
Distributed Kalman Filtering Using the Internal Model Average Consensus

Estimator

He Bai and Randy A. Freeman and Kevin M. Lynch

Abstract— We apply the internal model average consensus
estimator in [1] to distributed Kalman filtering. The resulting
distributed Kalman filter and the embedded average consensus
estimator update at the same frequency. We show that if
the internal model average consensus estimator is stable, the
estimation error of the distributed Kalman filter is zero mean
in steady state and has bounded covariance even when the
dynamical system to be estimated is neutrally stable or unstable.

I. INTRODUCTION

Recent years have witnessed increasing research efforts in
distributed estimation, such as distributed Kalman filtering
[2], distributed Kriged Kalman filtering [3], distributed H∞
filtering [4], etc. In this paper, we consider the distributed
Kalman filtering problem. One common approach to dis-
tributed Kalman filtering is to represent the centralized
Kalman filter in the information form, where the correction
step of the filter simply sums information from individual
agents. To maintain an estimate of the dynamical system,
each agent must calculate the necessary sums. When the
communication is all-to-all or there exists a summing agent
[5], this calculation is simple. If the network has a particular
structure or is known to be acyclic with a known local topol-
ogy, the necessary sum can be computed in a decentralized
way. For example, the use of a channel filter in [6] allows
the decentralized calculation of the necessary sum if the
network is acyclic; if not, conservative channel filters could
be implemented or a dynamic spanning tree may be found.
However, in this paper, we assume that the communication
structure does not have any specific structure, except that it
is connected and undirected. To achieve decentralized data
fusion under this assumption, we employ the decentralized
average consensus estimator to estimate the sums needed to
implement the Kalman filter.

When the average consensus estimator is updated suffi-
ciently fast, the estimates of the necessary sums converge
to their true values before the next Kalman filter update
[2], [3]. In this case, a time-scale separation exists, leading
to the decoupling of the average consensus estimator and
the distributed Kalman filter. Although this approach can
recover the optimality of the centralized Kalman filter at each
agent, it requires high communication bandwidth and energy
consumption for each agent, which may not be feasible for
some applications. Reference [7] showed that the behavior
of the distributed Kalman filter varies smoothly from a
centralized Kalman filter to a local Kalman filter as the
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average consensus update rate goes from sufficiently large
to zero.

Instead of the approaches in [2], [3], [7], we pursue a dis-
tributed implementation of the centralized Kalman filter with
a single time-scale, that is, the average consensus estimator
and the Kalman filter are updated at the same frequency.
In this scenario, [8] proves that if the dynamical system
is stable, the expected values of the distributed Kalman
filter estimates converge to the centralized state estimate.
Reference [9] demonstrated in simulations that with the PI
average consensus estimator in [10], the distributed Kalman
filter is able to approximately track slowly-varying systems.

The previous work [8], [9] used average consensus esti-
mators of different flavors in conjunction with local Kalman
filtering to achieve a decentralized approximation to central-
ized Kalman filtering at each agent. If the agent already
has information on the model dynamics for its Kalman
filter, however, it should also use this information in its
average consensus estimator. Failure to do so may result in
unbounded covariance of the estimation error for unstable or
neutrally stable systems.

In this paper, we take advantage of our newly developed
class of internal model average consensus estimators [1] to
match the dynamics of each agent’s consensus estimator
to the dynamics of its Kalman filter. This ensures that the
estimation error between each agent’s estimate of the state
and the true state of the dynamical system has bounded
covariance even when the dynamical system is neutrally
stable or unstable. Our assumption on the dynamical system
to be estimated is that it is observable only in a centralized
sense, that is, the state of the dynamical system may not
be observable to individual agents but is observable when
the measurements from the agents are fused. Such an ob-
servability condition is weaker than [11]–[13], where the
states of the dynamical system are observable to each agent.
As we will demonstrate, the embedded average consensus
estimation allows each agent to estimate the entire state of
the dynamical system.

The subsequent sections are organized as follows. We
review the main results in [1] in Section II. The distributed
Kalman filter is studied in Section III: Section III-A discusses
the centralized Kalman filter and its distributed implementa-
tion while Section III-B studies the convergence properties
of the distributed implementation in steady state. Simulation
results of the distributed Kalman filter are presented in
Section IV. Conclusions and future work are discussed in
Section V.

Notation: The vectors 1N and 0N represent the N by 1
vectors with all entries 1 and 0, respectively. The space
consisting of all N by M real matrices is given by RN×M

while the p× p identity matrix is denoted by Ip. The notation
diag{k1, k2, · · · , kn} denotes the n by n diagonal matrix with
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ki’s on the diagonal. A ⊗ B denotes the Kronecker product
of matrices A and B. The Z-transform of a time signal ν(t)
is represented by ν(z). We denote by nh(z) and dh(z) the
numerator and denominator polynomials of a discrete time
transfer function h(z). For two real polynomials of z, a(z) and
b(z), a(z)|b(z) means that there exists a real polynomial p(z),
such that b(z) = p(z)a(z). The notation E(x) is the expectation
of the random variable x. The normal distribution is denoted
N(µ, σ2), where µ is the mean and σ2 is the variance.

II. INTERNAL MODEL AVERAGE CONSENSUS

ESTIMATOR

We consider a group of N agents whose communication
topology is modeled by a connected undirected graph G.
Agent i has a discrete time input φi(k) ∈ R, where k =
1, 2, · · · ,∞, is the time index, and employs an average
consensus estimator to estimate the average of φi(k), i =
1, · · · ,N. Let the Z-transform of φi(k) be

φi(z) =
ci(z)

d(z)
, (1)

where ci(z) is the numerator polynomial of φi(z), d(z) is a
common monic denominator polynomial among all φi(z), and
ci(z) and d(z) are coprime. Without loss of generality, we
assume that d(z) = 0 does not have roots inside the unit circle
since any root inside the unit circle results in an exponentially
vanishing component in φi(k).

In [1], we proposed a class of robust dynamic average
consensus estimators that employ the d(z) information and
achieve the average consensus estimation

lim
k→∞

∣

∣

∣

∣

∣

ν(k) − 1

N
1N1T

Nφ(k)

∣

∣

∣

∣

∣

= 0 (2)

where ν(k) = [ν1(k), · · · , νN(k)]T , νi(k) is agent i’s estimate
of the average of φi(k)’s, and φ(k) = [φ1(k), · · · , φN(k)]T . The
block diagram for the proposed average consensus estimators
is shown in Fig. 1, where L is the graph Laplacian matrix
of G and is defined as

ℓi j :=

{
∑N

j=1 ai j if i = j

−ai j otherwise
(3)

in which ai j = a ji > 0 if agents i and j are neighbors, and
otherwise, ai j = a ji = 0. The gains kp and kI satisfy kp ≥ 0
and kI > 0. The transfer functions h(z) and g(z) represent
local filtering processes performed by each agent. In fact,
denoting by (Ah, Bh,Ch,Dh) and (Ag, Bg,Cg,Dg) the minimal
time domain representations of h(z) and g(z), respectively, we
note that Fig. 1 gives rise to

Xh
i
(k + 1) = AhXh

i
(k) + Bh

(

φi(k) − kp

∑

j∈Ni
ai j(νi(k) − ν j(k))

)

− Bh

(

kI

∑

j∈Ni
ai j(ηi(k) − η j(k))

)

νi(k) = ChXh
i
(k) + Dh

(

φi(k) − kp

∑

j∈Ni
ai j(νi(k) − ν j(k))

)

− Dh

(

kI

∑

j∈Ni
ai j(ηi(k) − η j(k))

)

(4)
and

X
g

i
(k + 1) = AgX

g

i
(k) + Bg

(

kI

∑

j∈Ni
ai j(νi(k) − ν j(k))

)

ηi(k) = CgX
g

i
(k) + Dg

(

kI

∑

j∈Ni
ai j(νi(k) − ν j(k))

)

,
(5)

where Xh
i
(k) and X

g

i
(k) are agent i’s internal states for h(z)

and g(z), respectively. The exogenous inputs ξ1(z) and ξ2(z)

Fig. 1. The structure of the internal model average consensus estimators:
ξ1(z) and ξ2(z) represent the exogenous inputs due to the initial conditions
of the internal states of h(z) and g(z).

kpL

+

+
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in Fig. 1 represent the effects due to the initial conditions of
Xh

i
(k) and X

g

i
(k), respectively.

Theorem 1 below, proven in [1, Theorem 3], presents the
conditions of h(z) and g(z) under which average consensus
(2) is achieved regardless of ξ1(z) and ξ2(z).

Theorem 1: Consider the closed-loop system in Fig. 1,
where φ(z) = [φ1(z), · · · , φN(z)]T and φi(z) is as in (1), in
which d(z) = 0 does not contain any roots inside the unit
circle. Assume that G is constant and that nh(z) = 0 and
dg(z) = 0 have no common roots on or outside the unit circle.
Then, the closed-loop stability of the system in Fig. 1 and
the average consensus in (2) are guaranteed if and only if
A) d(z)|(nh(z) − dh(z)) and the roots of dh(z) are inside the
unit circle;
B) d(z)|dg(z);
C) the roots of dg(z)dh(z) + ng(z)nh(z)k2

I
λ2

i
+ dg(z)nh(z)kpλi

are inside the unit circle, i = 2, · · · ,N, where λi’s are the
eigenvalues of L such that 0 = λ1 < λ2 ≤ λ3 · · · ≤ λN . �

Remark 1: Define the estimation error ǫ(k) = ν(k) −
1
N

1N1T
N
φ(k) and let T (z) be the transfer matrix from φ(z) to

ǫ(z). Then, condition C) guarantees the stability of T (z) while
conditions A) and B) ensure that the zeros of T (z) contain
those of d(z) = 0. �

Example 1: When the inputs φi(k) are constant, d(z) =
z−1 in (1). In this case, Theorem 1 gives rise to the discrete
PI estimator [14], where

h(z) =
γ

z − (1 − γ) , 0 < γ < 2, and g(z) =
1

z − 1
. (6)

If the gains kp and kI are chosen such that C) is satisfied,
the estimates from the discrete PI estimator converge to the
average of the inputs regardless of the initial conditions of
the internal states. �

III. DISTRIBUTED IMPLEMENTATION OF CENTRALIZED

KALMAN FILTER

A. Distributed Implementation of Centralized Kalman filter

Consider a network of N agents estimating the state x(k) ∈
R

p from a linear dynamic system

x(k + 1) = Fx(k) + w(k) (7)

zi(k) = Hix(k) + vi(k), i = 1, · · · ,N (8)
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where the process noise w(k) ∼ N(0,Q), Q ≥ 0, the
observation noise vi(k) ∼ N(0,Ri), Ri > 0, and they are
independent. Without loss of generality, we suppose that both
zi and Ri are scalars. Because any stable eigenvalue of F in
(7) results in a state whose expected value converges to zero
and whose covariance remains bounded, there is no need to
estimate this state using a distributed Kalman filter. Thus,
we assume that the eigenvalues of F are on or outside of the
unit circle, i.e., F is neutrally stable or unstable.

An optimal estimator for (7)-(8) is the Kalman Filter. Let x̂
be the estimate of the state x and P the uncertainty associated
with the estimate. Define the information vector τ̂ = P−1 x̂
and the information matrix Y = P−1. The information form
of the Kalman filter is given by

Prediction: Ỹ(k) = (FY−1(k − 1)FT
+ Q)−1 (9)

˜̂τ(k) = Ỹ(k)(FY−1(k − 1)τ̂(k − 1)) (10)

Update: Y(k) = Ỹ(k) + NC (11)

τ̂(k) = ˜̂τ(k) + Ny(k) (12)

where z = [zT
1
, · · · , zT

N
]T ,

H =
(

HT
1 , · · · ,HT

N

)T
, R = diag{R1, · · · ,RN}, (13)

C =
1

N
HT R−1H =

1

N

N
∑

i=1

HT
i R−1

i Hi, (14)

and

y(k) =
1

N
HT R−1z(k) =

1

N

N
∑

i=1

HT
i R−1

i zi(k). (15)

The matrix C consists of p(p + 1)/2 unique scalar sums, as
the matrix is symmetric, and the vector y(k) consists of p
scalar sums. The number of the agents, N, is assumed to
be either known in advance, in the case of a fixed number
of mobile sensors, or estimated by a separate decentralized
estimation procedure [15], [16].

For each agent i to implement the Kalman filter (9)-(12),
the information of NC and Ny(k) must be available. To
obtain this information, we make use of average consensus
estimator to estimate C and y(k). Let Ĉi(k) and ŷi(k) be the
ith agent’s estimate of C and y(k), respectively. Then, each
agent implements (9)-(12) with C and y(k) replaced by Ĉi(k)
and ŷi(k) and obtains its own estimate x̂i(k).

We now present a single time-scale solution to distributed
implementation of the Kalman filter, where the average
consensus estimator and the Kalman filter are updated at
the same frequency. Our solution consists of two steps, one
for estimating C and the other for estimating y(k):

Step 1. Follow Theorem 1 and design a stable internal
model average consensus estimator with d(z) = z − 1 to
estimate C in (14). Agent i’s input to this estimator is a
p(p + 1)/2 by 1 vector consisting of the upper triangular
and diagonal elements of HT

i
R−1

i
Hi.

Because HT
i

R−1
i

Hi is constant, implementing an estimator

designed from Step 1 ensures that Ĉi(k) → C as k → ∞.
Note that this estimator can run at the same or a faster rate
than the Kalman filter update since HT

i
R−1

i
Hi is constant. One

example of such an estimator is the discrete PI estimator in
Example 1. During the transient, Ĉi(k) may not always be
positive semidefinite. In this case, the agent can substitute

a matrix ˜̂Ci(k) obtained by projecting Ĉi(k) onto the convex
set of positive semidefinite matrices.

Step 2. Follow Theorem 1 again to design a stable internal
model average consensus estimator with d(z) = det(zI − F)
to estimate y(k) in (15). Agent i’s input to this estimator is
the p × 1 vector HT

i
R−1

i
zi(k).

Step 2 matches the dynamics of an average consensus
estimator to (7). Because zi(k) in (15) inherits the model
information of F, this estimator guarantees |ŷi(k) − y(k)| → 0
if the noise w(k) and v(k) in (7)-(8) is zero. When the noise
is nonzero, this estimator ensures that the mean of ŷi(k)−y(k)
converges to zero and that the covariance of ŷi(k) − y(k)
remains bounded. Since this estimator contains the model
of (7), it gets updated at the same rate as the Kalman filter.

B. Convergence properties of the distributed implementation

Given the two design steps in Section III-A, we next
analyze the statistical properties of agent i’s estimate x̂i(k)
in steady state. We make the following assumption:

Assumption 1: (F,H) in (7)-(8) is observable. �

This observability condition guarantees that Ỹ−1(k) converges
to a unique positive definite matrix P̃ that is the maximal
solution to the following DARE (Discrete Algebraic Riccati
Equation) [17, Theorem 17.5.3]

P̃ = F(P̃ − P̃HT (HP̃HT
+ R)−1HP̃)FT

+ Q. (16)

Note from (9)-(12) that the propagation of the information
matrix Y is independent of the measurements. It follows that
Ỹ−1(k) → P̃ as k → ∞, which means that in steady state,
(9)-(12) reduces to the steady state Kalman filter

x̂(k + 1) = Gx̂(k) + NFPy(k) (17)

where y(k) is in (15) and the matrices P and G are given by

P = (P̃−1
+ HT R−1H)−1 (18)

and
G = F − KH (19)

in which
K = FPHT R−1 (20)

is the steady state Kalman gain.
In practice, the agents can first run the consensus esti-

mator from Step 1 for some time so that the convergence
requirement of Ĉi(k) → C is met. Next they can propagate
(9) and (11) individually to obtain P̃. Then each agent uses
the average consensus estimator from Step 2 to estimate y(k)
by ŷi(k) and implements

x̂i(k + 1) = Gx̂i(k) + NFPŷi(k), (21)

where x̂i(k) is the ith agent’s estimate of x(k).
Define the estimation error of agent i as

êi(k) = x̂i(k) − x(k) (22)

and let ê(k) = [ê1(k)T , · · · , êN(k)T ]T . Theorem 2 below
proves that our internal model average consensus estimator
ensures that the expected value of êi(k) converges to zero
as k → ∞ and that the covariance of ê(k) remains bounded.
Theorem 2 also indicates that the internal model average
consensus estimator allows each agent to estimate the dy-
namical state even when some of the state is not observable
to an individual agent.
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Theorem 2: Consider the centralized steady state Kalman
filter (17) and its distributed implementation (21), where ŷi(k)
in (21) is agent i’s estimate of y(k) in (17). Suppose that ŷi(k),
i = 1, · · · ,N, are obtained from a stable average consensus
estimator designed according to Step 2. If Q and R in (7)-(8)
are upper bounded and Assumption 1 is satisfied, then

E(êi(k))→ 0 as k → ∞ (23)

and E(ê(k)ê(k)T ), the covariance of ê(k), is bounded. �

Proof: We define

ỹi(k) = ŷi(k) − y(k) (24)

and note from (7), (17) and (21) that

êi(k + 1) = Gêi(k) + NFPỹi(k) + Kvi(k) − w(k) (25)

or in a compact form

ê(k+1) = (IN⊗G)ê(k)+(IN⊗NFP)ỹ(k)+(IN⊗K)v(k)−1N⊗w(k)
(26)

where

v(k) = [v1(k), · · · , vN(k)]T (27)

and

ỹ(k) = [ỹ1(k)T , · · · , ỹN(k)T ]T . (28)

To analyze the statistical properties of ê(k) in (26), we
derive the transfer matrix from w(k) and v(k) to ê(k). First,
we develop the transfer matrix from w(k) and v(k) to ŷ(k),
where

ŷ(k) = [ŷ1(k)T , · · · , ŷN(k)T ]T . (29)

The block diagram in Fig. 2 shows the combination of the
average consensus estimator with the dynamic plant in (7)
and (8). Let

φi(k) = HT
i R−1

i zi(k) (30)

and φ(k) = [φ1(k)T , · · · , φN(k)T ]T . Suppose that the transfer
matrix from the input φ(k) to the output ŷ(k) is given by
Tφŷ(z). Since the consensus estimator derived from Theorem
1 is robust to initial values of h(z) and g(z), we assume that
the initial conditions of the average consensus estimator are
zero. Denote by T (z)[w(k)] the output from the system of
which the initial conditions of the internal states are zero,
the transfer function is T (z) and the input is w(k). We note
that zi(k) in Fig. 2 is given by

zi(k) = Hi(zI − F)−1[w(k) + x(0)δ(k + 1)] + vi(k) (31)

which leads to

ŷ(k) = Tφŷ(z)H1(zI − F)−1[w(k) + x(0)δ(k + 1)]

+ Tφŷ(z)[H2v(k)], (32)

where δ(·) is the Kronecker delta function,

H1 =


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










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and H2 =

























HT
1

R−1
1

. . .

HT
N

R−1
N

























.

(33)

Next, we compute from (15) and (31) the transfer function
from w(k) and v(k) to ỹ(k) as

ỹ = ŷ − 1N ⊗ y (34)

= Tφỹ(z)H1(zI − F)−1[w(k) + x(0)δ(k + 1)]

+ Tφỹ(z)[H2v(k)] (35)

where Tφỹ(z) = Tφŷ(z) − 1
N

1N1T
N
⊗ Ip. Define

T1(z) = (IN ⊗ NFP)Tφỹ(z)H1(zI − F)−1 (36)

and
T2(z) = (IN ⊗ NFP)Tφỹ(z)H2. (37)

It then follows from (26) and (35) that

ê(k + 1) = (IN ⊗G)ê(k) + (IN ⊗ K)v(k) − 1N ⊗ w(k)

+ T1(z)[w(k) + x(0)δ(k + 1)] + T2(z)[v(k)]. (38)

Let the minimal state space representations of T1(z) and
T2(z) be, respectively,

X1(k + 1) = A1X1(k) + B1u(k) (39)

Y1(k) = C1X1(k) +D1u(k) (40)

and

X2(k + 1) = A2X2(k) + B2u(k) (41)

Y2(k) = C2X2(k) +D2u(k). (42)

Using the state space representations of T1(z) and T2(z), we
rewrite (38) as

Ξ(k + 1) =AΞ(k) +

















D1

B1

0

















x(0)δ(k + 1) + B

(

w(k)
v(k)

)

(43)

ê(k) =CΞ(k) (44)

where

Ξ(k) =

















ê(k)
X1(k)
X2(k)

















(45)

A =

















IN ⊗G C1 C2

0 A1 0
0 0 A2

















(46)

B =

















IN ⊗ K +D1 −1N ⊗ Ip +D2

B1 0
0 B2

















and C =
(

IN p 0 0
)

.

(47)
Because w(k) and v(k) are zero mean, we conclude from

(43) and (44) that E(ê(k))→ 0 as k → ∞ if A is stable. The
covariance of ê(k) is given by

Pê(k) := E(ê(k)ê(k)T ) = CP(k)CT (48)

where P(k) is the solution to

P(k) = AP(k − 1)AT
+ B

(

Q
R

)

BT . (49)

Because w(k) and v(k) are zero mean and Q and R are upper
bounded, it follows from (38) that E(ê(k)) converges to zero
and E(ê(k)ê(k)T ) remains bounded if G, T1(z) and T2(z) are
stable. Since (F,H) is observable, R > 0 and Q ≥ 0, G is
stable [17, Theorem 17.5.3]. Since the consensus estimator is
designed to be stable, Tφỹ(z) is also stable and thus, T2(z) in
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x(k + 1) = Fx(k) + w(k)
z̄i(k) = Hix(k)

w(k)

z̄1(k)

z̄N(k)

...

v1(k)

z1(k) φ1(k)

vN(k)

zN(k) φN(k)

...

HT
1

R−1
1

HT
N

R−1
N

Internal Model

Average Consensus Estimator

ŷ1(k)

ŷN(k)

...

Fig. 2. The combination of the average consensus estimator with the dynamic plant in (7) and (8).

(37) is stable. Thanks to our internal model based design of
the average consensus estimator, T1(z) in (36) is also stable
because Tφỹ(z) contains the unstable or neutrally stable poles
of (zI − F)−1 as its zeros. Thus, ê(k) has bounded variance
and its expectation converges to zero as k → ∞.

IV. DESIGN EXAMPLE

We consider a system with three states. Two states are the
state variables of noisy sinusoidal dynamics, and the other
state corresponds to a random walk. The sensor network
consists of four agents, each of which makes a scalar
measurement. Three agents sense one of the three system
states, while the fourth agent measures the sum of the first
two states. This system can be written as

x(k + 1) =

















0 1 0
−1 2 cos(ωT ) 0
0 0 1

















x(k) + w(k) (50)

z(k) =



























1 0 0
0 1 0
0 0 1
1 1 0



























x(k) + v(k) (51)

The natural frequencies of (50) are (1, cos(ωT ) ± sin(ωT ) j).
In the simulation, we choose ω = 5, T = 0.01, w(k) ∼
N(03, 10−4I3) and v(k) ∼ N(04, 0.1I4). The initial estimates
of the states for all the agents are set to zero and the
covariance of each agent’s initial estimate is chosen as I3.

We compare the agents’ estimation errors of the state for
the following four kinds of Kalman filters: 1) Centralized
Kalman filter (CKF); 2) Local Kalman filter (LKF); 3) Dis-
tributed Kalman filter with internal model average consensus
estimator (DKF-IM); 4) Distributed Kalman filter with PI
average consensus estimator (DKF-PI).

The CKF makes use of measurements from all the agents
and generates an optimal estimate of the state. For the
LKF, each agent implements a Kalman filter that employs
measurements only from the agent itself, that is, there is no
communication between agents.

In the distributed implementation, we assume that Ĉi(k)
has converged to C and design average consensus estimators
to estimate y(k) in (15). We run average consensus estimators
and the distributed Kalman filter at the same frequency. The
communication graph G is a ring. The weight ℓi j in (3) is

chosen as 1
N

for neighboring agents i and j so that λN ≤ 1.

For the DKF-IM, we design an internal model average
consensus estimator from Step 2. The internal model of (50)
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Fig. 3. A comparison of agent 2’s estimation errors of the second state
between four different Kalman filters. The DKF-PI has a larger estimation
error than the DKF-IM since the PI estimator does not contain a model of
the second state.

is given by

d(z) =

∣

∣

∣

∣

∣

∣

∣

∣

zI −
















0 1 0
−1 2 cos(ωT ) 0
0 0 1

















∣

∣

∣

∣

∣

∣

∣

∣

−1

= (z−1)(z2−2 cos(ωT )z+1).

(52)
According to Theorem 1, we design h(z) = 1, kp = 0, and

g(z) =
(1 − 0.96 + 0.02 j)(1 − 0.96 − 0.02 j)

d(z)
.

With this design, the inward and outward gain margins of
h(z)g(z) are given by 0 and approximately 2, respectively.

Since λN ≤ 1, choosing kI ≤
√

2 ensures that condition C)
in Theorem 1 is satisfied for arbitrary connected graphs. In
the simulation, we choose kI = 1.

For the DKF-PI, we use the discrete PI estimator in
Example 1 to estimate y(k). The discrete PI estimator yields
the average of constant inputs asymptotically. When the
inputs are time-varying, the estimate from the PI estimator
is only approximate. One advantage of the PI estimator is
that its robustness to estimator initialization errors. In the
simulation, we take γ = 0.95, and kp = kI = 1, thereby
satisfying C) in Theorem 1.

We simulate the four Kalman filters for 5000 time steps
and show the agents’ estimation errors of the last 100 time
steps. Figs. 3-4 illustrate agent 2’s estimation errors for the
second and the third states, respectively. The estimation error
for the first state is omitted since the first state is simply
some white noise plus the second state delayed by one time
step. In Fig. 3, the DKF-PI yields a larger estimation error
than the DKF-IM because the PI average estimator does not
contain an accurate model for the first two states while the
internal model average estimator does. We note from Fig. 4
that the LKF has a larger estimation error for the third state.
This is because the third state is not observable to agent 2
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Fig. 4. A comparison of agent 2’s estimation errors of the third state
between four different Kalman filters. The LKF yields a larger estimation
error since the third state is not observable to agent 2.
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Fig. 5. A comparison of agent 3’s estimation errors of the second state
between four different Kalman filters. The LKF has the largest estimation
error since the second state is not observable to agent 3. The DKF-PI
outperforms the LKF due to the fusion of agents’ information. The DKF-
IM yields a smaller error than the DKF-PI since the DKF-IM contains the
model information of the first two states.

and thus the LKF is not stable for the third state. Since the
DKF-IM and the DKF-PI both contain an accurate model for
the third state, they achieve smaller estimation error than the
LKF. This illustrates an advantage of DKF that the average
consensus process allows an individual agent to estimate the
state that is not observable to that agent. In Figs. 5 and 6, we
show the estimation errors of agent 3. Since the second state
is not observable to agent 3, the LKF in Fig. 5 performs
worst. The DKF-PI achieves smaller estimation error than
the LKF because the PI estimator fuses information from
the other agents, which observe the second state. However,
because the PI estimator does not contain an accurate model
of the second state, it is outperformed by the DKF-IM in
Fig. 5. Because the DKF-IM and the DKF-PI both contain
the model of the third state, they achieve estimation errors
similar to those of the LKF and the CKF in Fig. 6.

V. CONCLUSIONS AND FUTURE WORK

We applied our internal model average consensus estima-
tors in [1] to distributed Kalman filtering. We proved that
the internal model in the consensus estimator guarantees
bounded covariance of the estimation error even when the
underlying dynamical system is neutrally stable or unstable.
Our distributed Kalman filter updates at the same frequency
as the average consensus estimator. Simulation results were
presented to illustrate the effectiveness of embedding the
internal model average consensus estimator in distributed
Kalman filtering. Future work will consider applications of
the internal model average consensus estimator in other
distributed estimators, such as a distributed H∞ filter.
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Fig. 6. A comparison of agent 3’s estimation errors of the third state
between four different Kalman filters. The LKF and the CKF have the
same estimation error since the third state is observable only to agent 3.
The DKF-PI and the DKF-IM perform similarly since they both contain an
accurate model of the third state.
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