon

of time, typically a day or two. Thus, solving (2) requires an

approximation method that can resolve these two problems.

Recently, Model Predictive Control (MPC) has been

widely studied in the building and HVAC control literature

([3], [4], [5], [6], [7]). The fundamental idea is to solve a

large optimal control problem in a receding-horizon manner:

at any step, the optimization problem is solved only for a

short time horizon from the current state, then the first control

action in the solution is applied, and the procedure is repeated

at the next step.

The same idea can be applied to the problem in this

paper. In particular, at any step t, optimization problem (2)

is solved for only a horizon T , 0 < T ≪ N , and the

set-point values at the first step of the solution are applied.

Using this method, both aforementioned issues, namely the

large size of (2) and the limited availability of disturbance

predictions, are resolved. However, the objective function of

(2) consists of both a sum of cost values over time steps and

an infinity-norm-like cost function, i.e., the demand charge.

This poses a problem in rewriting (2) in the receding-horizon

form because the demand charge is evaluated over the entire

billing period while the receding horizon is only a small,

moving part of it. We propose the following receding-horizon

formulation of (2) to overcome this difficulty.

A. Receding-horizon formulation

Let t be the current time step, 0 ≤ t ≤ N − 1, and Dt

be the peak demand charge the system has reached prior to

time t, i.e., Dt = maxk∈P∩{0,...,t−1} {Cd,kPk} for t > 0
and D0 = 0. Clearly, Dt is non-decreasing with t and at

the end of the billing period, the final demand charge is

equal to DN . During the horizon of length T starting at

time t, the peak demand charge should be kept below Dt

if possible, however should also be allowed to exceed Dt if

that helps reducing the total cost. Therefore, we need a soft

constraint that tries to limit the demand charge below Dt

and if this is not satisfied, i.e., the demand charge exceeds

Dt, punishes the cost function for the excess amount. In the

rest of this paper, we assume that Cu,k = Cu and Cd,k =
Cd are constant, which is often the case in practice. The

above idea is implemented as the following receding-horizon

formulation of (2):

minimize
ut,...,ut+T−1,y

J(xt) = Cu

t+T−1
∑

k=t

Pk∆T + pty (3)

subject to xk+1 = f(xk, uk, w̄k), k = t, . . . , t+ T − 1

Pk = g(xk, uk, w̄k), k = t, . . . , t+ T − 1

xk ∈ Xk, uk ∈ Uk, k = t, . . . , t+ T

CdPk ≤ y, k ∈ P ∩ {t, . . . , t+ T − 1}

Dt ≤ y

in which pt > 0 is a penalty parameter and y is the prediction

of Dt+T . Actual disturbances wk, which are unknown at time

t, are replaced by their predictions w̄k in (3). If y = Dt in

the optimal solution of (3), the demand charge until time step

t+T is kept at Dt; otherwise, if y > Dt, the demand charge

exceeds Dt and a penalty equal to pt(y − Dt) is added to

the cost. Note that, to be precise, J(xt) should have been

Cu

∑t+T−1

k=t Pk∆T + pt(y −Dt), however the constant was

eliminated. After (3) is solved and ut is applied, Dt will be

updated as:

Dt+1 =

{

max {Dt, CdPt} if t ∈ P

Dt otherwise
(4)

Remark: In [3], [4], [5], [6], [7] that studied MPC for

building and HVAC systems, the objective function is either

the energy cost or the demand charge. In this paper, we seek

to minimize the total cost, which is the sum of these costs.

This requires us to re-formulate the optimization problem as

(3) and (4) because the objective function now consists of a

sum and an infinity-norm-like value.

In optimization problem (3), parameter pt determines

the trade-off between energy charge and demand charge,

i.e., between limiting peak demand and letting it increase.

Assuming that there exists an algorithm to solve (3), our goal

will be to design a strategy to compute pt so as to reduce

the final total cost (1). Let RH(p) denote the instance of

(3) with parameter pt = p. In Fig. 1, which illustrates the

proposed receding-horizon controller, the top-left box is the

optimization algorithm that solves (3) with parameter pt and

the bottom box is the algorithm that computes pt.

The rest of section III will present a general scheme for

computing pt, followed by two particular strategies.

B. General scheme for computing pt

Given a value of pt, we need to decide how good it is

compared to other possible values. Hence, one key point

in computing pt is to define a way to measure the quality

of each decision pt. In other words, we need a function
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Optimize RH(pt)

w̄t

Process f

wt

ut

Compute pt

xt

w̄t

pt

Fig. 1. Control structure: the top-left box is the optimizer to solve (3) with
parameter pt, the bottom box is the algorithm to compute pt.

Q(pt|xt, Dt, w̄t, . . . , w̄t+T−1) that returns a real value rep-

resenting the quality of pt given state xt, Dt, and predictions

w̄t, . . . , w̄t+T−1. We assume that the smaller this value is,

the better pt is.

Once a quality function Q is selected, we choose at each

step t the value pt = argminp Q(p|xt, Dt, w̄t, . . . , w̄t+T−1).
If pt cannot be solved analytically, it needs to be approx-

imated. In particular, learning algorithms can be used to

derive a strategy for computing pt based on historical data

of weather and building activities. In the following sections,

two quality functions are presented and their corresponding

pt computation strategies are derived. These strategies are

simple and do not exploit information on the current state as

well as disturbance predictions.

C. Cost increment function Qinc

At each time step t, a decision of pt will result in a control

sequence u⋆
t , . . . , u

⋆
t+T−1 (the optimal solution of (3)), which

may increase the total cost. This cost increment can be used

as a quality measure of pt. Specifically, the quality measure

is defined as

Qinc(·) = Cu

∑t+T−1

k=t P ⋆
k∆T + (y⋆ −Dt)

subject to y⋆ and all P ⋆
k being in the optimal so-

lution of RH(pt). It is straightforward to see that

argminp Q
inc(p|xt, Dt, w̄t, . . . , w̄t+T−1) = 1. Therefore,

using Qinc as the quality measure yields a stationary strategy

pt = 1, ∀t ≥ 0.

D. Predicted final total cost function Qtotal

Since predictions w̄k are only available for a short horizon

of time (often a day or two), it is difficult to predict the

future behavior of the system. However, at time step t, if we

assume that future disturbances wt+1, . . . , wN are similar to

past disturbances w0, . . . , wt, then we can approximate the

final cost by scaling up the current cost. Indeed, let Ct be the

accumulated energy charge from time 0 until t, i.e., C0 = 0
and Ct = Cu

∑t−1

k=0
Pk∆T for t > 0. A decision pt at time

t will result in a sequence of controls u⋆
t , . . . , u

⋆
t+T−1 and

an energy charge

Ct+T = Ct + Cu

∑t+T−1

k=t P ⋆
k∆T .

The final cost can be predicted by scaling up Ct+T and can

be used as a measure of quality of pt. Specifically, we define

Qtotal(·) =
(

Ct + Cu

∑t+T−1

k=t P ⋆
k∆T

) N

t+ T
+ y⋆

subject to y⋆ and all P ⋆
k being in the optimal so-

lution of RH(pt). Since Ct and N
t+T

are positive

constants, minimizing Qtotal is equivalent to minimiz-

ing Cu

∑t+T−1

k=t P ⋆
k∆T + t+T

N
y⋆, which implies that

argminp Q
total(p|xt, Dt, w̄t, . . . , w̄t+T−1) = t+T

N
. There-

fore, using Qtotal as the quality measure yields a linear

strategy pt =
t+T
N

for t ≥ 0.

IV. IMPLEMENTATION

In this section, an implementation of the simulation-based

optimization of receding-horizon problem (3) is discussed.

Simulation-based optimization of buildings and HVAC sys-

tems have been investigated for design ([9], [10], [11]) and

control ([5], [6]). Such an optimization algorithm consists

of two main components: a simulator to compute the ob-

jective function and a (usually derivative-free) optimization

algorithm.

A. Co-simulation with Matlab and EnergyPlus

Standard building energy simulation software such as

EnergyPlus, TRNSYS, and ESP-r are popularly used in the

buildings and HVAC community. For an existing or a newly

designed building, a model in one of these software is often

available (and in many cases, it is the only model available).

For this reason, we used a standard simulation software, in

particular EnergyPlus, for the online model in the simulation-

based optimization. There are several disadvantages of this

approach which make it not ideal for practical purposes, in-

cluding slow run-time and inability to access the underlying

equations. Nevertheless, it is an appealing approach, at least

in the near term, due to its inexpensive cost (mostly free)

and the wide availability of benchmark models.

Simulation-based optimization for the purpose of control

using standard building energy simulation software usually

requires the so-called co-simulation technique ([12], [20]).

Co-simulation is essentially a simulation setup where at

least two simulators solve coupled equations together and

exchange data in the process. More details can be found in

the above references. We developed a Matlab toolbox [21]

to facilitate co-simulation and simulation-based optimiza-

tion with EnergyPlus from Matlab and to implement our

receding-horizon supervisory control algorithm (section III).

B. Simulation-based optimization

In our implementation, the standard Matlab Global Opti-

mization Toolbox ([13]) is used for black-box optimization.

This toolbox is suitable for solving optimization problems

where the objective function is complex, includes simula-

tions, or does not possess derivatives. It provides multi-

ple solvers, including pattern search and genetic algorithm,

which do not need any details about the objective function

other than a black-box computer routine to evaluate it.

For the optimization (3), the pattern search algorithm

computes a sequence of solutions (points) that approach an

optimal solution. At each step, it searches a set of points on

a mesh around the current point, which was computed at the

previous step. If a point that improves the objective function
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J is found, the new point becomes the current point at the

next step of the algorithm. The mesh is constructed around

the current point by a scalar multiple of a set of vectors,

which are either predefined and fixed or generated randomly.

This set of vectors is called a pattern. More details can be

found in [13] and the references therein.

Given xt and a sequence of set-points

{ut, ut+1, . . . , ut+T−1}, the evaluation of the objective

function J is carried out by the following steps:

1) Call the simulator to simulate the HVAC system with

xt and the set-point sequence, then obtain power values

Pk for each time intervals;

2) Compute y = max
{

Dt,maxk∈P∩{t,...,t+T−1} {CdPk}
}

;

3) Compute J = Cu

∑t+T−1

k=t Pk∆T + pty.

Because the objective function needs to be evaluated for a

large number of times in each optimization, the computa-

tional performance is often slow. For practical purposes, the

number of iterations of the solver, or the computation time

it uses, needs to be limited to an acceptable value.

C. Improving computational performance

As mentioned before, a disadvantage of the simulation-

based optimization method is its slow performance. This is

largely due to the inefficiency of the simulation software. For

example, in our experiments, we observed that in each co-

simulation session with EnergyPlus, the actual computation

took less than 20% of the time while the rest was spent by

EnergyPlus on warm-up periods (i.e., loading and parsing

model files, and initialization of the simulation), despite that

the model did not change between simulations. However,

unless the simulation program supports re-initialization of

model states, this inefficiency cannot be avoided.

Several techniques, some of which were implemented in

our experiments, could help improve the efficiency of the

optimization. Good starting points for the solver can be ob-

tained from heuristic rules, from the solution at the previous

time step, or are computed offline. Heuristics can also be

used to restrict the search space to regions that are likely

to contain good solutions. Finally, better simulation tools,

such as those that allow access to their internal equations,

or provide their gradients, could significantly improve the

efficiency.

V. SIMULATION RESULTS

In this section, we present simulation results of our

receding-horizon supervisory control algorithm for the

HVAC system of a benchmark building. Its model was ob-

tained by modifying the EnergyPlus model of a small office

building in the U.S. Department of Energy’s Commercial

Reference Buildings ([22]). It is a single-story, five-zone

rectangular building of 511m2 total floor area. The heating

type is gas furnace and the cooling type is unitary DX. More

information on this building can be found in [22].

For our purpose, we only considered the cooling system,

which uses electricity, and its supervisory controller. The

weather profile is of Baltimore, Maryland, USA in July, the

month with the highest average temperature. Temperature

TABLE I

ELECTRIC RATE STRUCTURE FOR THE BENCHMARK EXAMPLE

Billing period Monthly

Peak demand hours Monday – Friday: 12pm – 6pm

Saturday, Sunday, Holiday: none

Electric rate 8.64¢/kWh

Demand rate 13.04$/kW

Demand interval 15 minutes

set-points for the five zones are the same and are constrained

to remain between 22◦C and 26◦C. Working hours are 8am

to 5pm, Monday through Friday. The HVAC system is turned

on at 6am and off at 6pm. During July, the heating system

is always off. The electric tariff is summarized in Table I.

The EnergyPlus model of the building was used both for

simulation-based optimization in the supervisory controller

and for simulation of the “actual” building. For simplicity,

we assumed that wk = w̄k, i.e., the weather forecasts

were exact. Note that in this experiment, only the electric

cost of the HVAC system was considered, i.e., the lighting

system and other electric equipments were excluded from the

computation. The simulation period is entire July (31 days).

We simulated four different control strategies for comput-

ing temperature set-points, with 15-minute time-steps, of the

cooling system. All controllers set the cooling set-point to

30◦C during off hours (before 6am and after 6pm).

• In the base-line controller C1, the set-point remains

constant at 24◦C between 6am and 6pm. It is the default

controller implemented in the original benchmark model

and is used for comparison.

• In the linear-rise controller C2, the cooling set-point is

25.8◦C from 6am to 10am, 24◦C from 10am to 12pm,

then increases linearly from 24◦C to 25.8◦C between

12pm and 6pm. This is a simple set-point strategy for

demand-limiting ([23]).

• In the receding-horizon controller with stationary strat-

egy C3, the cooling set-point remains constant at 25.8◦C
between 6am and 9am and is computed by the proposed

supervisory control algorithm from 9am to 6pm, with

constant pt = 1 (section III-C). The control horizon T

is one day, hence there are 36 variables uk.

• The receding-horizon controller with linear strategy C4
is similar to C3 except that parameter pt is computed as

pt =
t+T
N

(section III-D).

For controllers C3 and C4, simulation-based optimization was

limited to 4 hours for each day and was carried out on

a Pentium 4 2.4-GHz computer with 1 Gb RAM, running

Linux and Matlab version 7.9.0.

The simulation results are given in Table II. Obviously,

both C3 and C4 achieved lower energy usage and peak

demand than C1 and C2 due to the optimization. Controller C3
reduced the total HVAC electric cost by 25.47% compared

to the base-line C1 and 6.77% compared to C2. Controller C4
reduced the total HVAC electric cost by 26.26% compared to

C1 and 7.76% compared to C2. That C3 and C4 outperformed

C2 by small margins might be attributable to the inefficiency

of the simulation-based optimizer. Observe that, because
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TABLE II

SIMULATION RESULTS FOR THE BENCHMARK EXAMPLE

Controller Elec. Usage Peak Demand Total Elec. Cost

(kWh) (kW) (USD)

C1 (base-line) 2035.144 8.718 289.52

C2 (linear-rise) 1387.333 8.557 231.45

C3 (stationary) 1309.046 7.875 215.79

C4 (linear) 1265.826 7.984 213.48
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Fig. 2. Power demands for controllers C1, C2, C3, and C4 on July 9
th.

parameter pt of C3 is (much) larger than that of C4, C3 tends

to limit the peak demand rather than reducing energy usage,

while C4 gives priority to the latter. For July 9th, the average

electric powers of the HVAC system and the temperature set-

points between 6am and 6pm corresponding to controllers

C1, C2, C3 and C4 are plotted in Figures 2 and 3. The peak

demand period is from 12pm to 6pm.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a receding-horizon supervisory

control strategy for minimizing total electric cost. The main

contribution of this paper is a technique to resolve the

difficulty in solving the optimization problem, caused by

the demand charge component of the total cost. Simulation

results for a benchmark building model showed that the

proposed control strategy could reduce the total electric

cost compared to both the base-line controller and a rule-

based controller. A Matlab toolbox for co-simulation and

simulation-based optimization with EnergyPlus was devel-

oped and used in the experiment.

Several improvements can be made to the results in this

paper. With respect to the receding-horizon control algo-

rithm, current strategies for computing trade-off parameter

pt are fairly simple and do not exploit available information

such as the current state and disturbance predictions. More
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Fig. 3. Setpoints by controllers C1, C2, C3, and C4 on July 9
th.

sophisticated strategies, for example by applying regression

or reinforcement learning algorithms, could have promising

potential to improve the optimization and will be investigated

in our future research. Also, migrating from the current

simulation-based optimization to a model-based approach,

by means of system identification of the temperature dy-

namics from measured data, will benefit the optimization

performance.
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[12] M. Trčka, J. L. M. Hensen, and M. Wetter, “Co-simulation of inno-
vative integrated HVAC systems in buildings,” Journal of Building

Performance Simulation, vol. 2, no. 3, pp. 209–230, 2009.
[13] The MathWorks, “Global optimization toolbox.”
[14] S. Wang and Z. Ma, “Supervisory and optimal control of building

HVAC systems: A review,” HVAC&R Research, vol. 14, pp. 3–32,
Jan. 2008.

[15] F. C. McQuiston, J. D. Parker, and J. D. Spitler, Heating, Ventilating

and Air Conditioning Analysis and Design. Wiley, 6 ed., Aug. 2005.
[16] TRFund Energy Study, “Understanding PECO’s general service tariff.”
[17] E. Walter and L. Pronzato, Identification of Parametric Models from

Experimental Data. Springer, 1 ed., Jan. 1997.
[18] S. Liu and G. P. Henze, “Calibration of building models for supervi-

sory control of commercial buildings,” in Proc. (IBPSA)’05, 2005.
[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 1 ed., 2006.
[20] M. Trcka, J. L. Hensen, and M. Wetter, “Co-simulation for per-

formance prediction of integrated building and HVAC systems -
an analysis of solution characteristics using a two-body system,”
Simulation Modelling Practice and Theory, vol. 18, no. 7, pp. 957
– 970, 2010.

[21] “MLE+: a Matlab-EnergyPlus co-simulation interface.” http://

www.seas.upenn.edu/˜nghiem/mleplus.html.
[22] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini,

M. Halverson, D. Winiarski, B. Liu, M. Rosenberg, J. Huang,
M. Yazdanian, and D. Crawley, “DOE commercial building research
benchmarks for commercial buildings,” 2010.

[23] K. ho Lee and J. E. Braun, “Evaluation of methods for determining
demand-limiting setpoint trajectories in commercial buildings using
short-term data analysis,” in Proc. of SimBuild, pp. 107–114, 2006.

4421


