
Quasi Stochastic Approximation

Darshan Shirodkar and Sean Meyn

Abstract— In recent work it was shown that a deterministic
analog of stochastic approximation can be formulated to obtain
a Q-learning algorithm for approximate optimal control of
deterministic and stochastic systems. This paper provides a gen-
eral foundation for “quasi-stochastic approximation” in which
all of the processes under consideration are deterministic, much
like quasi-Monte-Carlo for variance reduction in simulation.

Applications to root finding and to TD-learning are de-
scribed, and numerical results are presented.

Acknowledgement: Financial support from the AFOSR grant FA9550-

09-1-0190 is gratefully acknowledged. The authors thank Profs. Vivek

Borkar and Prashant Mehta for many useful discussions.

I. INTRODUCTION

The stochastic approximation algorithm is a specially

constructed stochastic difference equation with diminishing

step sizes. It was introduced in the classic paper of Robbins

and Monro [11] as a means to calculate the root of a function,

in a setting in which observations of evaluations of the

function are corrupted by noise. More specifically, suppose

that we wish to solve the equation h(ϑ) = 0, with ϑ ∈ R
d,

and where h : Rd → R
d is nonlinear. For a given value of ϑ,

we can only obtain the noise-corrupted value h(ϑ, ζ), where

ζ is a random variable and

h(ϑ) = E[h(ϑ, ζ)] .

The stochastic approximation algorithm is then given by the

recursion,

ϑn+1 = ϑn + anh(ϑn, ζn) , n ≥ 0, (1)

in which ϑ0 ∈ R
d is given, an is a step size sequence and

ζn is identical to ζ in distribution (typically it is assumed to

be i.i.d.). Under some general assumptions, the sequence ϑ

converges with probability 1 to a point ϑ∗, where h(ϑ∗) = 0.

An excellent recent reference is [4].

One of the main desirable features of stochastic approx-

imation is that it can be implemented without knowledge

of the function h or of the probability distribution of ζ, as

long as we have access to the sequence h(ϑn, ζn). This may

indeed be the case if the observations h(ϑn, ζn) are derived

from some physical process or experiment.

In other applications of this technique, the function h and

the distribution of ζ are known, but computation of h is

infeasible or expensive.1 That is, we know everything about

Authors are with the Coordinated Science Laboratory and the De-
partment of Electrical and Computer Engineering at the University of
Illinois at Urbana-Champaign (UIUC) shirodk1@illinois.edu;
meyn@illinois.edu

1In several applications we may not care about the exact distribution of
ζ . An example is the approximate dynamic programming problem — see
Section IV-A.

the system, yet we introduce uncertainty in the algorithm in

order to avoid the computational expense of calculating h.

In these cases, stochastic approximation may be regarded as

an approach to numerical integration, much like MCMC.

Stochastic approximation can also be regarded as a gen-

eralization of the Monte-Carlo algorithm for estimating the

mean of a random variable ζ: If {ζi} is a stationary sequence,

each identical to ζ in distribution, then the Monte-Carlo

estimate of ϑ∗ = E[ζ] is given by,

ϑn =
1

n

n−1
∑

i=0

ζi (2)

This can be written in the recursive form,

ϑn+1 = ϑn +
1

n+ 1

(

ζn − ϑn

)

which is precisely (1) in the special case an = (n + 1)−1,

h(ϑ, ζ) = ζ − ϑ.

In the method of quasi-Monte Carlo, the sequence {ζi} is

chosen to be deterministic in the sample path average (2); in

this way the rate at which the estimates {ϑn} converge to ϑ∗

can be accelerated [1]. In this paper we extend this idea to

stochastic approximation. Our goal is to reduce the ‘curse

of variance’ observed in these algorithms, and to reduce

computational cost by avoiding the generation of random

numbers.

The idea of using deterministic sequences in stochastic

approximation is not entirely new; see [12] for a unified

view of some results on deterministic necessary and sufficient

conditions on the noise sequences. To our knowledge, [3] is

the first paper claiming an improvement in the rate of con-

vergence due to use of deterministic sequences. They prove

convergence but the rate improvement is demonstrated only

through numerical experiments. Our work can be considered

to be a generalization of these earlier works. Although in this

paper our analysis is restricted to continuous time, this is only

for simplicity of exposition, and to clarify the application to

our earlier work [8].

Motivation for this work came in part from the Q-learning

algorithm for approximate optimal control introduced in [8].

In this prior work the parameter estimate ϑt evolves in

continuous time. To provide a foundation for [8] and because

of its mathematical elegance, in this paper we introduce a

differential equation instead of a difference equation in which

the ‘noise’ comes from a deterministic oscillatory signal

rather than from a stochastic process.

The differential equation that defines the quasi-stochastic

approximation (QSA) algorithm has the general form

d
dt
ϑ(t) = a(t)f(ϑ(t), ξ(t)) . (3)

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2429

The non-negative function of time a is the ‘step size’,

and ξ is an m-dimensional process that constitutes the

‘driving noise’. As in the classical stochastic approximation

algorithm, our analysis is based on consideration of the

associated ODE,

d

du
θ̄(u) = f̄(θ̄(u)), (4)

in which the ‘averaged’ vector field is given by

f̄(θ) = lim
T→∞

1

T

∫ T

0

f(θ, ξ(t)) dt, for all θ ∈ R
d. (5)

In most applications the process ξ will be constructed so that

it is deterministic, but ergodic. Under appropriate conditions

on f , this implies that the limit in (5) is defined by an

invariant measure π for ξ via

f̄(θ) =

∫

f(θ, y)π(dy) . (6)

We envision processes ξ obtained as mixtures of sinusoids, or

other periodic signals. In this case continuity of f is sufficient

to obtain (5) and (6).

The extension of stability and convergence results from

the classical stochastic model (1) to the deterministic analog

(3) requires some specialized analysis since the standard

methods are not directly applicable. In particular, the first

step in [4] and most other references is to write (1) in the

form,

ϑn+1 = ϑn + an
(

h(ϑn) +Mn

)

,

where M is a martingale difference sequence (or a pertur-

bation of such a sequence). This is possible when ζ is i.i.d.,

or for certain Markov ζ [7]. A similar transformation is not

possible for any class of deterministic ξ.

5000 5000
0.5

0.6

0.7

0.8

0.9

1

0 0

ζ i.i.d. Gaussian ξ = φ−1(△)

Fig. 1. Finding roots of a function: Comparison of SA and QSA

In addition to convergence, we establish the rate of con-

vergence of ϑ to its limit ϑ∗. As in [6], we simplify analysis

by taking h to be a linear function of its arguments —

this can be justified via a Taylor-series approximation once

convergence is established. In the classical algorithm, an

analog of the Central Limit Theorem holds, so that the rate of

convergence is O(t−
1

2). In this deterministic setting, we find

that the convergence is O(t−1). Shown in Figure 1 are two

plots comparing results from stochastic approximation and

quasi-stochastic approximation for a particular root-finding

application described in Section IV-B. The results from the

stochastic recursion on the left converge much more slowly

than the output of the QSA algorithm shown on the right.

The remainder of the paper is organized as follows.

Stability and convergence of the QSA process is established

in Section II under general conditions on the model mir-

roring those imposed in the usual stochastic approximation

algorithm. Section III contains the results on the rate of

convergence of QSA, and several applications are presented

in Section IV. Conclusions and thoughts on future research

are contained in Section V.

II. CONVERGENCE OF QSA

In the ODE approach for analysis of stochastic approxi-

mation algorithms, a continuous time trajectory θ is obtained

from the sequence defined in (1) through linear interpolation:

The nth iterate ϑn in the recursion corresponds to a point

θ(un) in the interpolated trajectory, where

un =

n
∑

i=0

ai.

The piecewise linear trajectory θ is then compared with θ̄

that is defined in (4).

A similar construction is used in the analysis here: we

substitute in (3) the new time variable u given by

u = g(t) :=

∫ t

0

a(r) dr, t ≥ 0.

The time-scaled process is then defined by θ(u):=ϑ(g−1(u)).
We will shortly impose assumptions on a to ensure g−1 is

well defined, nonnegative and monotonically increasing, with

g−1(u) → ∞ as u → ∞. For example, if a(r) = (1+ r)−1,

then

u = log(1 + t) and ξ(g−1(u))) = ξ(eu − 1). (7)

The chain rule of differentiation gives

d

du
ϑ(g−1(u)) = f(ϑ(g−1(u)), ξ(g−1(u))).

That is, the time-scaled process solves the differential equa-

tion,
d

du
θ(u) = f(θ(u), ξ(g−1(u))). (8)

The two processes θ and ϑ differ only in time scale, and

hence, proving convergence of one proves that of the other.

For the remainder of this section we will deal exclusively

with θ — It is on the ‘right’ time scale for comparison with

θ̄, the solution of (4).

We begin with resolving stability of the algorithm: In

the following subsection, we establish boundedness of the

trajectory θ for each initial condition. This is the main

requirement in the convergence proof provided in Section II-

B. We first state the assumptions under which our analysis

is valid:

(A1) The system described by equation (4) has a glob-

ally asymptotically stable equilibrium at θ̄ = ϑ∗.

2430

(A2) There exists a continuous function V : Rd → R+

and a constant c0 > 0 such that, for 0 ≤ T ≤ 1,

‖θ̄(s)‖ > c0,

V (θ̄(s+ T))− V (θ̄(s)) ≤ −T ‖θ̄(s)‖.

(A3) There exists a function f : Rd × R
m → R

d and

a process {ξ(t)}t≥0 that takes values in a compact set

Ω ⊂ R
m such that, for some b0 < ∞, and all θ ∈ R

d,

T > 0,
∥

∥

∥

∥

∥

1

T

∫ T

0

f(θ, ξ(u)) du− f̄(θ)

∥

∥

∥

∥

∥

≤
b0
T
(1 + ‖θ‖)

(A4) There exists a constant ℓ < ∞ such that the

functions V , f̄ and f satisfy the following Lipschitz

conditions:

‖V (θ′)− V (θ)‖ ≤ ℓ‖θ′ − θ‖,

‖f̄(θ′)− f̄(θ)‖ ≤ ℓ‖θ′ − θ‖,

‖f(θ′, ξ)− f(θ, ξ)‖ ≤ ℓ‖θ′ − θ‖, θ′, θ ∈ R
d.

(A5) The process a is non-negative and monotonically

decreasing, and as t → ∞,

a(t) ↓ 0,

∫ t

0

a(r) dr → ∞.

Assumption (A1) determines uniquely the possible limit

point of the algorithm. Assumption (A2) ensures that there is

a Lyapunov function V with a strictly negative drift whenever

θ̄ escapes a ball of radius c0. This assumption is required

to establish boundedness of the trajectory θ. Assumptions

(A3) and (A4) are technical requirements essential to the

proofs; (A3) is only slightly stronger than ergodicity of ξ

as given by (5), while (A4) is necessary to control the

growth of the respective functions. The process a in (A5)

is a continuous time counterpart of the standard step size

schedules in stochastic approximation, except that we impose

monotonicity in place of square integrability.

A. Stability

Theorem 2.1: The solution to (8) is ultimately bounded:

for some b < ∞ and for any θ(0) = θ, there is a Tθ < ∞
such that ‖θ(t)‖ ≤ b for all t ≥ Tθ.

We prove Theorem 2.1 by establishing a ‘drift condition’

similar to (A2) for θ. To do so, we compare the trajectory of

θ with that of θ̄, initialized at some large time s to θ(s). To

this end, let us define θ̄s(t), t ≥ s, to be the unique solution

to (4) ‘starting’ at s:

d
dt
θ̄s(t) = f̄(θ̄s(t)), t ≥ s, θ̄s(s) = θ(s). (9)

Lemma 2.4 bounds the difference between θ and θ̄
s
.

This bound is then used to establish a drift condition for θ.

But first, we assume the required drift condition and prove

ultimate boundedness of θ.

Lemma 2.2: The solution to (8) is ultimately bounded if

for some 0 < T ≤ 1, and s0, b < ∞,

V (θ(s+ T))− V (θ(s)) ≤ −T ‖θ(s)‖,

for all s ≥ s0, ‖θ(s)‖ > b.

Proof: Suppose for some θ(0) = θ, there is s ≥ s0
such that ‖θ(s)‖ > b. Let τ :=min(u ≥ 0 : ‖θ(s+u)‖ ≤ b);
if ‖θ(s + u)‖ > b for all u ≥ 0, set τ = ∞. For m ∈ N,

define τm = min{τ,m}. Then,

−τmb ≥ −T

∫ s+τm

s

‖θ(u)‖du

≥

∫ s+τm

s

(V (θ(u + T))− V (θ(u))) ds

=

∫ s+τm+T

s+τm

V (θ(r)) dr −

∫ s+T

s

V (θ(r)) dr

≥ −

∫ s+T

s

V (θ(r)) dr.

This establishes a uniform bound on τm for all m ∈ N, thus

proving τ < ∞. Now, using Gronwall’s inequality (see [5])

and the Lipschitz property of f , we can obtain the following

bound on the growth of θ: For some b1 < ∞,

‖θ(s+ u)− θ(s)‖ ≤ b1u‖θ(s)‖ ≤ b1τ‖θ(s)‖ for u ≤ τ.

Thus, we have ‖θ(s)‖ ≤ b(1 + b1τ), s ≥ s0. This proves

ultimate boundedness of θ.

Next, we prove a Law of Large Numbers (LLN) for the time

scaled process {ξ(g−1(u))}u≥0. Notice the difference from

a conventional LLN. Here, the interval of integration is some

arbitrary fixed T , and the averaging becomes more accurate

as the interval is shifted towards infinity.

Lemma 2.3: For any s, T > 0, ‖θ‖ ≥ 1, the function f
satisfies the following bound:

∥

∥

∥

∥

∥

1

T

∫ s+T

s

f(θ, ξ(g−1(u))) du − f̄(θ)

∥

∥

∥

∥

∥

≤ 4b0ε(s)‖θ‖/T,

(10)

where ε(s) → 0 as s → ∞.

Proof: Define

f̂(θ, t) :=
1

t

∫ t

0

f(θ, ξ(r)) dr − f̄(θ).

Note that by assumption (A3), for ‖θ‖ ≥ 1,

‖f̂(θ, t)‖ ≤ b0(1 + ‖θ‖)/t ≤ 2b0‖θ‖/t. (11)

Consider the following integral which we simplify using

integration by parts:

∫ t1

t0

a(t)f(θ, ξ(t)) dt =

[

a(t)

∫ t

0

f(θ, ξ(r)) dr

]t1

t0

−

∫ t1

t0

a′(t)

∫ t

0

f(θ, ξ(r)) drdt

= [t1a(t1)f̂(θ, t1)− t0a(t0)f̂(θ, t0)]

−

∫ t1

t0

ta′(t)f̂(θ, t) dt

+ (g(t1)− g(t0))f̄(θ)

2431

Rearranging and taking norms, we obtain on applying (11)

and after some algebra,
∥

∥

∥

∥

∫ t1

t0

a(t)f(θ, ξ(t)) dt − (g(t1)− g(t0))f̄(θ)

∥

∥

∥

∥

≤ 4b0a(t0)‖θ‖.

We have used the fact that a(t) is decreasing and so −a′(t) ≥
0. Letting t0 = g−1(s), t1 = g−1(s + T) and t = g−1(u)
yields

∥

∥

∥

∥

∥

1

T

∫ s+T

s

f(θ, ξ(g−1(u))) du − f̄(θ)

∥

∥

∥

∥

∥

≤ 4b0a(g
−1(s))‖θ‖/T.

Set ε(s) := a(g−1(s)). As s → ∞, g−1(s) → ∞ and hence,

ε(s) → 0. This completes the proof.

The next result is the promised bound between θ and θ̄
s
.

We omit the proof.

Lemma 2.4: For some b < ∞ and any 0 ≤ T ≤ 1,

‖θ(s+ T)− θ̄s(s+ T)‖ ≤ (bT 2 + 4b0ε(s))‖θ(s)‖. (12)

Proof of Theorem 2.1 Recall that V is the Lyapunov

function assumed in (A2). We now prove a drift condition

for θ. For 0 ≤ T ≤ 1, ‖θ(s)‖ ≥ 1,

V (θ(s+ T))− V (θ(s)) = V (θ(s+ T))− V (θ̄s(s+ T))

+ V (θ̄s(s+ T))− V (θ̄s(s))

≤ |V (θ(s + T))− V (θ̄s(s+ T))|

+ V (θ̄s(s+ T))− V (θ̄s(s))

≤ ℓ‖θ(s+ T)− θ̄s(s+ T)‖ − T ‖θ(s)‖

≤ ℓ(bT 2 + 4b0ε(s))‖θ(s)‖ − T ‖θ(s)‖,

where the second inequality follows from the Lipschitz

assumption on V and the last inequality uses Lemma 2.4.

Let us choose T small enough to make 2ℓbT 2 ≤ T/2, and

then s0 large enough so that 4b0ε(s) ≤ bT 2 for all s ≥ s0,

which leads to

V (θ(s+ T))− V (θ(s)) ≤ −
T

2
‖θ(s)‖.

Lemma 2.2 completes the proof.

B. Convergence

We now show that the solution to (8) converges to ϑ∗, the

unique asymptotically stable equilibrium point of (4). First,

we present a variation of Lemma 2.3. We omit the proof.

Lemma 2.5: For any T > 0,

lim
s→∞

sup
t∈[0,T]

∥

∥

∥

∥

∫ s+t

s

(

f(θ(u), ξ(g−1(u)))− f̄(θ(u)
)

du

∥

∥

∥

∥

= 0.

The next result is very similar to Lemma 1 in Chapter 2

of [4].

Lemma 2.6: For any T > 0,

lim
s→∞

sup
t∈[0,T]

‖θ(s+ t)− θ̄s(s+ t)‖ = 0.

Proof: Use Lemma 2.5 and Gronwall’s inequality.

Next, we present the main result of this paper.

Theorem 2.7: For any initial condition θ(0) = θ, the

solution to (8) converges to ϑ∗.

Proof: By ultimate boundedness of θ(u), there exists

b < ∞ such that for θ(0) = θ, there is a Tθ such that

‖θ(u)‖ ≤ b for all u ≥ Tθ.

Thus, for s ≥ Tθ, ‖θ̄s(s)‖ = ‖θ(s)‖ ≤ b. By the definition

of global asymptotic convergence, for every ǫ > 0, there

exists a T ǫ > 0, independent of the initial condition θ̄s(s),
such that

‖θ̄s(s+ u)− ϑ∗‖ < ǫ for all u ≥ T ǫ.

From Lemma 2.6, we have

lim sup
s→∞

‖θ(s+ T ǫ)− ϑ∗‖

≤ lim sup
s→∞

‖θ(s+ T ǫ)− θ̄s(s+ T ǫ)‖

+ lim sup
s→∞

‖θ̄s(s+ T ǫ)− ϑ∗‖

≤ 0 + ǫ.

Since ǫ is arbitrary, we have the desired limit,

lim
u→∞

‖θ(u)− ϑ∗‖ = lim
s→∞

‖θ(s+ T ǫ)− ϑ∗‖ = 0.

This completes the proof.

III. RATES OF CONVERGENCE

The goal in this section is to establish a rate of convergence

for the QSA algorithm. In the stochastic approximation

algorithm it is known that, under appropriate assumptions,

the algorithm satisfies a Central Limit Theorem, generalizing

the usual CLT for the Monte-Carlo recursion (2). That is, in

the stochastic model (1) we can write,

ϑn ≈ ϑ∗ + n− 1

2W, (13)

where the approximation is in distribution, and W is a

Gaussian random variable with some finite covariance matrix

Σ [4]. The proof of this result is based on comparing the

stochastic approximation recursion with a linearization about

ϑ∗. In this section we take this step for granted, assuming

that the function given in (A3) is in fact linear. A similar

simplification is made in the analysis of two-time scale

stochastic approximation in [6]. This and further assumptions

are collected together here:

(A6) The function f is linear, f(θ, ξ) = Aθ + ξ, and

moreover

(i) A is Hurwitz, and each eigenvalue λ(A) satisfies

Re(λ) < −1.

(ii) ξ has zero mean: limT→∞
1
T

∫ T

0 ξ(t) dt = 0 ∈
R

d.

Assumption (A6) implies f̄(θ) = Aθ, and the unique stable

equilibrium point is ϑ∗ = 0.

2432

Observe that the assumption (i) of (A6) is slightly stronger

than what is imposed in the usual Central Limit Theorem for

stochastic approximation, which requires Re(λ) < − 1
2 . We

will see that this stronger bound is indeed required to obtain

the rate of convergence sought in this section, which is a

significant improvement on (13). Under the assumptions of

this section we show that for some constant σ̄ < ∞,

lim sup
t→∞

t‖ϑ(t)− ϑ∗‖ ≤ σ̄ (14)

Theorem 3.1: Suppose that assumptions (A1)-(A6) hold,

and that a(t) = 1/(1 + t). Then ϑ converges to 0 at a rate

of 1/(1 + t). That is, (14) holds with ϑ∗ = 0.

The proof is given at the end of this section.

Observe that the eigenvalue condition in (A6) can be

achieved by scaling: That is, replacing f(θ, ξ) = Aθ + ξ
by κ(Aθ + ξ) for a sufficiently large positive constant κ.

However, this might result in poor transient behavior. An

alternative is to use the two-time-scale approach of Polyak

and Juditsky [10], [4]. We propose the following continuous-

time counterpart of their algorithm: Fix δ ∈ (0, 1), and

consider the algorithm with a(t) = 1/(1 + t)δ:

d

dt
γ(t) =

1

(1 + t)δ
f(γ(t), ξ(t)) (15)

The output of this algorithm is then averaged as follows:

d

dt
ϑ(t) =

1

1 + t

(

−ϑ(t) + γ(t)
)

(16)

Theorem 3.2: Suppose that assumptions (A1)-(A6) hold,

so that in particular f(γ(t), ξ(t)) = Aγ(t) + ξ(t) in (15).

Then (14) holds with ϑ∗ = 0 for the averaged process defined

in (16).

The proof of Theorem 3.2 is skipped due to space con-

straints — It is similar to, but messier than the proof of

Theorem 3.1.

Proof of Theorem 3.1: We can use the transformation u =
log(1 + t) as before, and equivalently prove

sup
u∈[0,∞)

‖euθ(u)‖ < ∞. (17)

The linear system in the transformed time scale is given by

θ̇(u) = Aθ(u) + ξ(eu − 1).

Let z(u) := euθ(u). Then

ż(u) = (A+ I)z(u) + euξ(eu − 1).

For notational convenience, let us define B := A+ I . Then

B is Hurwitz because of the assumption on eigenvalues of

A. From linear system theory, we know that

z(u) = eBu · z(0) +

∫ u

0

eB(u−v) · evξ(ev − 1)dv.

Clearly, the first term decays to zero and hence, is bounded.

To show that the second term is also bounded, we use

integration by parts and denote β(v) =

∫ v

0

erξ(er − 1)dr to

obtain
∫ u

0

eB(u−v) · evξ(ev − 1)dv =
[

eB(u−v)β(v)
]u

0

+

∫ u

0

eB(u−v) · Bβ(v)dv.

(18)

Note that by changing the variable of integration to t = er−1
in the expression for β(v), we obtain

β(v) =

∫ ev−1

0

ξ(t)dt,

which is bounded as a function of v. Thus, the first term in

(18) is bounded. The second term is just the response of the

linear system represented by B to the input Bβ(v). Since B
is Hurwitz, it represents a BIBO stable system and Bβ(v)
is a bounded input. So the second term is also bounded and

this completes the proof.

IV. APPLICATIONS

A. Approximating a value function

In this section, we consider an application of the algorithm

to approximation of solutions of differential equations by

a linear combination of basis functions as in TD-learning

[2], [9]. As a specific example, we look at an uncontrolled

diffusion process with state dependent cost. Our goal is to

approximate an associated discounted-cost value function.

We choose basis functions based on heuristic arguments and

provide numerical results to demonstrate the accuracy of

approximation.

Consider the following scalar diffusion,

dXt = −X3
t dt+ dWt,

where W is a standard Brownian motion. For a given cost

function c : R → R+ and discount factor γ > 0, the value

function is given by

V (x) = E

[

∫ ∞

t=0

e−γtc(Xt) dt | X0 = x
]

.

Subject to growth conditions on c, it can be shown that V
satisfies the following differential equation:

γV (x) = c(x) +DV (x), x ∈ R, (19)

where the differential generator is given by DV :=(−x3)V ′+
1
2V

′′.

The discounted-cost dynamic programming equation (19)

could of course be directly solved using numerical integra-

tion. To demonstrate the use of our algorithm, we seek to

approximate V by a linear combination of basis functions,

denoted {φ1, φ2, ..., φd}. For ϑ ∈ R
d, the approximation to

V is given by

Vϑ(x) =

d
∑

i=1

ϑiφi(x). (20)

2433

We want to find ϑ such that Vϑ(x) satisfies (19) ‘as closely

as possible’.

To quantify this approximation we use the Bellman error

[2]. For x ∈ R, ϑ ∈ R
d this is given by,

L(x, ϑ) := γVϑ(x)− c(x) +DVϑ (x). (21)

On denoting cϑ(x) = L(x, ϑ)+ c(x), x ∈ R, we see that Vϑ

solves the dynamic programming equation,

γVϑ(x) = cϑ(x) +DVϑ (x), x ∈ R .

Subject to general conditions, this implies that Vϑ is the

value function associated with cϑ. Hence we obtain a good

approximation if c ≈ cϑ, which means that the Bellman error

is small.

As a scalar mismatch criterion we consider the mean-

square Bellman error: We assume that a probability measure

µ on R is given, and denote

EBell(ϑ) :=

∫

(

L(x, ϑ)
)2

µ(dx) (22)

The choice of µ will affect the approximation: If we obtain

a small mean-squared error, then we can expect the approx-

imation Vϑ ≈ V to be reasonably good over the support of

µ. In the experiments described below we took µ to be a

uniform distribution on a finite interval.

Next, we provide a rationale for our choice of basis

functions. We now fix the cost function to be c(x) = x2.

In this case the cost function as well as the system are

symmetric about the origin. So the basis functions should

be even functions of x. For large x, the solution to (19)

can be approximated by log(|x|). To make the function well

defined at the origin, we can use 1
2 log(1 + x2). For x near

the origin, the term (−x3)V ′(x) is neglible. With this term

neglected, the solution is of the form c1x
2 + c2. To make

this part of the solution bounded for large x, we propose

x2/(1 + x4) and 1 as basis functions. In summary, we have

φ1(x) = log(1+x2), φ2(x) = x2/(1+x4) , and φ3(x) ≡ 1.

In particular, if ϑ = (12 , 0, 0)
T, then Vϑ(x) =

1
2 log(1 + x2),

and in this case simple calculations show that |L(x, ϑ)| is

bounded by 1
2γ log(1 + x2) plus a constant.

To apply our algorithm, we denote

f(ϑ, x):=∇EBell(ϑ, x), f̄(ϑ):=∇ϑB̄e(ϑ) =

∫

R

f(ϑ, x)µ(dx)

Our goal is to find ϑ∗ ∈ R
3 that solves f̄(ϑ∗) = 0. We need

a process {ξ(t)}t≥0 that satisfies

f̄(ϑ) = lim
T→∞

1

T

∫ T

t=0

f(ϑ, ξ(t)) dt, ϑ ∈ R
3.

In fact, we need something stronger, since we require the

assumptions of (A3). Since µ is uniform on some interval

[−I, I], we chose ξ to be a triangular wave with amplitude

I . Let ∆ denote the non-negative triangular wave process

with period τ :

∆(t) =

{

2t/τ, t ≤ τ/2 mod τ,

2− 2t/τ, t > τ/2 mod τ.
(23)

The process ξ was taken to be the scaled process,

ξ(t) = 2I(∆(t)− 1
2) t ≥ 0,

We chose the period τ = 40, a discount factor γ = 0.5, and

stepsize a(t) = 1/(1 + t).
Due to space constraints, we did not display the plot

showing convergence of trajectories of ϑ1, ϑ2 and ϑ3.

The parameters converge to the solution (ϑ∗
1, ϑ

∗
2, ϑ

∗
3) =

(0.49,−0.02, 0.81). The error EBell(ϑ
∗) was numerically com-

puted to be 0.008, which suggests an extremely close

approximation. The approximation at large x taken to be
1
2 log(1+x2) is corroborated by the coefficient of ϑ∗

1 = 0.49
for the φ1(x) = log(1 + x2) basis term.

Shown on the left in Figure 2 is the Bellman error obtained

using ϑ∗. For comparison we include results from two other

experiments in which only the distribution µ was varied

through choice of I: In the central figure we took I = 5, and

in the final figure I = 1, giving µ uniform on, respectively,

[−5, 5] and [−1, 1]. The plots show that the approximation

is good on the support of µ, and may be very poor outside

of this support. Moreover, with a smaller support we obtain

a tighter approximation on the support.

B. Finding roots of a function

As mentioned in the Introduction, the original motivation

for stochastic approximation was finding the roots of a

function based on its noisy measurements. In particular, we

can solve f̄(x) = 0 using only noise corrupted observations

f(x, ζ) where

f̄(x) = E[f(x, ζ)], for all x ∈ R
d.

Let G be the distribution function of the random variable

ζ. One of the advantages of stochastic approximation is

that we can apply it without the knowledge of G. In many

applications however, the complete statistics are known, but

the main hindrance to knowing f̄ is computational: Stochas-

tic approximation is used to approximate the expectation,

by generating a sequence of independent random variables

{ζn} according to G. An alternative is to make use of the

deterministic algorithm given by (3) for a suitable process

ξ(t).
To illustrate the application of this approach, we consider

a model with ζ a scalar valued random variable. Observe that

the process ∆ defined in (23) takes on values uniformly over

[0, 1], for any value of τ . We can then use ξ(t) = G−1(∆(t))
in (3) to obtain a process with the desired distribution: ξ has

distribution G in the sense that for any continuous function

h : R → R,

E[h(ζ)] = lim
T→∞

1

T

∫ T

t=0

h(ξ(t)) dt.

However, for the purpose of comparison with stochastic

approximation, we used the following discrete time version

of (3):

ϑn+1 = ϑn + anf(ϑn, ξn). (24)

The specific function used for the numerical experiment was

f(ϑ, ζ) = − tan(ϑ) + ζ, where ζ was taken to be a normal

2434

Vϑ∗(x) Vϑ∗(x) x)Vϑ∗(

−8−10 −6 −4 −2 −8−10 −6 −4 −2 −8−10 −6 −4 −20 2 4 6 8 10

Support µ = [-10, 10] Support µ = [-5, 5] Support µ = [-1, 1]

0 2 4 6 8 10 0 2 4 6 8 10
−1

0

1

Fig. 2. Learning where you look: Bellman error is small on the support of µ

random variable with mean µ = 1 and standard deviation

σ = 3. Thus, f̄(ϑ) = E[− tan(ϑ) + ζ] = − tan(ϑ) + 1,

which gives the equilibrium point ϑ∗ = π/4. The step size

schedule used in both (1) and (24) was an = 1/(n+1). The

samples ξn were generated using ξn = φ−1(∆n), where φ
is the Gaussian distribution function and {∆n} is a sampled

triangular wave with a period of 40 samples. Of course ∆n

must be truncated so that it is never exactly 0 or 1, which

would result in φ−1(∆n) becoming −∞ or +∞ respectively.

Figure 1 shows a sample trajectory each of SA and QSA.

QSA clearly converges faster and more smoothly than SA.

Even after 10, 000 samples, SA hasn’t exactly converged to

the required equilibrium point.

We also experimented with the period of ∆ and it was

found that for longer periods, the trajectory was more oscil-

latory and convergence was slower. This is to be expected

since averaging for QSA takes place over a full period; so

when we are in the first half of the triangular wave ∆, we

have introduced a bias in one direction, which gets nullified

during the second half. So it would seem that the shorter

the period, the better. But we also need enough resolution of

samples over a period. For example, in the extreme case

of a period of 2 samples, the samples ∆n would be all

zeros. An intermediate value needs to be found, mainly

through experimentation, which may depend on the specific

application.

V. CONCLUSIONS

This paper was initially motivated by our recent pa-

per [8] concerning Q-learning for nonlinear, deterministic

systems. We wrote that a “proof of convergence will be

straightforward following standard arguments from stochas-

tic approximation theory”. With significantly more work than

anticipated this conjectured turned out to be correct.

Our main current interest is the development of algorithms

for approximate dynamic programming based on these tech-

niques. In particular,

(i) Techniques for basis selection based on approximate

models.

(ii) The special case of large interconnected models

in which mean-field theory suggests simplified basis

functions [8].

(iii) Extensions to partially observed models, distributed

models, and dynamic games.

REFERENCES

[1] S. Asmussen and P. W. Glynn. Stochastic Simulation: Algorithms and

Analysis, volume 57 of Stochastic Modelling and Applied Probability.
Springer-Verlag, New York, 2007.

[2] D.P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Atena Scientific, Cambridge, Mass, 1996.

[3] Shalabh Bhatnagar, Michael C. Fu, Steven I. Marcus, and I-Jeng Wang.
Two-timescale simultaneous perturbation stochastic approximation us-
ing deterministic perturbation sequences. ACM Trans. Model. Comput.

Simul., 13(2):180–209, 2003.
[4] V. S. Borkar. Stochastic Approximation: A Dynamical Systems

Viewpoint. Hindustan Book Agency and Cambridge University Press
(jointly), Delhi, India and Cambridge, UK, 2008.

[5] Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential

Equations, Dynamical Systems and an Introduction to Chaos. Elsevier,
second edition, 2004.

[6] V. R. Konda and J. N. Tsitsiklis. Convergence rate of linear two-time-
scale stochastic approximation. Ann. Appl. Probab., 14(2):796–819,
2004.

[7] D.-J. Ma, A. M. Makowski, and A. Shwartz. Stochastic approxi-
mations for finite-state Markov chains. Stochastic Process. Appl.,
35(1):27–45, 1990.

[8] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum
principle. In Decision and Control, 2009 held jointly with the 2009
28th Chinese Control Conference. CDC/CCC 2009. Proceedings of

the 48th IEEE Conference on, pages 3598–3605, Dec. 2009.
[9] S. P. Meyn. Control Techniques for Complex Networks. Cambridge

University Press, Cambridge, 2007.
[10] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approxi-

mation by averaging. SIAM J. Control Optim., 30(4):838–855, 1992.
[11] H. Robbins and S. Monro. A stochastic approximation method. Annals

of Mathematical Statistics, 22:400–407, 1951.
[12] I-Jeng Wang, Edwin K. P. Chong, and Sanjeev R. Kulkarni. Equivalent

necessary and sufficient conditions on noise sequences for stochastic
approximation algorithms. In ADVANCES IN APPLIED PROBABIL-
ITY, pages 784–801, 1996.

2435

