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Abstract— This paper presents the application of an L1 adap-
tive control architecture to the problem of active dispersion
management for propagation of Gaussian-shaped solitons along
uncertain optical fibers. The derivations in the paper are based
on a reduced variational model for optical soliton propagation.
Simulation results demonstrate the benefits of the proposed
closed-loop adaptive approach over existing passive dispersion
management techniques.

I. INTRODUCTION

Optical solitons are spatially localized, pulse-like, nonlin-

ear waves that almost retain their shapes while propagating

in ideal lossless fibers. This absence of dispersion stems

from an exact balance between nonlinear and dispersion

terms in the conservative form of the Nonlinear Schrödinger

Equation which describes ideal fibers [1]. The fact that

solitons are spatially localized and propagate with (little to)

no deformation makes them the carriers of choice for modern

optical communication, as they can be used to encode a bit in

a small amount of space through the presence or absence of

the pulse in a designated temporal window [2], [3]. However,

the balance between nonlinearity and dispersion is not exact

in real optical fibers, which may cause the pulse to broaden

and “spill over” the designated window. This can result in

transmission errors or, if the window size is increased to

avoid spill-over, in a reduction of the transmission rate [3].

While error-correcting codes can be used at the receiv-

ing end to compensate for dispersion-induced errors, all-

optical approaches are typically preferred because they do

not affect the speed at which information is processed. A

typical all-optical dispersion-management technique consists

of periodically alternating lengths of fibers with positive and

negative group-velocity dispersions, so as to compensate for

pulse broadening on average. While traveling through the

fiber, the pulse experiences broadening and recompression so

that, at the end of each compensation element, the width and

frequency chirp of the pulse are restored to the initial desired

values. This method is effective if both fiber nonlinearity and

residual dispersion only slightly affect the evolution of the

pulse over one compensation period [4]. If this is not the

case, these dispersion maps may fail to work appropriately,

especially if the characteristics of the fiber are uncertain.

From a control theory perspective, this (passive) dispersion

technique can be seen as open-loop control, where the group-

velocity dispersion is the input, pulse width is the output, and

the goal is to regulate the output to its desired value, whatever

it may be, at a fixed propagation length. With this analogy in
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mind, it seems tempting to try and use feedback control to

improve dispersion management of optical solitons, provided

dispersion can be precisely tuned and pulse deformation

can be precisely measured in real-time along the fiber. In

this sense, several new technologies have been developed

recently that allow for some degree of continuous dispersion

tuning, from microfluidics-based tunable dispersion materials

to fiber-based approaches ranging from fiber gratings to

higher-order mode fibers, to name but a few, (see [5] for a

comprehensive overview of these fiber-based technologies).

While a number of challenges still need to be overcome to

arrive at spatially continuous, fine resolution, sensing and ac-

tuation, the time seems ripe for the investigation of advanced

control techniques for active dispersion management. A first

step in this direction can be found in [6], where a nonlinear

state-feedback control law was derived based on controlled

Hopf bifurcation. This approach, however, requires a priori

precise knowledge of the characteristics of the fiber in order

to achieve dispersion correction. To overcome this limitation,

in this paper, we present the application of an L1 adaptive

control scheme to the problem of active dispersion man-

agement for propagation of solitons along uncertain fibers.

In particular, the developed active dispersion management

scheme is able to compensate for the uncertainties encoun-

tered along the fiber, and regulates the pulse shape to ensure

an error-free transmission. The derivations are based on a

reduced model for soliton propagation obtained from the

variational approach described in [7].

The paper is organized as follows. Section II describes the

soliton propagation problem and gives a brief overview of

passive dispersion management. Sections III and IV intro-

duces an adaptive active dispersion management scheme for

soliton propagation along uncertain fibers. Simulation results

and conclusions are presented in Sections V and VI.

II. DISPERSION MANAGED TRANSMISSION SYSTEMS

A. Optical Soliton Propagation

For pulses wider than 5 ps, pulse propagation along optical

fibers can be described by a generalization of the cubic

nonlinear Schrödinger equation [2]:

i
∂ψ

∂z
− 1

2
β2(z)

∂2ψ

∂t2
= −γ(z)|ψ|2ψ − i

2
α(z)ψ ,

where ψ = ψ(z, t) is the complex-valued envelope of the

electric field in the fiber, z is the physical length along the

longitudinal axis of the fiber, and t is time initialized to the

pulse center, while β2(z), γ(z), and α(z) model the spatially

varying group-velocity dispersion, Kerr nonlinearity, and

effective losses along the optical fiber.
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The envelope ψ is usually conveniently transformed into

a new function A defined as:

ψ(z, t) = A(z, t) exp

(

−1

2

∫ z

0

α(ξ)dξ

)

,

which leads to the nonlinear Schrödinger equation:

i
∂A

∂z
− 1

2
β2(z)

∂2A

∂t2
+ κ(z)|A|2A = 0 , (1)

where the parameter κ(z) is defined as:

κ(z) , γ(z) exp

(

−
∫ z

0

α(ξ)dξ

)

.

If the envelope A is assumed to have the Gaussian form

A(z, t) =M(z) exp

(

−1

2

t2

a2(z)
+ ib(z)t2

)

,

where M(z), a(z), and b(z) characterize the (complex) am-

plitude, the width, and the frequency chirp of the pulse, then

the variational method described in [7] yields the following

set of coupled ordinary differential equations describing the

evolution of the parameters a(z) and b(z):

da

dz
= −2β2(z)ab, a(0) = a0, (2a)

db

dz
= 2β2(z)b

2 − 1

2

β2(z)

a4
− E0

2
√
2

κ(z)

a3
, b(0) = b0, (2b)

where E0 = a(z)|M(z)|2 is the energy of the pulse. The

use in this paper of Gaussian pulses is motivated by results

obtained in theoretical and experimental investigations [8]–

[11], which indicate that dispersion managed solitons have

nearly Gaussian shape for certain dispersion maps.

B. Passive Dispersion Management

Current dispersion management techniques consist of al-

ternating sections of constant-dispersion fibers whose lengths

and dispersions are selected to periodically reproduce the

desired pulse at the output of each element [2], [4]. This

dispersion management technique offers several advantages

relative to constant-dispersion or even dispersion decreasing

fibers, and it is seen as a promising approach to increase

the transmission capacity in communication systems. In par-

ticular, using dispersion management allows to enhance the

energy of the transmitted soliton, which increases the signal-

to-noise ratio and reduces timing jitter problems. Moreover,

dispersion management is an all-optical approach, and it is

therefore preferred over non-optical error-correcting codes

at the receiving end. Dispersion compensation arrangements

for lossless fibers are described in [4]. The effectiveness of

passive dispersion management has been demonstrated in

several experiments (see [9] and references therein).

However, this approach relies on the assumption that both

fiber nonlinearity and residual dispersion only slightly affect

the evolution of the pulse over one compensation period. In

fact, if the effect of the parameter κ(z) related to the Kerr

nonlinearity and the loss compensation by optical amplifica-

tion cannot be neglected, then passive periodic dispersion

maps may fail to work appropriately. To overcome this

limitation, in the subsequent sections, we propose an active

dispersion management scheme that, for pulse durations,

power levels, and distances of interest, has the potential to

ensure error-free soliton transmission in uncertain fibers.

III. NONADAPTIVE ACTIVE DISPERSION MANAGEMENT

Next we describe a state-feedback control law for active

dispersion management. The approach relies on the assump-

tion that dispersion can be tuned and pulse deformation can

be measured in real time along the fiber. In this section,

we present a nonadaptive feedback-linearization control law

that ensures transmission of a pulse of desired width with

frequency chirp below a given pre-specified tolerance for the

case in which the parameter κ(z) is known and constant.

A. Transformation of State Variables

First, we show that there exists a nonlinear change of

variables that transforms the nonlinear system in (2) into

a nonlinear state equation with the following structure:

dζ

dz
= A(z)ζ + bmλ(a, b)

(

β2 − µ(a, b, z)
)

, ζ(0) = ζ0 ,

(3)

where ζ(z) ∈ R
2 is the new system state, A(z) is a 2 × 2

matrix, bm ∈ R
2 is constant, and λ : R × R → R and

µ : R× R× R → R are nonlinear functions.

To this end, consider the change of variables:

ζ1(z) , a2(z)b2(z)+
1

4a2(z)
, ζ2(z) , − E0

2
√
2

b(z)

a(z)
. (4)

Then, the state equation can be rewritten as:

dζ1
dz

= κ(z)ζ2, ζ1(0) = a20b
2
0 +

1

4a20
,

dζ2
dz

=
E0√
2
λ(a, b)

(

β2 − µ(a, b, z)
)

, ζ2(0) = − E0

2
√
2

b0
a0
,

(5)

where the nonlinear functions λ(·) and µ(·) are given by:

λ(a, b) ,
1

a

(

1

2a4
− 4b2

)

,

µ(a, b, z) ,

(

1

2a4
− 4b2

)−1 (
κz(z)

κ(z)
b− E0

2
√
2

κ(z)

a3

)

,

with κz(z) being defined as κz(z) =
dκ(z)
dz . Letting ζ(z) =

[ζ1(z), ζ2(z)]
⊤ and defining A(z) and bm as:

A(z) ,

[

0 κ(z)
0 0

]

, bm ,

[

0
E0√
2

]

,

the dynamics in (5) can be rewritten in the compact form

in (3) with the initial condition ζ0 = [ζ1(0), ζ2(0)]
⊤.

The state transformation in (4) is a local diffeomorphism

(see [12, Lemma 6.2]) in the domain D defined as:

D ,

{

(a, b) ∈ R
2 | amin ≤ a ≤ amax, |b| ≤ 1

2
√
2a2

− ǫ

}

,

where amin > 0 and amax > 0 characterize the range of pulse

widths of interest, and ǫ is a small positive constant (ǫ ≪
1

2
√
2a2

max

). We also note that λ(a, b) is positive and bounded
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away from zero for all (a, b) ∈ D. This is important from

a control perspective. Injectivity of the change of variables

allows to reformulate the problem in terms of the new system

state, while the fact that λ(a, b) is positive and bounded away

from zero implies that the system in (5) is controllable.

B. Nonadaptive Feedback Linearization Control

For the design of the nonadaptive feedback linearization

control law, we assume a nominal constant value κ0 for the

parameter κ(z), which leads to the nominal soliton dynamics:

dζ

dz
= A0ζ+bmλ(a, b)

(

β2−µ0(a, b, z)
)

, ζ(0) = ζ0 , (7)

where A0 and µ0(·) are defined as:

A0 ,

[

0 κ0
0 0

]

, µ0(a, b) , −
(

1

2a4
− 4b2

)−1
E0

2
√
2

κ0
a3
.

For this nominal system, the control objective is to design

an active dispersion control law β2(z) to ensure that ζ1(z)
tracks the setpoint ζ1cmd given by:

ζ1cmd , 1/(4a2cmd) ,

where acmd, satisfying amin < acmd < amax, is the desired

pulse width. The point ζr , (ζ1cmd, 0) in D∗ corresponds

uniquely to (acmd, 0) in D, which implies that, if ζ1(z)
tracks ζ1cmd, then the transmitted pulse has desired width.

For this purpose, we consider the following state-feedback

control law for the group-velocity dispersion:

β2(z) = µ0(a(z), b(z)) + λ−1(a(z), b(z))u(z) , (8)

where u(z) is a control signal, yet to be defined. With this

control law, the nominal system in (7) becomes:

dζ(z)

dz
= Amζ(z) + bmu(z) , ζ(0) = ζ0 .

Next, we define the nominal control signal u0(z) as:

u0(z) = k⊤ζ(z) + kgζ1cmd , (9)

where the feedback gain k is chosen to ensure that, for a

given desired rate of convergence λc, there exists a positive

definite matrix X , X = X⊤ > 0, such that:

(Am + λcIn)
⊤X +X(Am + λcIn) < 0 ,

with Am , A0 + bmk
⊤. The gain kg is given by:

kg , −
(

c⊤A−1
m bm

)−1
,

where c is the constant vector c , [1, 0]⊤.

The dispersion law in (8) with the nominal control signal

in (9) leads to the nominal closed-loop system dynamics:

dζ(z)

dz
= Amζ(z) + bmkgζ1cmd , ζ(0) = ζ0 .

The point ζr is a locally exponentially stable equilibrium of

this nominal closed-loop soliton propagation dynamics. An

estimate of the region of attraction of this point is given by

Ω∗
γ ,

{

x ∈ R
2 | (x− ζr)

⊤X(x− ζr) ≤ γ
}

,

where γ is any positive constant such that Ω∗
γ ⊂ D∗.

IV. L1 ADAPTIVE CONTROL AUGMENTATION

In the previous section, we have designed a nonadaptive

feedback law which ensures asymptotic tracking of a desired

pulse width when the parameter κ(z) is known and constant.

However, in a real communication channel, this parameter

might not be known or it might experience large variations

along the fiber. Under these circumstances, the active disper-

sion law in (8) –where κ0 is now the best available guess

for κ(z)– leads to the partially closed-loop dynamics:

dζ

dz
= A0ζ+bm

(

u+η1(a, b, z)
)

+bumη2(a, b, z), ζ(0) = ζ0,

(10)

where bum , [1, 0]⊤, and ηi(·) are nonlinear uncertainties:

η1(a, b, z) ,
1

a

(

E0

2
√
2

κ(z)− κ0
a3

− κz(z)

κ(z)
b

)

,

η2(a, b, z) , − E0

2
√
2

b

a
(κ(z)− κ0) .

In the partially closed-loop dynamics in (10), η1(·) and

η2(·) represent, respectively, the matched and unmatched

components of the uncertainties. We note that if the param-

eter κ(z) and its first and second derivatives with respect to

the physical length z are assumed to satisfy the bounds

0 < κmin ≤ κ(z) ≤ κmax <∞ ,

|dκ(z)/dz| ≤ dκz
<∞ ,

∣

∣d2κ(z)/dz2
∣

∣ ≤ dκzz
<∞ ,

then, for any given set Ω∗ ⊂ D∗, there exist positive

constants KΩ∗

1ζ , KΩ∗

1z , K2ζ , KΩ∗

2z , and B1 such that:
∥

∥

∥

∥

∂η1
∂ζ

∥

∥

∥

∥

1

≤ KΩ∗

1ζ ,

∣

∣

∣

∣

∂η1
∂z

∣

∣

∣

∣

≤ KΩ∗

1z , |η1(acmd, 0, z)| ≤ B1 ,

∥

∥

∥

∥

∂η2
∂ζ

∥

∥

∥

∥

1

≤ K2ζ ,

∣

∣

∣

∣

∂η2
∂z

∣

∣

∣

∣

≤ KΩ∗

2z .

while η2(acmd, 0, z) = 0.

For the system (10), we define the control signal u(z) as:

u(z) = u0(z) + uad(z) ,

where u0(z) was defined in (9), while uad(z) is the adaptive

augmentation signal. This control signal yields the dynamics:

dζ

dz
= Amζ + bmkgζ1cmd + bm

(

uad + η1(a, b, z)
)

+ bumη2(a, b, z) , ζ(0) = ζ0 . (11)

The purpose of the adaptive augmentation loop is thus to

compensate for the uncertainties η1(·) and η2(·). For this

purpose, we consider the implementation of an L1 adaptive

controller. The main benefit of L1 adaptive architectures is

the decoupling of identification from control, which enables

fast adaptation without sacrificing robustness. Fast adaptation

allows for compensation of rapidly varying uncertainties and

significant changes in system dynamics, and it is critical to

achieve predictable performance without enforcing persis-

tency of excitation or resorting to high-gain feedback [13].

The L1 architecture developed next is based on the theory

presented in [13, Section 3.2], which can be easily extended

to systems in which nonlinearities verify only local assump-

tions on the uniform boundedness of their partial derivatives.
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A. Control Architecture

The L1 adaptive controller is defined for the tracking error

dynamics by considering the error state eζ , ζ−ζr. In terms

of this error state, the dynamics in (11) take the form:

deζ
dz

= Ameζ + bm
(

uad + η1(a, b, z)
)

+ bumη2(a, b, z) , eζ(0) = ζ0 − ζr . (12)

The L1 adaptive control architecture consists of a fast

adaptation scheme and a control law. The fast adaptation

scheme includes a state predictor and appropriately designed

adaptation laws, which are used to generate estimates of the

system uncertainties. Based on these estimates, the control

law generates a control signal as the output of low-pass filter.

The elements of the L1 adaptive controller are detailed next:

1) State predictor: Consider the following state predictor:

dêζ
dz

= Amêζ + bm
(

uad + η̂1
)

+ bum η̂2

+ Kspẽζ , êζ(0) = ζ0 − ζr , (13)

where Ksp ∈ R
n×n is such that the matrix As defined as

As , Am +Ksp is Hurwitz, ẽζ(z) , êζ(z) − eζ(z) is the

prediction error, while η̂1(z) and η̂2(z) represent respectively

the estimates of η1(·) and η2(·) and are given by:

η̂1(z) , θ̂1(z)ϕ(a(z), b(z)) + σ̂1(z), η̂2(z) , θ̂2(z)ζ2(z),

with θ̂1(z), σ̂1(z), and θ̂2(z) being the adaptive estimates,

and ϕ(·) being the regressor:

ϕ(a(z), b(z)) ,
∥

∥

∥

[

a(z)
b(z)

]
∥

∥

∥

∞
.

2) Adaptation laws: The adaptation laws are given by:

dθ̂1
dz

= ΓProjΘ1
(θ̂1,−ẽ⊤ζ Pbmϕ(a, b)), θ̂1(0) = θ̂10,

dσ̂1
dz

= ΓProjΣ1
(σ̂1,−ẽ⊤ζ Pbm), σ̂1(0) = σ̂10 ,

dθ̂2
dz

= ΓProjΘ2
(θ̂2,−ẽ⊤ζ Pbumζ2), θ̂2(0) = θ̂20,

(14)

where Γ > 0 is the adaptation gain, Proj(·, ·) denotes the

projection operator [14], and P = P⊤ > 0 is the solution

to the algebraic Lyapunov equation A⊤
s P + PAs = −Q,

Q = Q⊤ > 0. The sets Θ1, Σ1, and Θ2 are the compact

convex sets used in the definition of the projection operators.

3) Control law: The L1 control signal is generated as:

uad(s) = −C(s)η̂1(s)− C(s)H−1
m (s)Hum(s)η̂2(s) , (15)

where C(s) is a strictly proper and stable low-pass filter with

unit DC gain, Hm(s) and Hum(s) are defined as:

Hm(s) , c⊤ (sI−Am)
−1
bm ,

Hum(s) , c⊤ (sI−Am)
−1
bum ,

while η̂1(s) and η̂2(s) are the Laplace transforms of

η̂1(z) and η̂2(z). The structure of C(s) needs to ensure

that C(s)H−1
m (s)Hum(s) is proper. Also, from the defini-

tions of c, Am, and bm, it follows that C(s)H−1
m (s)Hum(s)

is stable. The first term of the control law compensates for

matched uncertainties, while the second term compensates

for the effect of unmatched uncertainties at the system output.

B. Closed-Loop Stability and Performance

For the system in (12) with the L1 controller in (13)-

(15), we can derive sufficient stability conditions similar

to the ones in [13, Section 3.2]. In particular, the design

of C(s) is subject to an L1-norm condition similar to [13,

Equation (3.71)], while the adaptation gain and the projec-

tion bounds need to be chosen sufficiently large (see [13,

Equations (3.94) and (3.95)]).

If the L1-norm condition and the design constraints for the

adaptation scheme are satisfied, then the closed-loop adaptive

system is stable and, moreover, one can derive computable

uniform performance bounds for the error signals between

the input and state signals of the actual closed-loop system

–uad(z) and ζ(z)– and the input and state signals of the

closed-loop reference system –uref(t) and ζref(t)–, which is

defined in terms of the nonadaptive version of the adaptive

controller and characterizes the best achievable performance

of the control law in (15) by assuming perfect knowledge of

the uncertainties. The next theorem summarizes this result.

Theorem 1: If the design of the L1 adaptive controller

satisfies the (sufficient) stability conditions, then:

ζ ∈ D∗ , ‖uad‖L∞

≤ ρu ,

‖ζ − ζref‖L∞

≤ γζ , ‖uad − uref‖L∞

≤ γu ,

where ρu is a positive constant, while γζ and γu are uniform

performance bounds inverse proportional to
√
Γ.

Proof: This result can be proven along the same lines as

the proof of [13, Theorem 3.2.1]. �

Remark 1: Theorem 1 implies that, both in transient and

steady-state, one can achieve arbitrary close tracking of the

reference system by increasing the adaptation gain. The

reader is referred to [13, Section 3.2] for details on the

stability proof, the derivation of the performance bounds, and

a discussion of how these bounds can be used for ensuring

transient response with desired specifications.

V. SIMULATION RESULTS

In this section, we apply the active dispersion manage-

ment scheme developed in this paper to the transmission

of 20 ps Gaussian pulses of peak power 5 mW (E0 =
100 ps mW) along a 500 km fiber. The nominal value for

the parameter κ(z) is κ0 = 5·10−3 km−1mW−1, while κmin

and κmax are taken, respectively, as 2 · 10−3 km−1mW−1

and 8 ·10−3 km−1mW−1. To better illustrate the benefits of

active dispersion management, we first consider the applica-

tion of a passive dispersion managed transmission system.

A. Pulse Propagation with Passive Dispersion Management

Based on the nominal value of κ(z), we now design

a periodic map for passive dispersion compensation. We

consider compensation elements of 50 km comprising fiber

segments with negative, positive, and negative dispersions.

10
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Fig. 1: Passive dispersion management. Propagation of a

20 ps pulse along nominal fiber (κ(z) ≡ κ0).
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(a) Low nonlinearity: κ(z) ≡ 0.7κ0
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(b) High nonlinearity: κ(z) ≡ 1.5κ0

Fig. 2: Passive dispersion management. Propagation of a

20 ps pulse along off-nominal fibers.

The dispersion values alternate between −13 ps2km−1 and

+7 ps2km−1, and the segment with positive dispersion is

centered in the compensation element and has a length

of 15.32 km. Figure 1 shows the evolution of a(z) and b(z)
along the fiber. Although the pulse experiences periodic

breathing along each element, it has desired width and zero

chirp at the output of each compensation element.

This passive approach may fail to work if the nominal

value κ0 is not close enough to the actual value of κ(z). For

instance, Figure 2a shows the evolution of a(z) and b(z)
along the fiber for the case κ(z) ≡ 3.5 · 10−3 km−1mW−1

(that is, κ(z) is 30% smaller than its nominal value κ0).

As it can be observed, the pulse broadens up to 45 ps,
which may result in transmission errors if it “spills over”

the designated window. Similarly, Figure 2b illustrates the

case in which κ(z) is 50% larger than its nominal value

(κ(z) ≡ 7.5 ·10−3 km−1mW−1). The dispersion map is not

able to reproduce the desired pulse at the end of the fiber,

and the transmitted pulse exhibits a final width of 11 ps.

B. Pulse Propagation with Active Dispersion Management

Next, we consider the active dispersion management ap-

proach developed in Section III and IV. For this particular

application, we select the following control parameters:

k⊤ = [ 1.81 0.20 ] · 10−2, kg = 1.81 · 10−2,

Ksp = [ 0 0
38.40 0.1440 ] , C(s) =

1

( s
0.1 + 1)( s

0.3 + 1)( s3 + 1)
,

Γ = 5 · 104, Q = [ 1 0
0 100 ] , Θ1 = [−100, 100 ] ,

Σ1 = [−10−3, 10−3 ] , Θ2 = [−3·10−3, 3·10−3 ] .
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Fig. 3: Active dispersion management. Propagation of a

20 ps pulse along nominal fiber (κ(z) ≡ κ0).
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Fig. 4: Active dispersion management. Propagation of a

20 ps pulse along off-nominal fiber (κ(z) ≡ 0.7κ0).
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Fig. 5: Active dispersion management. Propagation of a

20 ps pulse along off-nominal fiber (κ(z) ≡ 1.5κ0).

First, we show that the active dispersion management

control scheme is able to transmit the soliton with desired

width and zero frequency chirp along the fiber for the

nominal case, that is when κ(z) ≡ κ0. Figure 3 presents

the evolution of the parameters a(z) and b(z) as well as the

resulting dispersion control signal. The nonadaptive control

law is able to set the group-velocity dispersion to ensure the

correct transmission of the pulse, while the contribution of

the adaptive augmentation loop remains zero as expected.

Next, we present simulation results to illustrate the perfor-

mance of the active dispersion management scheme for off-

nominal conditions. First, we consider the same scenarios

discussed in the previous section for passive dispersion

management. Figures 4 and 5 show, respectively, the pulse

propagation for the cases κ(z) ≡ 3.5 · 10−3 km−1mW−1

and κ(z) ≡ 7.5 · 10−3 km−1mW−1. In these two scenarios,

the adaptive controller adjusts the dispersion so as to ensure

an error-free transmission at the end of the optical fiber.
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The active dispersion management scheme can ensure a

correct soliton transmission even for spatially-varying κ(z).
Figures 6 and 7 show, respectively, the pulse propagation

along fibers in which κ(z) has a piecewise constant dis-

tribution, and a biased sinusoidal pattern. These simulation

results demonstrate that the L1 adaptive controller is able to

compensate for the uncertainties along the fiber and regulate

the width and chirp of the pulse around the desired values,

thus ensuring a correct transmission.
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Fig. 6: Active dispersion management. Propagation of a

20 ps pulse along off-nominal fiber with spatially-varying

piecewise constant nonlinearity.
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Fig. 7: Active dispersion management. Propagation of a

20 ps pulse along off-nominal fiber with spatially-varying

sinusoidal nonlinearity.

VI. CONCLUSIONS AND FUTURE WORK

Using a reduced variational model, this paper proposed

the application of an L1 adaptive control architecture to the

problem of active dispersion management for propagation

of Gaussian-shaped pulses along uncertain optical fibers.

The proposed feedback scheme does not require a priori

precise knowledge of the characteristics of the fiber, and

can be used to shape soliton pulse width along the fiber by

controlling transient spatial dynamics. The approach relies on

the assumption that dispersion can be accurately tuned and

pulse deformation can be precisely measured in real time

along the fiber.

Simulation results demonstrated that using tunable disper-

sion fibers under feedback control can successfully propagate

pulse-width solitons in the presence of spatially-varying

uncertainties. This is in contrast to current passive dispersion

management techniques, which may fail to work appropri-

ately under these conditions.

Future work will address delay and spatial quantization ef-

fects caused by the sensors and actuators that could currently

be practically used along optical fibers in active dispersion

management transmission systems.
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