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Combining Inertial Measurements and Distributed Magnetometry for
Motion Estimation

Eric Dorveaux, Thomas Boudot, Mathieu Hillion, Nicolas Petit

Abstract— We address the problem of estimating the position
of a rigid body moving indoors. Disturbances of the magnetic
field observed in buildings are used to derive a reliable velocity
estimate. The estimated velocity is expressed in the body
reference frame, which imposes to simultaneously reconstruct
the rotation of this frame with respect to an inertial frame
of reference. For this, an inertial measurement unit (IMU) is
used. To maximize the accuracy of the reconstructed motion,
alignment and calibration of the inertial sensors have to be
carefully treated, which minimizes projection errors. A first
contribution of this paper is an alignment-calibration technique
combining gyrometers and accelerometers to address the atti-
tude estimation problem. A second contribution is an observer
of the velocity, the convergence of which is proved. Finally, an
experimental testbench is described and experimental results
are provided.

INTRODUCTION

Lately, the demand for indoor positioning and naviga-
tion technology has been growing, as popular handheld
devices and smartphones, which have numerous sensors
and computational capabilities, have reached mass market
with an immense success. Many different techniques have
been investigated. However, none is capable of covering
the whole range of possible applications. Some approaches
relying on pre-installed infrastructures (e.g. radio emitters
like UWB, WLAN or RFID beacons) have shown very
good results, provided preliminary installation of equipments
can be performed. However, this assumption cannot always
hold. In numerous application (e.g. buildings on fire), first
responders may have to intervene in any type of buildings
whether it is equipped with such a system or not. Moreover,
the conditions of their interventions may often prevent or
at least modify the use of certain positioning methods. The
use of traditional techniques based on computer vision is
totally discarded in the case of smoky underground tunnels
or parking lots for instance.

In the most general case where the conditions of in-
tervention, and the availability of pre-installed equipments
are unknown, inertial systems (see e.g. [4], [8]) represent a
dependable and robust technology as they keep working. An
Inertial Measurement Unit (IMU) delivers accelerometers,
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gyroscopes (and most often magnetometers) signals which
can be used to derive a position information through a double
integration process (see e.g. [8], [10]). However, because of
the sensors drifts, this approach requires very high precision
IMUs, such as those found in certain full-sized aircrafts.
When cost, space, and weight constraints become stringent,
other information has to be used to reduce or eliminate the
drifts. The availability of maps, for instance, can allow to
periodically eliminate the drifts, whenever a precise location
is recognized (steps, lifts, corners, turns...See e.g. [18] for
some simple experimental results). Many works have been
conducted on the particular case where the IMU is mounted
on the foot (see e.g. [13]). Velocities update techniques
(ZUPTs) (see [15] for a comparison of various ZUPT
detectors) allow to reduce the integration to small steps
between phases where the foot is at rest on the ground. The
drift is thus much lowered, especially for the accelerometer,
which allows a longer use before diverging too far away
from the actual position. Nevertheless, as first responders
are concerned, feet are not the best place to put sensors on:
it is often the first part of the body that hits a wall, a door
or any piece of furniture that is in the way.

An other approach to improve the efficiency of inertial
systems as been first proposed in [17], [16]. It relies on a
set of magnetometers to monitor the magnetic field and its
spatial derivatives. A velocity information, which can allow
to reduce greatly the drifts of an inertial navigation technique,
can be derived from these measurements. The focus of this
article is to expose important steps in the development of
such a distributed magnetometry-based approach to estimate
the velocity and, eventually, the motion of a rigid body in a
magnetically disturbed environment. A velocity estimate re-
lying solely on magnetometers (used to estimate the velocity
in the body frame) and on accelerometers and gyrometers
(used to estimate the attitude of the whole system, and
thus the velocity in the inertial frame) is proposed. The
performance of such a system is closely related to the sensors
calibration. This is the first problem we address.

First, the numerous magnetometers that are used must be
jointly calibrated to cancel biases and scale factors of the
sensing axes. This task, which was addressed in [5] and [6],
is of paramount importance to enable the sensors to deliver
sensible information on the velocity of the system in the body
frame of reference. Secondly, the IMU (accelerometer and
gyrometer), which is used to convert the obtained velocity
estimate from the body frame to the inertial frame, has
to be calibrated as well. As will be discussed in details,
it is desirable to propose simple, yet effective, calibration
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methods that can be used in-the-field, i.e. without requiring
heavy, expensive or cumbersome calibration equipments.
The article is organized as follows. In Section I, the model
of the magnetic field and of the rigid body dynamics are
presented along with the notations used throughout the paper.
In Section II, the calibration of the sensors used is described.
The emphasis is on the calibration of the gyroscope with
respect to the accelerometers. Then, an observer is proposed
in Section IIl to estimate the magnetic field, and most
importantly, the velocity in the body frame. A proof of
convergence of this observer to the actual magnetic field
and the actual velocity is given. Finally, in Section IV
an experimental testbench is presented and some results
stressing the relevance of the approach are provided.

I. PROBLEM STATEMENT
A. Notations

We consider a rigid body with strapdown (i.e. attached to
the rigid body) magnetometers and inertial sensors in view
of estimating its motion. Two frames of coordinates are used
to represent the problem:

e a local inertial frame of reference: :;

« a body frame:

Denote R the rotation matrix between those two frames, from
the inertial reference frame ¥; to the body frame ¥, and
2 = ) ; the instantaneous rotation vector of the body frame
with reference to the inertial frame.

The rigid body under consideration can simultaneously
translate and rotate in 3D. We desire to estimate the ve-
locity of this platform by using solely measurements of the
magnetic field and of the rate of turn.

Variables expressed in the inertial reference frame are
marked by the subscript i. In details, we consider the
following variables:

o H,; the magnetic field (three dimensional vector)

« v; the speed of the rigid body (three dimensional vector)

o J;(H) the (3x3 matrix) Jacobian of the magnetic field,

defined by

n-(#),, o

When those quantities are expressed in the body frame,
subscript b is used. By definition, we have

H, = RH;
v, = Ru; 2
Jy(H) = RJ;(H)R"
B. Equations of motion

The most common way to use magnetic measurements in
attitude and position estimation techniques is to consider they
give a direct reading of the heading vector. This approach
gives very good results provided that magnetic disturbances
are small. However, this is not the case indoor where the
heading information can vary by more than 30 degrees
during a simple translation of a few meters (see [16] for
experimental results stressing this point). As already shown
in [17], those disturbances can be related to the velocity

assuming that the magnetic field depends only on space and
not on time, i.e. assuming stationarity of this variable. This
relation is obtained, in the inertial frame ¥;, by the chain
rule

As measurements of the magnetic field and its Jacobian are
naturally performed in the body frame R, the relation is
more useful expressed in that frame (see Appendix II for a
detailed derivation of this relation)

Hy, = —Q x Hy + Jy(H)vy 4)

In the general case, the motion of a rigid body is expressed
in the body frame by Newton’s law

Up = —Q X vp + Fip &)

where F),, is the total force per unit of mass applied to the
rigid body. Assuming that the pedestrian considered as a rigid
body keeps moving ahead during turns, one can model these
forces as

F,=Qxu, 6)

so that
Up =0 (7N

Finally, gathering (4) and (7), the dynamics of our system
is described in the body frame by

®)

Hb =—Qx Hb+Jb(H>Ub
vp =0

In practice, a gyroscope provides a measure of the rate
of turn 2 of the moving body with respect to the reference
frame R;.

A set of spatially distributed magnetometers delivers two
measurements. First, this set gives the value of the magnetic
field in the body frame Hj; by a direct reading. Secondly, by
making use of the data provided by all sensors of the set,
the Jacobian of the magnetic field in the body frame J,(H)
can be estimated by a finite difference scheme. A simple 2D-
example is presented in Section IV-A. Computing differences
between the sensors requires to take great care over their
calibration since the difference between the readings is much
lower than the sensed field. As the only information re-
garding the velocity is given through these computed spatial
differences between the magnetometers, its accuracy is of
high importance. We address this problem in the following
section. Eventually, an estimate of the matrix R is needed to
reconstruct the velocity, and thus the motion, in the inertial
frame of reference ;. For this task, accelerometers and
gyrometers can be used to obtain an attitude observer (see
e.g. [11]).

II. PREREQUISITE: SENSORS CALIBRATION

As discussed in Section I, several sensors are required (a
set of magnetometers, an accelerometer and a gyrometer) to
estimate the attitude and the velocity of the rigid body under
consideration. To allow them to work together, a calibration
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step has to be performed. The main errors usually accounted
for are the following ones:

o Errors in the sensor frame: among these are biases,
scale factors, orthogonality errors and cross-coupling
between the three sensing axes.

Practically, only the first order of these terms is sought
after, according to a model of the form

Fsenso7‘ — AFsensor + b (9)

true measure

where F;°7°°" is the true value of the sensed field ' we
want to compute in the sensor frame, F;57"°°"  is the
corresponding measured value of the same field in the
sensor frame, A is the calibration matrix accounting for
scale factors, orthogonality errors, cross-coupling, and
b is a bias vector. A and b are the parameters to be
estimated during the calibration procedure.

o Harmonization errors between the various sensor
frames. Typically, rotations up to 3 degrees are gen-
erally observed between two sensor frames.

In this section, a calibration along with an harmonization
procedure are presented for the set of magnetometer. Sec-
ondly, calibration of accelerometer and gyrometer along with
their harmonization is provided.

A. Magnetometers calibration

The iterative algorithm proposed in [5] gives the calibra-
tion matrices as the result of a sequence of least square
problems in which the input data are iteratively calibrated.
We do not recall this algorithm, details on its properties (con-
vergence and efficiency) can be found in [5]. In summary, the
least-square problems are used to seek calibration parameters
such that the sense field (in practice the Earth magnetic
field) has a constant norm when the sensors are rotated in
every possible direction. Further, in [7], some strategies to
harmonize (i.e. perform an alignment of) a whole set of
magnetometers in the same frame are presented, either by
first correcting the flaws of each sensor and then performing
an harmonization step which often gives a particular roll
to one sensor, or by getting rid of the two kinds of errors
simultaneously. This later algorithm is used to set all the
magnetometers in one frame.

B. Gyrometer and accelerometer calibration

Classically (see [11], and the references therein), the
attitude of a rigid body (described by a rotation matrix for
instance) can be estimated using accelerometers and gyrom-
eters. The attitude is used to project the velocity from the
body frame into the inertial frame of reference. Integration
of the inertial frame velocity provides the trajectory. Since
small angular errors in the attitude estimation give linearly
growing errors in the trajectory, the attitude estimation is
also a key task of our system. Calibration and harmonization
of the accelerometers and gyrometers is then of paramount
importance.

The accelerometer, which measures (at rest) the Earth
gravity field (which is by assumption of constant norm
in a neighborhood of the rigid body), can be calibrated

using the exact same technique as the one presented for
magnetometers. Bias and scale factors are then identified
and removed. However, this method is not suitable for gyro-
scope calibration. The culprit is that having some precisely
controlled rotation rate is very difficult during in-the-field
experiments. This results in a sensed field that does not
have a constant norm, which totally discards the previously
presented methods. The method presented below uses the re-
lation between the accelerometer measurements and the rate
of turn, as given by the chain rule differentiation. Compared
to other methods (as e.g. [9]), the dynamic is not integrated,
and the equation are kept under their differential expressions.
The result of this calibration procedure is that the gyrometer
is calibrated and harmonized with the accelerometer.

Let us define the calibration problem we wish to address.

Problem Statement
Consider a rigid body equipped with a (3-axis) gyrometer
and a (3-axis) accelerometer. The accelerometer is calibrated
(in the sense of Section II-A), i.e. the matrices A and b in
Equation (9) have already been identified, but the gyrometer
is not. It is desired to calibrate the gyrometer in the frame
of the accelerometer, i.e. such that, after this calibration, one
can read the variable

Qacc = RaccQ (10)

(the components of the vector rotation rates ) in the ac-
celerometer frame) without any misalignment, scale factor
or bias. In other words, considering that, by default, one has

ngr = AoQacc + bo (11

it is desired to identify Ag and by.

Proposition 1: Assuming that:

i) a properly calibrated accelerometer is available which
delivers the measurements v .. and % in its own
frame R,... The readings satisfy v,cc = Rqccg Where
Rgce is the rotation from R; to Ry, g is the gravity.
(This is only true if the accelerometer is rotated with
zero velocity, i.e. it is always on the rotation axis)

ii) the gyrometer to be calibrated gives the readings gy,

then

e the readings from the accelerometer and from the gy-
rometer are related through the relation

deacc
= _Qacc acc 12
7t Xy (12)
where Qe = Raecf2
o the calibration matrix A and bias b such that
Qacc = Angr +b (13)

can be estimated from the knowledge of Qgy., Yacc and
DYace
This proposition states that the gyroscopes can be cali-

brated in the accelerometer frame with a procedure which,
in fact, does not require any expansive equipment and can be
performed in-the-field by any operator. As will appear, the
platform has simply to be rotated in every direction around
the accelerometer.
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Proof: By making a cross product by 7,.. on the right
side of Equation (12), and expanding the right-hand triple
product according to the triple product expansion formula
(a.k.a. Lagrange formula), one obtains

d’YllCC
dt

Qqce can be split into the sum of Q,!CC parallel to Y4cc,

X Yace = ||7acc||2 Qacc - (chc’)/acc) Yacc (14)

and Q.. orthogonal to 74... Then, Equation (14) yields (in
the plane orthogonal to Y,c.)
d/Yacc
X Yace acc Qacc 15
208 e = [acel? (1s)

This means that, for a given sample, {2, can be determined
from the knowledge of ~,.. and d”““ In other words,
QL . is observable from the measurement Yace- According
to the error model of the sensor given in Equation (13),
this projection can be expressed in terms of the sought after

calibration parameters A and b as

QL. = Pg(AQ,,, +b)

acc

(16)

where Pp is the projector on the plane orthogonal to 4.
Gathering Equation (15) and Equation (16) yields Equa-
tion (17) for a given set of measurements, say the k.
By introducing the vectors X} depending only on the
gyrometer measurement (€2g,,.), and Y depending only on
the accelerometer measurements (Yace)y,

- ()

dYace
(’Ziit)k X ('Yacc)lg

”('VaCC)kH

the equation can be simply rewritten under the linear form
(in A and b)

(18)

Y, = 19)

Yi = (P), [A b] X (20)

Gathering a set of data (indexed by the k variable), the
parameters A and b can then be computed in a least square
sense of the former equality. A and b are thus defined as the
parameters minimizing the following cost function J

Lo K - 2
JAH = |- P[4 x| e
k=1
Lemma 1: Denote (F;);=1.12 a canonical base of
M374(R) with
1 0 00 00 0O
E,=10 0 0 0}, E,=(1 0 0 0],
0 0 0 O 0 0 0 O

and use them to linearly decompose the two terms appearing
in the sum (17)

X= [fi,j]i:1..12,j:1.12
with
K 12
Vi, D (Pe)eE; XX = wiiF
k=1 i=1

Y = [yiliz1 12
with

K
> (Po)eYi(Xi)" Zyz
k=1

Assuming X is invertible, the cost function J(A,b) has a
unique minimum in (A,b) defined by

my Mg M7 Mio
[A b] = mo MMms Mg M1 (22)
mz Mg Mg Mi2
with .
(m1 mao m12) = X_1Y (23)

The proof of this lemma is proposed in Appendix I. It
concludes the proof of Proposition 1 and gives an analytical
expression (Equations (22) and (23)) of the sought after
calibration matrix A and bias b. ]

ITI. PROPOSED OBSERVER

The purpose of the discussed device consisting of dis-
tributed magnetometers and a low-cost IMU is to be used
to obtain estimates of the velocity of the rigid body it is
attached to. A first step is to reconstruct the attitude, which
can be done, as previously discussed, using the IMU. A
second step is to reconstruct the body velocity v, appearing
in Equation (8). We now expose an algorithm to perform
this estimation task in a general three-dimensional context.
Consider Equation (8) and the following observer

;z:—Qxﬁ+J{ﬁ—L1 (iL—Hb)}
b= —t,07 (h Hb) .

where L4 is to be defined later. Hy, and J are measurements
from the sensors. The error dynamics is

=
1

h— 'f—QthrJ{v—Ll(iLbe)} 05

(Sh
I

bty = 0y 7 (h - Hb)

Proposition 2: The error dynamics, where L; = 1LJT,
with [; > 0 and I > 0 is globally asymptotically stable
(limt oo h = 0, limy_,oc ¥ = 0) provided that J is non
singular.

Proof: Consider the candidate Lyapunov-function W

N 2 1 R 9
W= b= o+ o=l
ly
Using (25), the time-derivative W is thus
W =~ (h — Hy) "L (h — Hy) + (h — Hy)TJ (6 — v)
+ (0 —vp)T IV (h — Hy) — (h— Hy)TLT JT (h — Hy)
— (6 =) "I (h — Hy) — (h— Hy)TJ (0 — vp)

Finally,
W= —(h—H,)" [JLy + LTI (h — H,) (26)
—_— ——
Q
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dYace
( dt )k,‘ X ’YCLCC

2
”(’VaCC)k H

known with the accelerometer

Choosing
Ly =6J"

where the gain ¢, > 0 is scalar guarantees that () is positive
semidefinite, thus W < 0. If the set W(ﬁ — Hy, 0 —vp) =0
contains no other trajectory except the trivial one (E—H by U—
vp) = (0,0), then, from LaSalle’s invariance principle [12],
the origin is globally asymptotically stable.

Indeed, the invariant set is reduced to the origin. Trajec-
tories lying in the set W = 0 are such that

JT(E—HZ,) —0

Assuming J has full rank, i.e. there are magnetic distur-
bances, we obtain

h—H,=0

However, ﬁ — Hb can be expressed as follows
h—Hy=J(—w) —1JJ (h — Hy)
which yields

0=0— Up

To conclude, if the Jacobian J is a full-rank matrix, and in
practice it usually is due to the magnetic field disturbances,
the observer reconstructs the value of the field H; and the
velocity v, expressed in the body frame of coordinates R;.

|

The final expression of the observer is

h=—Qxh+Jo—6JJ7 (iL—Hb)
. @7
b= —t,J7 (ﬁ - Hb)

where /1 > 0 and /5 > 0 are two scalar gains.

IV. EXPERIMENTAL RESULTS

In this Section, our experimental testbench is presented.
then, a 2D-trajectory of roughly 90m, which is reconstructed
by integration of the velocity estimates provided by the
observer, is reported. Finally, detailled results of velocity es-
timation obtained in a standard office building are compared
against a reference velocity given by a laser telemeter.

A. Experimental testbench and implementation

Our testbench, pictured in Figure 1, consists of two
separate modules connected by a communication wire also
used to supply the sensors with electric power:

i) the sensing module comprising a wooden board and the

various Sensors.
ii) the data acquisition module where information from
the various sensors are gathered by a microcontroller

(PB)k
~——

known with the accelerometer

A Q) Hb

measured by the gyrometer

a7

(namely an MPC555 from Motorola) and either sent to
a computer via an RS232 link or stored in a SD card
for post-treatment. Batteries for the whole system are
also included in this module.

This design in two separated modules has been chosen to
minimize magnetic noises around the sensors. From this
perspective, it is important to realize that the microcontroller
generates a small but non-negligible electromagnetic field.
So, it should not be placed too close to the sensors. Moreover,
the batteries, if put to close to the magnetometers, may act as
a malicious screen occulting the magnetic field in a certain
angle. All those possible sources of disturbances have been
isolated in a remote second module, distinct from the sensing
module.

The sensing module is placed on a wooden sledge to
keep the movement in the plane. The distances between the
sensors are precisely measured and further identified from
experiments using a method described in [7].

Ay

—@ z l Y
—————————————————————————— --mp--- 1= -eemmemeenee oo - - - MAG3
MAGL | X | Y t z C;)_
Ax
Fig. 1. Bredboard: schematic of the sensing module

1) Sensing module: Magnetometers
Numerous choices of magnetometers can be considered for
this application. Three similar 3-axis fluxgate magnetometers
FLC3-70 from Stefen Mayer Instrument are a good choice.
Their range is = 2 gauss. A 24 bits A/D converter for
each axis and a small micro-controller which performs the
communication have been integrated to the chip.

As discussed in Section II, measurements from these
magnetometers are used to obtain two values expressed in
the body frame: the value of the local magnetic field H,
and the Jacobian of the magnetic field J = J,(H).

The Jacobian is computed from the measurements of the
three magnetometers. Denote M; = (M; 5, M, ,) the values
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given by magnetometer M; (in the body frame). My, Mo,
M3 are located according to the schematic on Figure 1. A
first approximation of the Jacobian is then

MS,m_Ml,m M2 @ Ml,m
_ Az Ay
J=\ May- M1y, Moy Mi,

Az Ay

(28)

where A, is the distance between the sensors of magnetome-
ters M3 and M; which are both aligned on the X-axis, and
A, the distance between the sensors of magnetometers Mo
and M; which are aligned on the Y-axis.

Accelerometer and gyrometer
The inertial measurement unit (IMU) 3DM-GX1 from
Microstrain™ gathers 3 angular rate gyroscopes, 3 single-
axis magnetometers, and 3 single-axis accelerometers, along
with 16 bits A/D converters and a micro-controller. In the
presented setup, the IMU is mostly used for its gyroscope
(IMEMS gyroscope from Analog Device), with a 30 Hz
bandwidth. Its range is + 300 deg/s and the in-run stability
is 0.1 deg/s. The accelerometers are only used in the auxiliary
filter not presented in this paper which gives the heading in
order to integrate the velocity. The unit costs nearly 1500 $
for 30 g, and can perform measurements up to 76 Hz and
send them via an RS232 serial link.

2) Data acquisition module: The aim of this module is to
gather and store the information collected from all sensors.
The acquisition technique proposed in [6] is implemented to
account for timing discrepancies.

B. Numerical scheme for data fusion algorithm implemen-
tation

The data fusion algorithm (24) is implemented on board
a PC based system which solves differential equation in dis-
crete time. Surprisingly enough, this discretization can reveal
troublesome, and be the cause of unexpectedly misleading
results.

Simple investigations reveal that usual explicit or implicit
Euler numerical schemes are unable to reproduce pure ro-
tational terms in the dynamics (24). For instance, a direct
computation shows that, in the absence of any source term,
while the analytical solution of

H=-QxH (29)
has a constant norm, solutions determined using Euler
schemes do not and, rather, feature clearly wrong values
of this norm. In the data fusion algorithm, this numerical
effect is promptly interpreted as a fictitious variation of the
magnetic field, wrongly attributed to a displacement of the
rigid body.

To address this problem, we have realized that one can
simply use a numerical scheme well-suited for oscillator
(i.e. rotational) dynamics such as the ones developed in
celestial mechanics studies. Our choice was to use a Gauss-
Jackson scheme (see e.g. [2], [3], [14]). An alternative is
to consider higher order schemes as Adam’s extrapolation
formula (see [1]).

C. Experimental results

To illustrate the merits of the developed magneto-inertial
method and to investigate its accuracy, two type of experi-
ments have been conducted.

First, the bredboard pictured in Figure 1 was used in-
doors in corridors forming a rectangular path. The magnetic
environment is impacted by disturbances typical of those
commonly observed in office buildings. The rectangular
path is realized with the bredboard fixed on a sledge to
keep a 2D-trajectory. The heading used to integrate the
estimated velocity in the inertial frame is given by an attitude
filter not described here which makes use of the previously
calibrated sensors on board (magnetometers, gyrometers and
accelerometers). The results of the trajectory reconstruction
using the velocity estimation technique are reported in Fig-
ure (2). This figure presents the reconstructed trajectory on
the horizontal plane in order to compare it with a map of
the building. One can see that the estimated distances are
consistent with the map.

imei

-20 f

-15

—
_107 E——w————-

HL |

Y-axis (in m)

[l

1F

L

| e o o

10 b

-30 -20 [o] 10
X-axis (|n m)

Fig. 2. 3D-Reconstructed trajectory projected on the map.

Second, the same bredboard is moved back and forth along
a simple linear path in a corridor at the end of which a laser
telemeter has been placed. This allows to precisely evaluate
the representativeness of the velocity estimate, and of the
subsequent relative position reconstruction. The correspond-
ing data are represented in Figure (3).

One can clearly see the very good quality of the ve-
locity estimate, which, in particular, kindly reproduces the
sharp accelerations. However, some discrepancies between
the estimated velocity and the laser reconstructed velocity
are still visible in this figure. The estimated velocity is also
very noisy. These problems are currently under investigation.
In particular, using in the observer, not only the magnetic
gradients, but also their second and third order derivatives
seems to have already limited the noise and improved high
dynamic movement reconstruction. Further development in
that direction are under consideration.

4254



Longitudinal position

' Laser
- Estimate

Position (in m)

Time (in s)

Longitutinal velocity
' ‘

' Laser
- Estimate
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o] 10 20 30 40 50 60
Time (in s)

Fig. 3. Velocity (and integrated position) in a long corridor. The velocity
estimated by the filter is compared against a laser reference.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have shown that the information lying in
the disturbances of the magnetic field is not only interesting
to improve the accuracy of a purely inertial approach as
shown in [17], [16], but also reliable enough to provide
an accurate velocity estimate without accelerometer. An
observer for the velocity based only on measurements from
a set of distributed magnetometers (and a gyroscope) has
been proposed and its convergence to the actual velocity in
the body frame has been proved. To improve the attitude
estimation, reconciliating data from the accelerometer and
the gyroscope, through a calibration technique, has been a
subject of particular interest, for which we have proposed a
practical method. The robustness of the sensing and data
fusion system can certainly be improved further. This is
a subject of future development. Experiments with 3D-
trajectories will also be conducted soon.
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Méthodes

APPENDIX I

Proof of Lemma 1

To minimize the convex function (21), its derivative is
required. The following lemma is useful.

Lemma 2: Denote y € R™, x € R" and S € S,(R) a
skew symmetric matrix. Define f : M € M, ,(R) —
ly — SMz||®. Then, f is differentiable and its derivative is

0
pron = 5et-], .
%) dj=1..n

Proof: First, one shall expand the expression of f,

f(M) =

Z Yi — ZSi,ij,kfk

=-2-S(y—SMzx)z" (30)

Yi — Z Si.pMp,qq

i ik p,q
2
=3y =2 yiSi i M gkt
i i,k
T
E zy, M;j 15,5 SipMp,qq

1,5,k,P,q
Then, for any (u,v) € [1,m] x [1, n], the derivative of f(M)
with respect to any component M, ,, is

of

m(M) =—-2- Zyisﬂul’v + Z x'usi,usi,pMp,qu

1,0,q

+ E ka‘,kSi,jSi,umv
1,5,k
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Because S is skew symmetric,

of
o, , M =-2 (Z S“’) v

(Z Su,iSipMp qxq | Ty

i,p,q
=—2-(5y), w0 +2- (SZMx)uxv
=—2-(S(y—SMuz)), x

which yields

of
Dy(M
f< ) |:8Mu U:|u 1.m,v=1..n
=—-2-S(y—SMz)z"

|

J(A, B) is a convex and differentiable function. It thus

reaches its minimum when its derivative is zero. As (Pp)g

is an orthogonal projector, its matrix is skew symmetric.
Lemma 2 applies, leading to

0=-2- ZPB
K

:Z(

K
> Yi(xw)"
k=1 k=1

Using the canonical base (E;);_; 5 of M3 4(R) defined
in Lemma 1, and writing [A b] under the form

Pp)i [Ab] X, X[ (31)

myp Mg M7 Mig 12
m3 Mme Mg 1MM12 J=1

The relation (31) can be rewritten as

K
ZYka = Zm] <Z PB)kEijX;{>

k=1

i viE 2 @i B

(Ye — (PB)k [Ab] Xy) (Xi)"

This yields
12

yi = wigm; Vi=1.12
j=1
T
Y=X (ml mao mlg)

Under the assumption that X is invertible, one obtains

(ml mo mlg)T = X_IY
which concludes the proof.
APPENDIX II

From definition (2),

H, = RH; (2)
th,
en @ 4R .
dt dt " d
R being orthogonal, one has
RRT =RTR=1 (34)
and, one has iR
— =—[Q]R 35
=l (39)

where [Q] is the matrix associated with the left vector cross
product by 2

Qu=2xu
Then, one obtains, with (3)
H
d—: = —Q x Hy + RJ;(H)v;

=—-Qx Hy + J[,(H)’Ub
which yields Equation (4).
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