
Dynamical Queue-based Task Management Policies for Human Operators

Ketan Savla Emilio Frazzoli

Abstract— Formal methods for task management for human
operators are gathering increasing attention to improve effi-
ciency of human-in-the-loop systems. In this paper, we consider
a dynamical queue approach to task management for human
operators. We consider the model of dynamical queue proposed
in our earlier work [1], in which the service time depends
on the server utilization history. The focus of the paper is
to characterize the throughput of the dynamical queue and
design corresponding maximally stabilizing task release control
policies, assuming deterministic arrivals. We focus extensively
on threshold policies that release a task to the server only
when the server state is less than a certain threshold. When
every task brings in the same deterministic amount of work,
we give an exact characterization of the throughput and show
that an appropriate threshold policy is maximally stabilizing.
When the amount of work associated with the tasks is an i.i.d.
random variable with finite support, we show that the maximum
throughput increases in comparison to the case where the tasks
have deterministic amount of work.

I. INTRODUCTION

Recent years have witnessed great technological advance-
ments in automation, which in turn have marginalized the
role of humans in many engineering applications. Neverthe-
less, the role of humans for critical tasks remains indispens-
able. With scientific and technological advances in modeling
human performance, there has been an increasing interest in
formal methods for task management for human operators to
increase the overall efficiency of human-in-the-loop systems.

In this paper, we consider applications where human op-
erators have to persistently perform similar tasks, generated
over time by some arrival process. Typical examples for such
settings include remotely located human operators processing
continuous stream of information from unmanned vehicles
in a persistent surveillance mission, e.g., see [2], or workers
processing jobs in a production line. We consider a queueing
framework for such settings. Queueing theory is a framework
to study systems with waiting lines, and it is used to model
several scenarios in commerce, industry, health-care, public
service and engineering domains. An extensive treatment of
queueing systems can be found in several texts, e.g., see [3],
[4].

Queueing methods for task management in the context
of call centers and job floors have attracted a great deal of
attention, e.g., see [5]. A typical feature of such static queue
models is that, as long as the tasks are independent of each
other, the performance of the operator on the tasks are also

K. Savla is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 (ksavla@
mit.edu).

E. Frazzoli is with the Laboratory for Information and Decision Systems,
Department of Aeronautics and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA 02139 (frazzoli@mit.edu).

independent. However, it is reasonable to expect that, even if
the tasks are independent of each other, the performance of
the server on those tasks could be correlated. For example,
the cumulative performance of a human operator on two tasks
serviced back to back would be different than the case when
the same tasks are assigned to the operator with a break in
between.

In this paper, we consider the dynamical queue model
first proposed in [1], in which service times depend on the
utilization history of the server. In other words, we consider
the server as a dynamical system, and model the service time
as a function of its state. Given this model, we consider the
case in which new tasks arrive at a deterministic rate, and
propose a task release control architecture that schedules
the beginning of service of each task after its arrival. The
model for state-dependent service times is inspired by a well
known empirical law from psychology—the Yerkes-Dodson
law [6]—which states that human performance increases
with mental arousal up to a point and decreases thereafter.
Our model in this paper is in the same spirit as the one
in [7], [8], where the authors consider a state-dependent
queueing system whose service rate is first increasing and
then decreasing as a function of the amount of outstanding
work. However, our model differs in the sense that the
service times are related to the utilization history rather than
the outstanding amount of work. A similar model has also
been reported in the human factors literature, e.g., see [9].
Recently, there has also been interest in incorporating error
rates into the performance metric for humans in a queueing
setup, e.g., see [10], [11].

The control architecture considered in this paper falls
under the category of task release control, which has been
typically used in production planning to control the release
of jobs to a production system in order to deal with ma-
chine failures, input fluctuations and variations in operator
workload (see, e.g., [12], [13]). The task release control ar-
chitecture is different from an admission control architecture,
e.g., see [14], [8], where the objective is, given a measure of
the quality of service to be optimized, to determine criteria
on the basis of which to accept or reject incoming tasks.
In the setting of this paper, no task is dropped and the task
release controller simply acts like a switch regulating access
to the server and hence effectively determines the schedule
for the beginning of service of each task after its arrival.
We extensively focus on threshold based task release control
policies that release task to the operator only if the server
state is below a certain fixed value.

While this paper discusses the use of dynamical queues
and task release control policies for human-in-the-loop sys-
tems, such a framework is finding increasing application in

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 1849

a variety of other domains, where the queue parameters are
strongly dependent on some state. Examples include ramp
metering congestion control of motorways, e.g., see [15],
and air traffic control of national airspace systems, e.g., see
[16].

The contributions of the paper are as follows. First, we
adapt earlier results from [1] to exactly characterize the
throughput of the dynamical queue for the special case when
all the tasks are homogeneous and show that the task release
control policy that releases tasks to the server only when the
server state is below an appropriately chosen threshold value
is maximally stabilizing. Second, for the heterogeneous task
case, we provide bounds on the throughput of the dynamical
queue, where we prove a surprising result that the throughput
of the queue strictly increases with the introduction of
heterogeneity.

II. DYNAMICAL QUEUE MODEL

Consider the following single-server queue model. Tasks
arrive periodically, at rate λ, i.e., a new task arrives every
1/λ time units. The tasks are identical and independent of
each other and each task brings w units of work, where w is
an i.i.d. random variable whose probability distribution is fW
with bounded support [W1,W2] for someW1 > 0 andW2 ≥
W1. In the rest of the paper, we shall assume this bounded
support assumption on fW without explicitly repeating it.
Let w̄ be the mean of w with respect to fW . Let δw̄ be
the Dirac delta distribution centered at w̄. We shall use the δ
distribution to denote the case with homogeneous tasks. Note
that we assume that the task arrival process is deterministic.
We briefly discuss the implications of stochastic inter-arrival
times in Section V. The tasks need to be serviced in the order
of their arrival. We next state the dynamical model for the
server, which specifies the state-dependent rate of performing
work by the server.

A. Server Model
Let x(t) be the server state at time t, and let b : R→ {0, 1}

be such that b(t) is 1 if the server is busy at time t, and 0
otherwise. The evolution of x(t) is governed by a simple
first-order model:

ẋ(t) =
b(t)− x(t)

τ
, x(0) = x0, (1)

where τ is a time constant that determines the extent to which
past utilization affects the current state of the server, and
x0 ∈ [0, 1] is the initial condition. Equation (1) is closely
related to the moving window average model with time
window τ . In particular, the two models coincide in the limit
as τ →∞. For other models of human mental workload, we
refer the reader to [17].

The service times are related to the state x(t) through a
map S : [0, 1] → R>0. If a task is allocated to the server
at state x, then the amount of time required to perform unit
work is given by S(x). Therefore, if the amount of work
associated with a task allocated to the server at state x is
w, then the service time on that task is wS(x). Since the
controller cannot interfere the server while it is servicing a
task, the only way in which it can control the server state

a variety of other domains, where the queue parameters are
strongly dependent on some state. Examples include ramp
metering congestion control of motorways, e.g., see [15],
and air traffic control of national airspace systems, e.g., see
[16].

The contributions of the paper are as follows. First, we
adapt earlier results from [1] to exactly characterize the
throughput of the dynamical queue for the special case when
all the tasks are homogeneous and show that the task release
control policy that releases tasks to the server only when the
server state is below an appropriately chosen threshold value
is maximally stabilizing. Second, for the heterogeneous task
case, we provide bounds on the throughput of the dynamical
queue, where we prove a surprising result that the throughput
of the queue strictly increases with the introduction of
heterogeneity.

II. DYNAMICAL QUEUE MODEL

Consider the following single-server queue model. Tasks
arrive periodically, at rate λ, i.e., a new task arrives every
1/λ time units. The tasks are identical and independent of
each other and each task brings w units of work, where w is
an i.i.d. random variable whose probability distribution is fW

with bounded support [W1,W2] for some W1 > 0 and W2 ≥
W1. In the rest of the paper, we shall assume this bounded
support assumption on fW without explicitly repeating it.
Let w̄ be the mean of w with respect to fW . Let δw̄ be
the Dirac delta distribution centered at w̄. We shall use the δ
distribution to denote the case with homogeneous tasks. Note
that we assume that the task arrival process is deterministic.
We briefly discuss the implications of stochastic inter-arrival
times in Section V. The tasks need to be serviced in the order
of their arrival. We next state the dynamical model for the
server, which specifies the state-dependent rate of performing
work by the server.

A. Server Model
Let x(t) be the server state at time t, and let b : R → {0, 1}

be such that b(t) is 1 if the server is busy at time t, and 0
otherwise. The evolution of x(t) is governed by a simple
first-order model:

ẋ(t) =
b(t)− x(t)

τ
, x(0) = x0, (1)

where τ is a time constant that determines the extent to which
past utilization affects the current state of the server, and
x0 ∈ [0, 1] is the initial condition. Equation (1) is closely
related to the moving window average model with time
window τ . In particular, the two models coincide in the limit
as τ →∞. For other models of human mental workload, we
refer the reader to [17].

The service times are related to the state x(t) through a
map S : [0, 1] → R>0. If a task is allocated to the server
at state x, then the amount of time required to perform unit
work is given by S(x). Therefore, if the amount of work
associated with a task allocated to the server at state x is
w, then the service time on that task is wS(x). Since the
controller cannot interfere the server while it is servicing a
task, the only way in which it can control the server state

Server
u

Fig. 1. Task release control architecture

is by scheduling the beginning of service of tasks after their
arrival. Such controllers are called task-release controllers
and will be formally characterized later on. In this paper
we assume that: S(x) is positive valued, continuous and
convex. Let Smin := min {S(x) | x ∈ [0, 1]}, and Smax :=
max{S(0),S(1)}.

A loose experimental justification of this server model in
the context of humans-in-loop systems is included in our
earlier work [18], where S(x) for that setup was found to
have a U-shaped profile. We shall use that particular S(x)
from [18] for various numerical illustrations in this paper.
Further experimental evidence for this model are presented
in [19].

B. Task Release Control Policy

We now describe task release control policies for the
dynamical queue. Without explicitly specifying its domain,
a task release controller u acts like an on-off switch at the
entrance of the queue, e.g., see Figure 1. In short, u is a task
release control policy if u(t) ∈ {ON,OFF} for all t ≥ 0,
and an outstanding task is assigned to the server if and only
if the server is idle, i.e., when it is not servicing a task, and
when u = ON. Let U be the set of all such task release
control policies. Note that we allow U to be quite general in
the sense that it includes control policies that are functions
of λ, S, x(t), fW , τ , etc.

C. Objectives of the paper

We now formally state the problem. For a given τ > 0
and fW , let nu(t, τ, λ, fW , x0, n0) be the queue length, i.e.,
the number of outstanding tasks, at time t, under task release
control policy u ∈ U , when the task arrival rate is λ and the
server state and the queue length at time t = 0 are x0 and
n0 respectively. Define the maximum stabilizable arrival rate
for policy u as:

λmax(τ, fW , u) = sup{λ| lim sup
t→+∞

nu(t, τ, λ, fW , x0, n0)

< +∞ ∀x0 ∈ [0, 1], n0 ∈ N a.s.}.
The quantity λmax(τ, fW , u) will also be referred to as
the throughout under policy u. The maximum stabilizable
arrival rate over all policies, or the throughput, is defined
as λ∗max(τ, fW) = supu∈U λmax(τ, fW , u). For a given
τ > 0 and fW , a task release control policy u is called
maximally stabilizing if, for any x0 ∈ [0, 1], n0 ∈ N,
lim supt→+∞ nu(t, τ, λ, fW , x0, n0) < +∞ for all λ ≤
λ∗max(τ, fW) almost surely. The primary objective in this
paper is to compute the throughput and design a correspond-
ing maximally stabilizing task release control policy for the
dynamical queue whose server state evolves according to
Equation (1), and where S(x) is positive, continuous and
convex.

Fig. 1. Task release control architecture

is by scheduling the beginning of service of tasks after their
arrival. Such controllers are called task-release controllers
and will be formally characterized later on. In this paper
we assume that: S(x) is positive valued, continuous and
convex. Let Smin := min {S(x) | x ∈ [0, 1]}, and Smax :=
max{S(0),S(1)}.

A loose experimental justification of this server model in
the context of humans-in-loop systems is included in our
earlier work [18], where S(x) for that setup was found to
have a U-shaped profile. We shall use that particular S(x)
from [18] for various numerical illustrations in this paper.
Further experimental evidence for this model are presented
in [19].

B. Task Release Control Policy

We now describe task release control policies for the
dynamical queue. Without explicitly specifying its domain,
a task release controller u acts like an on-off switch at the
entrance of the queue, e.g., see Figure 1. In short, u is a task
release control policy if u(t) ∈ {ON,OFF} for all t ≥ 0,
and an outstanding task is assigned to the server if and only
if the server is idle, i.e., when it is not servicing a task, and
when u = ON. Let U be the set of all such task release
control policies. Note that we allow U to be quite general in
the sense that it includes control policies that are functions
of λ, S, x(t), fW , τ , etc.

C. Objectives of the paper

We now formally state the problem. For a given τ > 0
and fW , let nu(t, τ, λ, fW , x0, n0) be the queue length, i.e.,
the number of outstanding tasks, at time t, under task release
control policy u ∈ U , when the task arrival rate is λ and the
server state and the queue length at time t = 0 are x0 and
n0 respectively. Define the maximum stabilizable arrival rate
for policy u as:

λmax(τ, fW , u) = sup{λ| lim sup
t→+∞

nu(t, τ, λ, fW , x0, n0)

< +∞ ∀x0 ∈ [0, 1], n0 ∈ N a.s.}.
The quantity λmax(τ, fW , u) will also be referred to as
the throughout under policy u. The maximum stabilizable
arrival rate over all policies, or the throughput, is defined
as λ∗max(τ, fW) = supu∈U λmax(τ, fW , u). For a given
τ > 0 and fW , a task release control policy u is called
maximally stabilizing if, for any x0 ∈ [0, 1], n0 ∈ N,
lim supt→+∞ nu(t, τ, λ, fW , x0, n0) < +∞ for all λ ≤
λ∗max(τ, fW) almost surely. The primary objective in this
paper is to compute the throughput and design a correspond-
ing maximally stabilizing task release control policy for the
dynamical queue whose server state evolves according to

1850

Equation (1), and where S(x) is positive, continuous and
convex.

In this paper, we extensively focus on a specific class of
task release control policies – threshold policies. For a given
x∗ ∈ [0, 1], the x∗-threshold policy is defined as

ux∗(t) =

{
ON if x(t) ≤ x∗,
OFF otherwise.

We prove that an appropriate threshold policy is maximally
stabilizing when the tasks are homogeneous and utilize them
to prove bounds on the throughput when the tasks are
heterogeneous.

D. Simple bounds on the throughput
We start by deriving simple bounds on the throughput.
Proposition 2.1: For any τ > 0 and fW , we have that

λ∗max(τ, fW) ∈
[
(w̄S(1))−1

, (w̄Smin)−1
]
.

Proof: The time between the start of service of succes-
sive tasks consists of two parts: the time to actively service
a task, and the time when the server is idle, as governed
by the task release control policy. The upper bound on the
throughput is obtained by neglecting the idle times and by
assuming that the server gives optimal performance for every
task. The lower bound is proven by considering the trivial
policy u(t) ≡ ON as follows. Assume, by contradiction,
that the queue length grows unbounded under this policy
for some initial condition for an arrival rate (w̄S(1))−1 − ε
for some ε > 0. For a queue length growing unbounded,
the server state eventually exceeds 1 − η for any given
η > 0. After this time, all the service times per unit work
are upper bounded by S(1) + θ where θ depends on η
through continuity of S(x). One can select η and hence
θ such that (w̄S(1) + w̄θ)−1

> (w̄S(1))−1 − ε, i.e., the
average service time is less than the average inter-arrival
time. Therefore, with probability one, the queue length will
not grow unbounded.

The bounds obtained in Proposition 2.1 can be shown to be
tight in some simple cases. Consider first the case when S ≡
c for some constant c > 0. In this case, S(1) = Smin = c and
hence Proposition 2.1 implies that λ∗max(τ, fW) = (w̄c)−1

for all τ > 0. Additionally, the trivial policy u(t) ≡ ON is
maximally stabilizing. Another simple case is when S(x)
is non-increasing. In this case, S(1) = Smin and hence
Proposition 2.1 implies that λ∗max(τ, fW) = (w̄S(1))−1 for
all τ > 0. One can show that the trivial policy u(t) ≡ ON
is maximally stabilizing in this case too.

We now derive tighter bounds on the throughput and de-
sign corresponding maximally stabilizing task release control
policies.

III. HOMOGENEOUS TASKS

In this section, we consider the special case when the
arriving tasks are homogeneous, i.e., every task brings in
exactly the same amount of work with it. Formally, we let
fW (w) = δw̄(w) for some w̄ ∈ [W1,W2]. We start by
studying a specific class of equilibria that are associated with
the trivial policy u(t) ≡ ON. We only outline the key ideas
here; the details can be found in [1].

In this paper, we extensively focus on a specific class of
task release control policies – threshold policies. For a given
x∗ ∈ [0, 1], the x∗-threshold policy is defined as

ux∗(t) =

{
ON if x(t) ≤ x∗,
OFF otherwise.

We prove that an appropriate threshold policy is maximally
stabilizing when the tasks are homogeneous and utilize them
to prove bounds on the throughput when the tasks are
heterogeneous.

D. Simple bounds on the throughput

We start by deriving simple bounds on the throughput.
Proposition 2.1: For any τ > 0 and fW , we have that

λ∗max(τ, fW) ∈
[
(w̄S(1))−1

, (w̄Smin)−1
]
.

Proof: The time between the start of service of succes-
sive tasks consists of two parts: the time to actively service
a task, and the time when the server is idle, as governed
by the task release control policy. The upper bound on the
throughput is obtained by neglecting the idle times and by
assuming that the server gives optimal performance for every
task. The lower bound is proven by considering the trivial
policy u(t) ≡ ON as follows. Assume, by contradiction,
that the queue length grows unbounded under this policy
for some initial condition for an arrival rate (w̄S(1))−1 − ε
for some ε > 0. For a queue length growing unbounded,
the server state eventually exceeds 1 − η for any given
η > 0. After this time, all the service times per unit work
are upper bounded by S(1) + θ where θ depends on η
through continuity of S(x). One can select η and hence
θ such that (w̄S(1) + w̄θ)−1

> (w̄S(1))−1 − ε, i.e., the
average service time is less than the average inter-arrival
time. Therefore, with probability one, the queue length will
not grow unbounded.

The bounds obtained in Proposition 2.1 can be shown to be
tight in some simple cases. Consider first the case when S ≡
c for some constant c > 0. In this case, S(1) = Smin = c and
hence Proposition 2.1 implies that λ∗max(τ, fW) = (w̄c)−1

for all τ > 0. Additionally, the trivial policy u(t) ≡ ON is
maximally stabilizing. Another simple case is when S(x)
is non-increasing. In this case, S(1) = Smin and hence
Proposition 2.1 implies that λ∗max(τ, fW) = (w̄S(1))−1 for
all τ > 0. One can show that the trivial policy u(t) ≡ ON
is maximally stabilizing in this case too.

We now derive tighter bounds on the throughput and de-
sign corresponding maximally stabilizing task release control
policies.

III. HOMOGENEOUS TASKS

In this section, we consider the special case when the
arriving tasks are homogeneous, i.e., every task brings in
exactly the same amount of work with it. Formally, we let
fW (w) = δw̄(w) for some w̄ ∈ [W1,W2]. We start by
studying a specific class of equilibria that are associated with
the trivial policy u(t) ≡ ON. We only outline the key ideas
here; the details can be found in [1].

x
0 1

S(x)

R(λlow)

R(λmed)

R (
λmax

eq

)
Smin

Smax

1
λmax

eq (τ,w̄)

xth(τ, w̄)xmed,1 xmed,2xlow

Fig. 2. A typical S(x) along with R(x, τ, w̄, λ) for three values of
λ: λlow, λmed and λmax

eq (τ, w̄) in the increasing order. Here, xlow =
xeq,1(τ, w̄, λlow), xmed,1 = xeq,1(τ, w̄, λmed), xmed,2 = xeq,2(τ, w̄, λmed)
and xth(τ, w̄) = xeq,1(τ, w̄, λmax

eq (τ, w̄). Note that, since xth(τ, w̄) < 1,
λmax

eq (τ, w̄) is the value of λ at which R(x, τ, w̄, λ) is tangent to S(x).

A. One-task equilibria

Define a function R as:

R(x, τ, w̄, λ) :=
τ

w̄
log

(
1− (1− e

1
λτ)x

)
. (2)

For a given τ > 0 and λ > 0, define the set of one-task
equilibrium server states as:

xeq(τ, w̄, λ) := {x ∈ [0, 1] | S(x) = R(x, τ, w̄, λ)} . (3)

The strict convexity of S(x) −R(x, τ, w̄, λ) implies that
the cardinality of xeq(τ, w̄, λ) can take on values 0,1 and 2.
For a given τ > 0, w̄ > 0 and λ > 0, let xeq,1(τ, w̄, λ)
be the smaller element of xeq(τ, w̄, λ) if it is not empty
and let xeq,2(τ, w̄, λ) be the other element if the cardinality
of xeq(τ, w̄, λ) is 2. Figure 2 illustrates these definitions
through an example. One can show that xeq,1(τ, w̄) is a stable
equilibrium point and xeq,2(τ, w̄), if it exists, is an unstable
equilibrium point. Formally, one can show that

(i) For any τ > 0 and w̄ > 0, the set (xeq,2(τ, w̄), 1]
is invariant and is not in the region of attraction of
xeq,1(τ, w̄) or xeq,2(τ, w̄),

(ii) There exists a τ∗ > 0 such that for all τ > τ∗, the set
[0, xeq,2(τ, w̄)) is invariant for all τ > τ∗. Moreover,
in the limit as τ → +∞, the set [0, xeq,2(τ, w̄)) is the
region of attraction of xeq,1(τ, w̄).

We introduce a couple of more definitions. For a given
τ > 0 and w̄ > 0, let

λmax
eq (τ, w̄) :=max {λ > 0 | xeq(τ, w̄, λ) '= ∅} ,

xth(τ, w̄) :=xeq,1

(
τ, w̄, λmax

eq (τ, w̄)
)
.

(4)

In the rest of the paper, we will restrict our attention on
those τ , w̄ > 0 and S(x) for which xth(τ, w̄) < 1. Loosely
speaking, this is satisfied when S(x) is increasing on some
interval in [0, 1] and the increasing part is steep enough (e.g.,
see Figure 2). It is reasonable to expect this assumption
to be satisfied in the context of human operators whose
performance deteriorates quickly at very high utilizations.

Fig. 2. A typical S(x) along with R(x, τ, w̄, λ) for three values of
λ: λlow, λmed and λmax

eq (τ, w̄) in the increasing order. Here, xlow =
xeq,1(τ, w̄, λlow), xmed,1 = xeq,1(τ, w̄, λmed), xmed,2 = xeq,2(τ, w̄, λmed)
and xth(τ, w̄) = xeq,1(τ, w̄, λmax

eq (τ, w̄). Note that, since xth(τ, w̄) < 1,
λmax

eq (τ, w̄) is the value of λ at which R(x, τ, w̄, λ) is tangent to S(x).

A. One-task equilibria

Define a function R as:

R(x, τ, w̄, λ) :=
τ

w̄
log
(

1− (1− e 1
λτ)x

)
. (2)

For a given τ > 0 and λ > 0, define the set of one-task
equilibrium server states as:

xeq(τ, w̄, λ) := {x ∈ [0, 1] | S(x) = R(x, τ, w̄, λ)} . (3)

The strict convexity of S(x) −R(x, τ, w̄, λ) implies that
the cardinality of xeq(τ, w̄, λ) can take on values 0,1 and 2.
For a given τ > 0, w̄ > 0 and λ > 0, let xeq,1(τ, w̄, λ)
be the smaller element of xeq(τ, w̄, λ) if it is not empty
and let xeq,2(τ, w̄, λ) be the other element if the cardinality
of xeq(τ, w̄, λ) is 2. Figure 2 illustrates these definitions
through an example. One can show that xeq,1(τ, w̄) is a stable
equilibrium point and xeq,2(τ, w̄), if it exists, is an unstable
equilibrium point. Formally, one can show that

(i) For any τ > 0 and w̄ > 0, the set (xeq,2(τ, w̄), 1]
is invariant and is not in the region of attraction of
xeq,1(τ, w̄) or xeq,2(τ, w̄),

(ii) There exists a τ∗ > 0 such that for all τ > τ∗, the set
[0, xeq,2(τ, w̄)) is invariant for all τ > τ∗. Moreover,
in the limit as τ → +∞, the set [0, xeq,2(τ, w̄)) is the
region of attraction of xeq,1(τ, w̄).

We introduce a couple of more definitions. For a given
τ > 0 and w̄ > 0, let

λmax
eq (τ, w̄) := max {λ > 0 | xeq(τ, w̄, λ) 6= ∅} ,
xth(τ, w̄) :=xeq,1

(
τ, w̄, λmax

eq (τ, w̄)
)
.

(4)

In the rest of the paper, we will restrict our attention on
those τ , w̄ > 0 and S(x) for which xth(τ, w̄) < 1. Loosely
speaking, this is satisfied when S(x) is increasing on some
interval in [0, 1] and the increasing part is steep enough (e.g.,
see Figure 2). It is reasonable to expect this assumption
to be satisfied in the context of human operators whose
performance deteriorates quickly at very high utilizations.

1851

The implications of the case when xth(τ, w̄) = 1 are
discussed briefly at appropriate places in the paper.

B. Lower bound on the throughput

We start by analyzing the throughput under a specific
task release control policy. In particular, we consider the
xth(τ, w̄)-threshold policy, where xth(τ, w̄) is as defined in
Equation (4).

Theorem 3.1: For any τ > 0, w̄ > 0, x0 ∈ [0, 1],
n0 ∈ N and λ ≤ λmax

eq (τ, w̄), if xth(τ, w̄) < 1 then we
have that lim supt→+∞ nu(t, τ, λ, δw̄, x0, n0) < +∞ under
the xth(τ, w̄)-threshold policy.

The proof of this result, which can be found in [1], follows
along the lines of the proof of Theorem 4.1, where we
analyze threshold policies for the heterogeneous task case.

C. Upper bound on the throughput

We now prove that the xth(τ, w̄)-threshold policy is indeed
maximally stabilizing by showing that no other task release
control policy gives more throughput.

Theorem 3.2: For any τ > 0, w̄ > 0, x0 ∈ [0, 1], n0 ∈ N,
λ > λmax

eq (τ, w̄) and u ∈ U , if xth(τ, w̄) < 1 then we have
that lim supt→+∞ nu(t, τ, λ, δw̄, x0, n0) = +∞.

The proof of Theorem 3.2 is a simple adaptation of a
similar result in [1].

Theorems 3.1 and 3.2 imply that the throughput of the
dynamical queue is λmax

eq (τ, w̄), and that the xth(τ, w̄)-
threshold policy is maximally stabilizing.

Remark 3.3: (i) For a given w̄, it is interesting to note
the dependence of λmax

eq on τ . For any w̄ > 0, one
can show that λmax

eq (τ, w̄) is monotonically strictly
decreasing in τ . Additionally, limτ→0+ λmax

eq (τ, w̄) =
(w̄Smin)−1, and limτ→+∞ λmax

eq (τ, w̄) = a, where
a > 0 is such that the line passing through the origin
and having slope w̄/a is tangential to S in (0, 1). An
example plot of λmax

eq (τ, w̄) is shown in Figure 3.
(ii) If xth(τ, w̄) = 1, then one can show that, for any

ε > 0, there exists no stabilizing task release control
policy for arrival rates greater than λmax

eq (τ, w̄)+ ε, i.e.,
λ∗max(τ, w̄) ≤ λmax

eq (τ, w̄) + ε.
(iii) For any λ < λmax

eq (τ, w̄), Theorem 3.1
holds true for any x-threshold policy with
x ∈ [xeq,1(τ, w̄), xeq,2(τ, w̄)], if xeq,2(τ, w̄) exists
or x ∈ [xeq,1(τ, w̄), 1] otherwise. It is possible to
exploit this flexibility to design a threshold policy
with dynamically changing threshold values to ensure
that, for any n0 ∈ N and x0 ∈ [0, 1], the queue length
goes to zero in finite time for any λ < λmax

eq (τ, w̄).

IV. HETEROGENEOUS TASKS

In this section, we return to the general case when fW is
not necessarily the delta distribution. For this general case,
we are not able to compute the throughput exactly but we
provide meaningful bounds.

0 100 200 3000.025

0.03

0.035

0.04

0.045

0.05

! (in sec)

" eqm
ax

 (i
n

pe
r s

ec
)

Fig. 3. Plot of λmax
eq (τ, w̄) versus τ for S(x) = 229x2 − 267x+ 99 and

w̄ = 1.

A. Lower bound on the throughput

We first prove a surprising lower bound.
Theorem 4.1: For any fW and τ > 0, we have that

λ∗max(τ, fW) ≥ λ∗max(τ, δw̄),

where the inequality is strict if and only if fW 6= δw̄.
Proof: We first prove an upper bound on the inter-

task time under a threshold policy, which will be critical
in proving the main result. The time between servicing
successive tasks under the x-threshold policy is the ran-
dom variable wS(x)+τ log

(
1−(1−x)e−wS(x)/τ

x

)
. Due to the

bounded support assumption of fW , this random variable has
a finite variance. The expected value can be written as

EfW

[
wS(x) + τ log

(
1− (1− x)e−wS(x)/τ

x

)]
= w̄S(x)+τEfW

[
log
(

1− (1− x)e−wS(x)/τ
)]
−τ log(x).

(5)

The function 1 − (1 − x)e−y/τ is strictly concave in y
(except for x = 1) and non-negative for every τ > 0.
Since every non-negative strictly concave function is also
logarithmically strictly concave, e.g., see [20], applying
Jensen’s inequality to EfW

[
log
(
x− 1 + ewS(x)/τ

)]
and us-

ing Equation (5), one gets that for all fW 6= δw̄,

EfW

[
wS(x) + τ log

(
1− (1− x)e−wS(x)/τ

x

)]
< w̄S(x) + τ log

(
1− (1− x)e−w̄S(x)/τ

x

)
. (6)

We now use this bound to prove the main result. Let

T := min
x∈[0,1]

E

[
wS(x) + τ log

(
1− (1− x)e−wS(x)/τ

x

)]
,

(7)
and let x∗ be the minimizer. Using Equation (6) for
x = xth(τ, w̄), we get that T < 1/λmax

eq (τ, w̄) =
1/λ∗max(τ, δw̄), where the equality follows from Theorems 3.2

1852

and 3.1. Consider the evolution of the queue under the
x∗-threshold policy for an arrival rate 1/T − η for any
η ∈ (0, 1/T − λ∗max(τ, δw̄)). We now prove the boundedness
of the queue length, thereby proving the theorem.

Let xi and ti be the server state and time instants respec-
tively at the beginning of service of the i-th task. For brevity
in notation, let n(t) be the queue length at time t. For any
x0 ∈ [0, 1] and n0 ∈ N, considering the possibility when
x0 > x∗ we have that n(t1) = max{0, n0 − 1, n0 − 1 +
bλτ log(x0/x

∗)c}. Consider the following two cases:
• State 1: x1 = x∗. While n(ti) > 0, we have that
xi+1 = x∗ and ti+1 − ti = wS(x∗), where w is
independently and identically distributed according to
fW . Applying the Strong Law of Large Numbers to the
sequence ti− ti−1, we have that, for every ε > 0, there
exists n(ε) > 0 such that, for all n ≥ n(ε),

Pr
(∣∣∣ tn+1 − t1

n

−EfW
[
wS(x∗) + τ log

(
x∗ − 1 + ewS(x∗)/τ

x∗

)] ∣∣∣ < ε
)

= 1.

This implies that, with ε := 1
2

(
1
λ − w̄S(x∗)

)
, for all

n ≥ max
{
n(ε), 2n0

1−λw̄S(x∗)

}
, we have that

tn+1 − t1 < n

(
1
λ
− n0

nλ

)
=
n− n0

λ
.

In other words, for any initial queue length n0, with
probability one, after service of finite number of tasks
the queue length goes to zero and the server state drops
below x∗. Thereafter, we appeal to the next case by
resetting xi and ti as x1 and t1 respectively. Moreover,
with these notations, n(t1) will be zero.

• State 2: x1 < x∗. While the queue length is non-
zero, the server is never idle. The maximum amount
of continuous service time required for the server state
to cross x∗ starting from any x1 < x∗ is upper bounded
by −τ log(1−x∗)+W2Smax. This is possibly followed
by an idle time that is upper bounded by −τ log x∗, at
the end of which the server state is x∗. Therefore, the
maximum number of outstanding tasks when the server
state reaches x∗ is upper bounded by n1 + dτ log(1 −
x∗)

(
(W2Smax)−1 − λ)e + d−λτ log x∗e. Thereafter,

we appeal to the earlier case by resetting x1 = x∗

and n1 to be the number of outstanding tasks when
the server state reaches x∗.

In summary, when the system is in State 1, the queue length
decreases to zero with probability one at which point it enters
State 2. When the system is in State 2, it stays in it for
ever or eventually enters State 1 with bounded queue length.
Collecting these facts, we arrive at the result.

Remark 4.2: (i) Theorem 4.1 shows that, the through-
put strictly increases with the introduction of stochas-
ticity in service times. This is novel because not only
does this imply that the throughput of the dynamical
queue depends also on the second moment of the

service times, but also that this dependence occurs
in an unexpected way. To the best of our knowledge,
such a phenomenon has not been reported for queueing
systems so far.

(ii) The concavity property that leads to Equation (6) is
associated with the server dynamics and is independent
of the convexity of S(x), and hence Equation (6) is
valid for any S(x) that does not necessarily satisfy the
convexity property assumed in this paper.

B. Upper bound on the throughput

In this section, we derive an upper bound on the maximum
throughput possible using any task release control policy.

Theorem 4.3: For any fW and τ > 0, we have that

λ∗max(τ, fW) ≤ (EfW [1/λmax
eq (τ, w)

])−1
.

Proof: The proof is similar to that of Theorem 3.2.
The difference is in the time required for the n-task static
problem. Consider a set of n tasks associated with works
w1, . . . , wn, where each wi is identically and independently
sampled from fW . It is desired to service these n tasks
in the fastest possible way using a task release control
policy under the constraint that the initial and final server
state is x. The time required for the 1-task problem is
w1S(x) + τ log

(
x−1+ew1S(x)/τ

x

)
which is lower bounded

by 1/λmax
eq (τ, w1). Using the same decomposition and rear-

rangement approach as before, the time required for the n-
task problem can be lower bounded by

∑n
i=1 1/λmax

eq (τ, wi).
Using Strong law of large numbers, one can show that, with
probability one, as n→ +∞, the average time required per
task is lower bounded by EfW

[
1/λmax

eq (τ, w)
]
. The rest of

the proof follows similarly.
Theorems 4.1 and 4.3 do not imply that a threshold policy

is maximally stabilizing when the tasks are heterogeneous.
However, the proof of Theorem 4.1 implies that best thresh-
old policy would correspond to the x∗-threshold policy,
where x∗ is the minimizer in Equation (7).

C. Simulations

For τ = 300 s, fW a uniform distribution over [5, 45] and
S(x) = (229x2−267x+99)/25 s, the lower bound, as given
by Theorem 4.1 is computed to be about 0.031 s−1 and the
upper bound, as given by Theorem 4.3 is computed to be
about 0.039 s−1. Note that, these bounds are tighter than the
bounds provided by Proposition 2.1.

Theorem 4.1 suggests that, for appropriate fW , one could
possibly increase λmax

eq (τ, fW) up to (w̄Smin)−1 for all τ >
0 and, hence, by Proposition 2.1, one could achieve the
maximum possible throughput. Figure 4 demonstrates that
this is feasible through an illustrative extreme example. The
solid curve in Figure 4, which represents the throughput
curve, shows that for tasks with large heterogeneity, the
throughput for a given threshold value x closely follows
the inverse of w̄S(x) which itself is the maximum possible
throughput under the x-threshold policy. In particular, the
throughput under the arg minx∈[0,1] S(x)-threshold policy is
very close to (w̄Smin)−1.

1853

0.4 0.5 0.6 0.7 0.8 0.9 10.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Threshold value

Th
ro

ug
ho

ut
 (i

n
pe

r s
ec

)

service time function
homogeneous tasks
tasks with large heterogeneity

Fig. 4. Illustration of maximum possible throughput under extreme
task heterogeneity. The solid curve represents the throughput curve under
threshold policies when fW (w) is a binary random variable that takes
values 0.01 and 5000 with probabilities 0.995 and 0.005 respectively, and
S(x) = (229x2 − 267x+ 99)/25 s; the dash-dotted curve represents the
throughput curve under threshold policies when fW (w) = δ25(w) and the
same S(x); the dashed curve represents the inverse of the function w̄S(x),
with w̄ = 25 and the same S(x).

V. CONCLUSIONS

In this paper, we discussed a dynamical queue framework
as a possible formal approach to task management of human
operators under a task release control policy. Inspired by
empirical laws, we proposed a model whereby the service
times are dependent on the state of a simple underlying
dynamical system. We studied the stability of such dynam-
ical queues under deterministic task inter-arrival times. For
homogeneous tasks, we proved that a task release control
policy that releases a task to the server only when it’s state
is below an appropriately chosen threshold value gives the
maximum throughput. For heterogeneous tasks, we showed
that the throughput strictly increases with the introduction
of heterogeneity. The deterministic task inter-arrival time
assumption in our analysis is not binding and the results
extend when the inter-arrival times are sampled identically
and independently sampled from a common distribution with
bounded variance.

The ability of appropriately designed threshold based task
control policies to stabilize an otherwise unstable queue, and
the associated throughput optimality results proven in this
paper, provide a formal methodology and justification for
similar approaches commonly adopted in practice, e.g., see
[13]. From a scientific point of view, the increase in through-
put due to heterogeneity in tasks is a novel phenomenon
for queueing systems. This result provides an additional
dimension to improving throughput of dynamical systems by
repackaging the tasks until one has maximum heterogeneity
across the repackaged tasks. Moreover, if one has to decide
upon a quantization technique for a work-intensive task to
be completely by a human operator as quickly as possible,
this result suggests that uniform quantization is the worst
possible quantization.

In future, we plan to extend our analysis to characterize
the average wait time of dynamical queues. We also plan to

extend our formulation and analysis to incorporate accuracy
of the job done by the operators in the performance metric.
We intend to perform extensive experiments to develop a
high fidelity dynamical model for human operators. Finally,
we also plan to extend our framework to align it more closely
to conventional state-dependent queues where the notion of
server state is closely related to the amount of outstanding
work rather than the past utilization.

ACKNOWLEDGMENTS

This research was partially supported by the Michi-
gan/AFRL Collaborative Center on Control Science, AFOSR
grant no. FA 8650-07-2-3744.

REFERENCES

[1] K. Savla and E. Frazzoli, “Maximally stabilizing admission con-
trol policy for a dynamical queue,” IEEE Trans. on Automatic
Control, vol. 55, no. 11, pp. 2655–2660, 2010. Available at
http://arxiv.org/abs/0909.3651.

[2] K. Savla, T. Temple, and E. Frazzoli, “Human-in-the-loop vehicle
routing policies for dynamic environments,” in IEEE Conf. on Decision
and Control, pp. 1145–1150, 2008.

[3] L. Kleinrock, Queueing Systems I: Theory. Wiley-Interscience, 1975.
[4] S. Asmussen, Applied Probability and Queues. Springer, 2003.
[5] G. Koole and A. Mandelbaum, “Queueing models of call centers: An

introduction,” Annals of Operations Research, vol. 113, pp. 41–59,
2002.

[6] R. M. Yerkes and J. D. Dodson, “The relation of strength of stimulus
to rapidity of habit-formation,” Journal of Comparative Neurology and
Psychology, vol. 18, pp. 459–482, 1908.

[7] J. H. Dshalalow, ed., Frontiers in Queuing Models and Applications in
Science and Engineering, ch. Queueing Systems with State Dependent
Parameters. CRC press, Inc., 1997.

[8] R. Bekker and S. C. Borst, “Optimal admission control in queues with
workload-dependent service rates,” Probability in the Engineering and
Informational Sciences, vol. 20, pp. 543–570, 2006.

[9] M. L. Cummings and C. E. Nehme, “Modeling the impact of workload
in network centric supervisory control settings,” in 2nd Annual Sus-
taining Performance Under Stress Symposium, (College Park, MD),
Feb. 2009.

[10] L. F. Bertuccelli, N. Pellegrino, and M. Cummings, “Choice tasks
in modeling relooks in UAV search missions,” in American Control
Conference, (Baltimore, MD), pp. 2410–2415, 2010.

[11] V. Srivastava, R. Carli, F. Bullo, and C. Langbort, “Task release control
for decision making queues,” in American Control Conference, (San
Francisco, CA), 2011. To appear.

[12] C. R. Glassey and M. G. C. Resende, “A scheduling rule for job
release in semiconductor fabrication,” Operations Research Letters,
vol. 7, no. 5, pp. 213–217, 1988.

[13] J. W. M. Bertrand and H. P. G. V. Ooijen, “Workload based order
release and productivity: a missing link,” Production Planning and
Control, vol. 13, no. 7, pp. 665–678, 2002.

[14] S. Stidham, “Optimal control of admission to queueing system,” IEEE
Trans. Automatic Control, vol. 30, pp. 705–713, Aug 1985.

[15] F. P. Kelly and R. J. Williams, “Heavy traffic on a controlled motor-
way,” in Probability and Mathematical Genetics: Papers in Honour of
Sir John Kingman (N. H. Bingham and C. M. Goldie, eds.), no. 378
in London Mathematical Society Lecture Notes Series, Cambridge
University Press, 2010.

[16] J. Le Ny and H. Balakrishnan, “Distributed feedback control for an
eulerian model of the national airspace system,” in Proceedings of the
American Control Conference, (St. Louis, MO), pp. 2891–2987, 2009.

[17] P. A. Hancock and N. Meshkati, eds., Human mental workload. No. 52
in Advances in Psychology, Elsevier Science Publishers B. V., 1988.

[18] K. Savla, C. Nehme, T. Temple, and E. Frazzoli, “Efficient routing
of multiple vehicles for human-supervised services in a dynamic
environment,” in AIAA Conf. on Guidance, Navigation, and Control,
(Honolulu, HI), 2008.

[19] K. Savla and E. Frazzoli, “A dynamical queue approach to intelligent
task management for human operators,” Proceedings of the IEEE,
2011. To appear.

[20] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

1854

