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Abstract— This paper explores the use of accelerated gra-
dient methods in networked optimization. Optimal algorithm
parameters and associated convergence rates are derived for
distributed resource allocation and consensus problems, and the
practical performance of the accelerated gradient algorithms
are shown to outperform alternatives in the literature. Since
the optimal parameters for the accelerated gradient method
depends on upper and lower bounds of the Hessian, we study
how errors in these estimates influence the convergence rate
of the algorithm. This analysis identifies, among other things,
cases where erroneous estimates of the Hessian bounds cause
the accelerated method to have slower convergence than the
corresponding (non-accelerated) gradient method. An applica-
tion to Internet congestion control illustrates these issues.

I. INTRODUCTION

Distributed optimization has recently attracted a significant

attention from several different research communities. Exam-

ples include the work on network utility maximization for re-

source allocation in communication networks [1], distributed

coordination of multi-agent systems [2], and collaborative

estimation and event detection in wireless sensor networks

(WSNs) [3] and many others. The majority of these praxes

rely on the application of gradient or subgradient methods

to the dual formulation of the decision problem at hand

(cf. [1]). Although gradient methods are easy to implement

and require modest computations, they suffer from slow

convergence rates. In certain special cases, such as the cele-

brated development of distributed power control algorithms

for cellular phones [4], one can replace gradient methods

by fixed-point iterations and achieve improved convergence

rates. For other problems, such as average consensus [5],

a number of heuristic methods have been proposed that

improve the convergence rate of the standard method [6], [7].

However, we are not interested in techniques that apply only

in special cases. We would like to develop general-purpose

schemes that retain the simplicity and the applicability of the

gradient method while improving the convergence rates.

In the optimization literature, there are essentially two

ways of accelerating the convergence rate of the gradient

methods. One is to use higher-order methods, such as

Newton’s method [8]. Although distributed Newton methods

have recently been developed for special problem classes,

they impose large communication overhead. Another way to

improve convergence is to use multi-step methods [9], [8].

These methods only rely on gradient information (and can

hence often be implemented based on local information) but

use a history of past iterates to compute the next.
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This paper explores how multi-step methods can be used

in networked optimization. Our initial focus is to attempt to

accelerate the projected gradient method of [10]. We derive

optimal parameters for the algorithm and show how these

are directly related to the topology of the underlying com-

munication graph. Contrary to the gradient descent method,

which only needs an upper bound on the Hessian for finding

a step size that ensures convergence, the multi-step method

need both the upper and the lower bounds on the Hessian.

Due to this fact, we formally analyze the convergence and

compute the convergence rate in the presence of estimation

errors in the Hessian bounds. Later, we illustrate how the

technique allows us to derive accelerated consensus iterations

and demonstrate improved convergence rates relative to other

acceleration schemes proposed in the literature [11], [6].

Finally, we implement the techniques that we have developed

to accelerate the network flow control algorithm described in

[12]. We discuss how uncertainties in finding the bounds on

Hessian can affect the convergence rate of the algorithm.

The rest of the paper is organized as follows. In Section

II, we review distributed resource allocation and multi-step

gradient techniques. In Section III we present our accelerated

resource allocation algorithm with proofs of convergence

and performance comparison with the basic scaled gradient

method. In Section IV, robustness analysis of multi-step

algorithm in the presence of uncertainty is presented. Section

V is devoted to other applications and considers accelerated

consensus and network flow control. Conclusion remarks and

future work outlook are presented in Section VI.

II. PRELIMINARIES

We consider constrained optimization problems on a net-

work of nodes. The network is modeled as a graph G (V ,E )
with vertices (nodes) in the set V = {1,2, ..,n} and pairs

of nodes as edges in the set E ⊆ V × V . We use Ni =
{ j|(i, j) ∈ E } to denote the set of neighbors of node i.

A. Resource Allocation Under Total Budget Constraint

Consider the following resource allocation problem

minx ∑
n
i=1 fi(xi)

subject to ∑
n
i=1 xi = xtot

(1)

Where ∑
n
i=1 xi = xtot is called the budget constraint, and fi are

real-valued strictly convex and twice differentiable functions

whose second derivatives satisfy

Li ≤ f ′′i (xi)≤Ui, i = 1, ..,n, (2)

for known constants Ui ≥ Li > 0. A distributed resource

allocation mechanism that maintains the budget constraint
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at all times was developed in [10], [13]. nodes iteratively

exchange resources via the scaled gradient method

xk+1 = xk −W∇ f (xk) (3)

The weight matrix W needs to satisfy 1TW = 0, W1 = 0

for the total resource constraint to be always satisfied, and

needs to have the same sparsity pattern as the underlying

graph to ensure that nodes only exchange resources with

neighbors. One matrix that satisfies these constraints on W is

the Laplacian of the underlying graph L =A(G )A(G )T [14].

Here, A(G ) is the adjacency matrix of G with entries 1

when (i, j) ∈ E , −1 when ( j, i) ∈ E and 0 otherwise. To

ensure convergence of the iteration (3), the Laplacian has to

be appropriately scaled W =−δL for some δ > 0.

The Laplacian weights relevant to a specific node can be

determined using local topology information. Specifically,

[W ]i j =







δ , (i, j) ∈ E ,
−δdi i = j,
0 otherwise.

(4)

Where di is the degree of node i. Following the notation

in [13], we call these constant weights, since all edges

are assigned a constant weight and then Wii is adjusted to

make sure that W1 = 0. Several heuristic weight choices are

introduced in [13] . For the special case when Ui = 1 for

all i ∈N , this includes: the maximum degree weights where

δ = 1/maxi di; the best constant weights, for which δ =
2/(λ2(L )+λn(L )); and the Metropolis-Hasting weights

[W ]i j =







−min{1/di,1/d j} (i, j) ∈ ε,
−∑(i,k)∈ε Wik i = j,

0 otherwise.

(5)

We will return to this method in Section III and see how

accelerated gradient techniques, described next, allow to

achieve improved convergence rates compared to (3).

B. Multi-step Gradient Methods

The classical gradient method for minimization of a con-

vex function f takes the form

xk+1 = xk −α∇ f (xk) (6)

for some step size parameter α > 0. This method is a suitable

choice for distributed optimization due to its simplicity and

ease of implementation. However, gradient based algorithms

often exhibit slow convergence rate [9]. The convergence

rate can be improved by accounting for the history of the

process which is already obtained in the preceding iterations.

Methods in which the new approximation depends on the

preceding ones are called multi-step methods. In this paper,

we use two-step iterations of the form

xk+1 = xk −α∇ f (xk)+β (xk − xk−1) (7)

where α > 0, β ≥ 0 are fixed step sizes. This method, pro-

posed for centralized applications by Polyak [9] is called the

Heavy Ball (HB) method and can be tuned to have smoother

trajectory toward the local minimum point compared with

traditional the gradient iterations [9]. The smoother trajectory

translates to faster convergence rates. The reason why we

focus on this method is that it is computationally simple and

does not need higher order information which might not be

locally available in distributed applications.

III. ACCELERATED RESOURCE ALLOCATION

Our first contribution in this paper is to consider the

application of multi-step methods to the distributed resource

allocation problem (1). To this end, consider the iteration

xk+1 = xk −αW∇ f (xk)+β (xk − xk−1) (8)

Let x⋆ be an optimal point of f (x). Using Taylor expansion

∇ f (xk) = ∇2 f (x⋆)(xk − x⋆)+o(xk − x⋆)2

Letting zk+1 = (xk+1 − x⋆, xk − x⋆), we can rewrite (8) as

zk+1 = A zk +o(zk) (9)

where the 2n×2n-square matrix A is given by

A =
[

(1+β )I −αWH −β I

I 0

]

, H = ∇2 f (x⋆) (10)

Let L= λ1(H)≤ λ2(H)≤ ...≤ λn(H) =U be the eigenvalues

of H. In what follows we study the local convergence of the

iterative process described by (8).

Theorem 1: Let ω =WH and λn(ω) be the largest eigen-

value of ω and x⋆ be a nonsingular minimum point of

f (x),x ∈ Rn. Then for

0 ≤ β < 1, 0 < α <
2(1+β )

λn(ω)
, LI ≤ ∇2 f (x⋆)≤UI (11)

the method (8) converges to x⋆ with the rate of geometric

progression:

||xk+1 − x⋆||
||xk − x⋆|| ≤ q1 0 ≤ q1 < 1.

Proof: For brevity we omit the proofs. The interested

reader may refer to [15].

The next theorem gives the optimal step sizes as well as the

optimum convergence rate of (8).

Theorem 2: The convergence rate of (8) is given by

q1 =max
{

2
√

β , |1+β −αλ2(ω)| , |1+β −αλn(ω)|
}

−
√

β

(12)

The minimal value of q1,

q⋆1 =

√

λn(ω)−
√

λ2(ω)
√

λn(ω)+
√

λ2(ω)
(13)

is obtained for the step sizes α = α⋆,β = β ⋆ with

α⋆ =
4

(

√

λn(ω)+
√

λ2(ω)
)2

β ⋆ =

(

√

λn(ω)−
√

λ2(ω)
√

λn(ω)+
√

λ2(ω)

)2

(14)

It is known that the convergence rate of the non-

accelerated method is (cf. [9], [8], [13])

q2 =
λn(ω)−λ2(ω)

λn(ω)+λ2(ω)
(15)
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Fig. 1. Convergence behavior of HB and Xiao and Boyd method using
randomly generated network and all the heuristic weights. plot shows the
objective function values f (x(t))− f ⋆ versus iteration number t.

One can verify that q1 ≤ q2, and that the improvement in con-

vergence rate is depends on the quantity κ = λn(ω)/λ2(ω).
In particular, when κ is large, then the speed-up is roughly

proportional to
√

κ (cf. the analysis for the centralized heavy-

ball method in [9]). Large values of κ essentially appear for

two reasons: one is a large spread in the values Ui between

nodes, and the other is the topology of the underlying graph.

Assume for simplicity that Ui = 1 for all i, so that ω =W and

consider Laplacian weights. It is well-known from spectral

graph theory [14] that the complete graph with n vertices

has λ2(L ) = λn(L ) = n/(n − 1), so κ = 1 and there is

no real advantage of using the accelerated scheme. On the

other hand, for a ring network of n nodes, the eigenvalues

of the Laplacian are 1− cos 2πk
n

for k = 0, ....,n− 1, which

means that κ grows quickly with n, and the performance

improvements of the accelerated methods can be substantial.

1) Numerical Examples: In this section we numeri-

cally compare the performance of the accelerated and non-

accelerated resource allocation method under various weight

matrices described in the previous section. To make a fair

comparison, we consider a random graph generated in a

similar way as in [13]. The network shown in the Fig. 1

consists of 20 nodes, each of degree three. Edges are

bidirectional and the objective function at each node has the

form fi(xi) =
1
2
ai(xi − ci)

2 + log[1+ exp(bi(xi − di))], i =
1, ..,n. The coefficients ai,bi,ci, anddi are drawn uniformly

from the intervals [0,2], [−2,2], [−10,10]and [−10,10], re-

spectively, and kept the same for all simulations. As initial

values, we fix the sum of variables to zero (i.e., ∑
n
i=1 xi = 0).

The second derivative of the functions fi are positive and

lower and upper bounded are given by li = ai, ui = ai +
1
4
b2

i , i = 1, ...,n. Using the techniques in [13], we set the

parameters δ = −0.1251 for maximum degree weight and

δ ⋆ =−0.2030 for best constant weight scheme. Fig. 1 shows

the objective value minus the optimal value as function of

iteration count. The plot shows that the accelerated gradient

method yields a significantly increased convergence rate.

IV. ROBUSTNESS ANALYSIS

When the upper and lower bounds on the Hessian are

known and their ratio is significant, multi-step methods give

a considerable increase in convergence rate over the standard

gradient iteration. However such upper and lower bounds

are sometimes hard to estimate accurately in practice. It is

therefore important to analyze the sensitivity of multi-step

methods to errors in the Hessian bounds to assess if the

performance benefits prevail if the bounds are inaccurate.

Such a robustness analysis will be performed next.

Let L and U be the true upper and lower bounds of the

Hessian of the objective function, and let L̂ and Û be the esti-

mated bounds used when tuning the gradient and accelerated

gradient methods. We would like to observe for which values

of L̂ and Û the two methods converge under their “optimal”

step-size rules and compare the associated convergence rates.

In [9] sufficient conditions for the convergence of gradient

iterates of smooth functions are given. According to [9,

Theorem 3], for fixed step size 0 < α < 2/U , the gradient

algorithm converges with rate

q2 = max{|1−αL|, |1−αU |< 1} .

The minimum value q⋆2 = (U −L)/(U +L) is attained by the

optimal step size α⋆ = 2/(L+U). Together with the analysis

in Theorem 1 this yields the following observation:

Proposition 1: Consider 0 < L̂ < Û to be the erroneous

estimates of the Hessian bounds L,U respectively. For all

values of L̂,Û fulfilling the condition U < Û + L̂ both the

gradient iteration (6) with step size selection

α̂ = 2/(L̂+Û)

and the HB algorithm (7) with parameters

α̂ = 4/(
√

L̂+
√

Û)2, β̂ = ((
√

Û −
√

L̂)/(
√

Û +
√

L̂))2

converge to the optimum of f (x).
According to this proposition, the convergence of both meth-

ods is rather similar. To compare convergence rates, we start

by presenting the following lemma.

Lemma 1: For parameters L̂,Û satisfying 0 <U < L̂+Û

the convergence rate of gradient algorithm is given by

q̂2 =

{

2U/(L̂+Û)−1 L̂+Û < L+U,
1−2L/(L̂+Û) L+U < L̂+Û .

(16)

It is easy to check q̂2 > q⋆2 for either of two cases, i.e.

the gradient method with misestimated Hessian bounds has

a slower convergence rate than the optimally tuned one. The

best step size choice unexpectedly happens when L̂+ Û =
L+U , for which q̂2 = q⋆2.

On the other hand, Theorem 2 establishes the convergence

rate of HB with arbitrary (uncertain) step sizes to be

q̂1 = max

{
√

β̂ , |1+ β̂ − α̂L|−
√

β̂ , |1+ β̂ − α̂U |−
√

β̂

}

.

(17)

where α̂ and β̂ are the values of the optimal step size rule

when the erroneous Hessian bounds are used. It is interesting

to note that for L̂ = Û and the convergence constraint, L̂+
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Û >U , both methods converges with rate 1−L/L̂. However,

when the Hessian bounds are not known, the Heavy Ball

method can either perform better or worse than the gradient

method. We have the following results

Proposition 2: Assuming parameters L̂ > L,Û > U . then

convergence rate of the Heavy Ball method is q̂1 = 1+ β̂ −
α̂l − β̂ 1/2 which is faster than the gradient alternative.

Proposition 3: Assuming parameters L̂ < L,Û > U and

L̂+Û = L+U . Then the convergence rate of the Heavy Ball

method is given by q̂1 = β̂ 1/2. Moreover, if (Û/L̂)1/2 >U/L,

then this rate is slower than the gradient alternative.

From our simulation experience, the situation described in

Proposition 3 is rather singular. In fact, we have not yet

experienced this situation in non-contrived scenarios.

V. FURTHER APPLICATIONS

A. Accelerated Consensus

Distributed algorithms for consensus seeking, first pro-

posed in Tsitsiklis et al. [5], have been heavily researched

during the last few of years. We consider consensus via linear

iterations on the form

xi(k+1) =Wiixi(k)+ ∑
j∈Ni

Wi jx j(k), i = 1, ...,n, (18)

Here, Wi j is the weight on x j assigned in node i. In [16]

necessary and sufficient conditions on W for (18) to converge

to the average of initial values are given. More specifically, it

is shown that such matrices W have their largest eigenvalue

equal to 1 while their second largest eigenvalue is strictly

less than 1 and determines the asymptotic convergence factor

towards consensus [16]. For symmetric weights, [16] derived

a semi-definite program (SDP) for finding the weight matrix

W with maximized convergence rate and proposed several

simple heuristics for finding suboptimal weights, including

constant and Metropolis-Hastings weights (cf. [16], [2]). In

what follows we use dual decomposition to develop multi-

step consensus iterations with accelerated convergence.

1) Consensus Algorithm Using Dual Decomposition: It

is possible to achieve similar iterations as primal consensus

using networked minimization of quadratic functions

min ∑
n
i=1

1
2
(xi − ci)

2

subject to xi = x j,∀(xi,x j) ∈ E
(19)

Any distributed method for solving this problem is also a

distributed averaging (or average consensus) algorithm. A

primal-dual based algorithm combined with a subgradient

method to solve (19) is presented in [17], and an alternating

direction multiplier to cast the optimization problem in

distributed fashion is discussed in [18]. The iterations in

the latter are shown to be resilient to communication noises.

One can re-write (19) in vector notation and apply Lagrange

duality to the coupling constraint to find the Lagrangian

L(x,µ) =
1

2
(x− c)T (x− c)+µT Ax (20)

By the first-order optimality conditions for (20) we can define

the dual problem as following unconstrained minimization

minimize −g(µ) =− 1
2

µT AAT µ −µT Ac (21)

For given Lagrange multiplier µ , the primal variable x will be

updated by minimizing the Lagrangian (20). The accelerated

gradient method hence suggests the multi-step iteration

µk+1 = µk −α(AAT µk −Ac)+β (µk −µk−1)
xk+1 = c−AT µk+1

(22)

Note that the µ-iterations in the dual scheme has the same

form as the distributed resource allocation iterations under

Laplacian weight selection. Hence, our analysis and design

rules for selecting optimal algorithm parameters apply imme-

diately. To understand the relationship between this method

and alternative schemes in the literature, it is useful to try

to eliminate the µ-update and only consider the dynamics

of the primal variables. To this end, multiplying AT on both

sides of (22) yields

AT µk+1 = AT µk −αAT (AAT µk −Ac)+βAT (µk −µk−1)
(23)

Using AT µk = c− xk and letting W = AT A gives

xk+1 = ((1+β )I −αW )xk −βxk−1 (24)

As argued previously, W is positive semidefinite with a

simple eigenvalue at 0 and fulfills W1 = 0, 1TW = 0. With

this definition, the consensus iterations coincide with the

general results of Theorem 2 (the Hessian is identity in (10)).

We compare this simple technique with two alternative

acceleration methods; one from the literature on accelerated

consensus, and the other one from the literature on (central-

ized) first-order techniques for convex optimization.

2) Accelerated Consensus via Shift Registers: Shift reg-

isters can be used to speed up convergence in stochastic

form of (18). In [6] it is demonstrated by simulations that

the consensus algorithm can be accelerated substantially by

using shift-registers in each node. The shift register in each

node stores the most recent history of the node’s iterates.

Consider at iteration k two nodes i, j who decide to update

their values. Node i changes its current value as follows

(node j also updates similarly)

{

x1
k+1(i) = a1(

1
2
x1

k(i)+
1
2
x1

k( j))+∑
n
l=2 alx

l
k(i),

xl
k+1(i) = xl−1

k (i) l = 2, ..,n.
(25)

Where al are constant and ∑
n
l=1 al = 1. Johansson et al., [7]

investigated necessary and sufficient conditions as well as

optimal parameters for convergence of such algorithms using

symmetric weights. More recently, [19] analyzes the accel-

erated convergence rate of shift-registers. For the consensus

problem, shift registers result in iterations on the following

form (assuming two entries in each shift register)

xk+1 = ζWxk +(1−ζ )xk−1 (26)

where ζ is a constant scalar, W also is weight matrix (the

one from (18) can be used). For symmetric W , the average

convergence factor is minimized by letting [20]
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3) Nesterov Method: In [21], Nesterov discusses the com-

plexity bounds of various optimization methods. It is shown

that no gradient-based method can achieve ε accuracy (of

the optimal point) in less than o(1/
√

ε) iterations. More-

over, accelerated methods (which called optimal methods)

to achieve the lower bounds for minimizing smooth convex

and strongly convex functions are developed. Specially for

the convex functions with bounded Hessian, the following

iterations are proposed










x̂k+1 = xk − 1
U

∇ f (xk),

xk+1 = x̂k+1 +
√

U−
√

L√
L+

√
U
(x̂k+1 − x̂k),

where x̂0 = x0.

(27)

Now we apply this method for consensus by dual decompo-

sition of the optimization formulation of (19). Following the

same procedure as above, we arrive at the iterations
{

xk+1 = (I − 1
U

W )(xk +b(xk − xk−1))

where b =
√

U−
√

L√
L+

√
U

(28)

Note that here again (as in (24)) W =AT A. For the consensus

case, we can compute lower and upper bounds of Hessian

(21) with respect to µ . i.e., ∇2g(µ) =AAT . So L and U relate

to the smallest and the largest eigenvalues of Laplacian. Via

techniques similar to those introduced earlier, and observing

that the Laplacian has a simple smallest eigenvalue equal

to zero, one finds that L corresponds to the second smallest

eigenvalue of the Laplacian.
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Fig. 2. Comparison of different consensus algorithms using Metropolis
weight. simulation on a Dumbbell of 100 nodes: log scale of Euclidean
distance from optimal point ‖x(t)− x⋆‖2

2 versus iteration number t.

4) Numerical Examples: Fig. 2 compares the differ-

ent consensus algorithms on a dumbbell topology using

a weight matrix designed using the Metropolis-Hastings

scheme. Here, the accelerated gradient and shift register

solutions converge much faster than the standard iterations

and the iterations derived using Nesterov’s order-optimal

technique. Furthermore, the accelerated gradient method still

outperforms the shift register techniques.

B. Accelerated Network Flow Control

To demonstrate the general applicability of accelerated

gradient techniques to network optimization, we also present

results from an attempt to develop accelerated methods

for Internet congestion control. Network utility maximiza-

tion (NUM) as a powerful framework for studying Internet

congestion control and related problems has been attracted

considerable attention during the last decade; see, e.g., [1],

[12]. Almost all the congestion control protocols have been

designed are adapting variations of the dual decomposition

techniques employed in [12]. The optimal bandwidth sharing

can be found by solving the following nonlinear program

max
xs∈Is

∑
s

us(xs)

subject to Rx ≤ c,
(29)

where xs is the source rate for client s, R is the Link-Source

routing matrix and c is the vector of fixed link capacities.

Is = [ms,Ms] imposes lower and upper bounds on the source

rates. The utilities us(xs) are typically monotone increasing

and strictly concave functions. This as well as the linear

constrains cast the overall problem as a convex optimization.

The analysis in [12] assumes that the utility functions are

twice continuously differentiable with 0 < L <−u′′s (xs)<U

for xs ∈ Is. Instead of solving primal problem which is

not decomposable in network peers, the technique in the

literature is to use dual problem as

q(λ ) = max
xs∈Is

∑
s

{

us(xs)− xs ∑
l

rlsλl

}

+∑
l

λlcl (30)

Note that the dual is separable in the end-to-end rates xs. A

solution for the dual problem can be found by letting each

source optimize its own rate based on the knowledge of (the

sum of) link prices λl which it uses to route the traffics.

Meanwhile, link l updates its price by using a projected gra-

dient iteration. To design an accelerated congestion control

mechanism using the multi-step gradient techniques, we need

to find upper and lower bounds on the Hessian. Following

lemma offers required bounds

Lemma 2: The Hessian of the dual function (30) satisfies

Llmaxsmax√
Nl

≤ ∇2q(λ )≤Ulmaxsmax (31)

Where Nl is the total number of links. Also lmax and smax

are lower bounds on lmax and smax, respectively.

Our attempt to accelerate the network flow problem results

in a pricing algorithm on the form

λ k+1
l = PΛ

[

λ k
l +α

(

∑
l

rlsx
k
s − cl

)

+β
(

λ k
l −λ k−1

l

)

]

(32)

The last term in above equation differs from the original

formulation [12] and comes from the momentum term of the

multi-step method. Disregarding the projection, the classical

analysis of the heavy ball method [9] reveals that the

iterations (32) with step size parameters satisfying

0 ≤ β < 1, 0 < α <
2(1+β )

Ulmaxsmax
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converge to a nonsingular optimum point. The best step sizes

corresponding to the suboptimal Hessian bounds (31) in the

absence of the projection are given by

β ⋆ =





√
Ulmaxsmax −

√

LlmaxsmaxN
−1/2

l

√
Ulmaxsmax +

√

LlmaxsmaxN
−1/2

l





2

,

α⋆ =
4

(
√

Ulmaxsmax +

√

LlmaxsmaxN
−1/2

l )2

. (33)

1) Numerical Example: We consider a network with a

routing matrix R of dimension 10× 10. This matrix is full

rank (providing unique equilibrium point) and is generated

randomly. The utility functions of the sources are set to

aslog(1+ xs), with as = 1×102 for all sources. The bounds

in (31) are computed from the routing matrix and the utility

functions. Fig. 3 compares the performance of the classical

optimization flow control and its accelerated variant. As it

is shown in the plot, convergence of both algorithms with

estimated step sizes are slower than what could be achieved

if we could compute the Hessian in every iteration and

adjust the step sizes accordingly. Note that also in this

case the accelerated gradient method provides significant

performance benefits over the gradient method.

VI. CONCLUSIONS

In this paper, we studied accelerated gradient methods for

networked optimization problems. In particular, we investi-

gated multi-step methods to accelerate center free resource

allocation, distributed consensus and network flow control

problems. We demonstrated both theoretically and numeri-

cally that our method outperforms existing algorithms. As

a future direction, we would like to explore the effects of

the uncertain parameters on the performance of gradient and

multi-step methods and extend our analysis to cover the

projected gradient methods as well.

ACKNOWLEDGMENT

The authors wish to thank Björn Johansson for helpful dis-

cussions. This work was sponsored in part by the European

Commission project WIDE and the Swedish Foundation for

Strategic Research project RAMCOORAN.

REFERENCES

[1] F. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stability,” J. of

Operational Research Society, vol. 49, pp. 237–252, 1998.
[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and

cooperation in networked multi-agent systems,” Proc of the IEEE, vol.
95 Issue: 1, pp. 215–233, 2007.

[3] S. Barbarossa and G. Scutari, “Decentralized maximum likelihood
estimation for sensor networks composed of nonlinearly coupled
dynamical systems,” IEEE Trans on Signal Processing, vol. 55, pp.
3456–3470, 2007.

[4] D. Goodman and N. Mandayam, “Power control for wireless data,”
Personal Communications, IEEE, vol. 7 Issue:2, pp. 48–54, 2000.

[5] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asyn-
chronous deterministic and stochastic gradient optimization algo-
rithms,” IEEE Trans on Automatic Control, vol. 31, pp. 803–812, 1986.

[6] M. Cao, D. A. Spielman, and E. M. Yeh, “Accelerated gossip
algorithms for distributed computation,” in 44th Allerton Conf on

Communication, Control, and Computation, 2006.
[7] B. Johansson, “On distributed optimization in networked systems,”

Ph.D. dissertation, Royal Institute of Technology, 2008.
[8] D. P. Bertsekas., Nonlinear Programming. Athena Scientific, 1999.
[9] B. Polyak, Introduction to Optimization. ISBN 0-911575-14-6, 1987.

[10] Y. C. Ho, L. Servi, and R. Suri, “A class of center-free resource
allocation algorithms,” Large Scale Systems, vol. 1, pp. 51–62, 1980.

[11] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans on Inf Theory, vol. 52, pp. 2508–2530, 2006.

[12] S. H. Low and D. E. Lapsley, “Optimization flow control - i: Basic
algorithm and convergence.” IEEE/ACM Trans on Networking, vol. 7
Issue: 6, pp. 861–874, 1999.

[13] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for
distributed resource allocation,” J. Opt. Theory and Applications, vol.
129 Issue:3, pp. 469–488, 2006.

[14] F. R. K. Chung, Spectral Graph Theory. CBMS Regional Conference
Series in Mathematics, No. 92, American Mathematical Society, 1997.

[15] E. Ghadimi, M. Johansson, and I. Shames, “Accelerated gradient
methods for networked optimization,” KTH, 2010, Tech. Rep.

[16] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Systems and Control Letters, vol. 53 Issue: 1, pp. 65–78, 2004.

[17] M. Rabbat and R. Nowak, “Generalized consensus computation in
networked systems with erasure links,” in IEEE SPAWC, 2005.

[18] I. Schizas, A. Ribeiro, and B. Giannakis, “Consensus-based distributed
parameter estimation in ad hoc wireless sensor networks with noisy
links,” in IEEE ICASSP, 2007.

[19] J. Liu, B. D. O. Anderson, M. Cao, and A. S. Morse, “Analysis of
accelerated gossip algorithms,” in 48th IEEE CDC, 2009, pp. 871–876.

[20] G. H. Golub and R. S. Varga, “Chebyshev semi-iterative methods, suc-
cessive overrelaxation iterative methods, and second order richardson
iterative methods,” Numerische Matematik, vol. 3, pp. 147–156, 1961.

[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic

Course. Springer-Verlag New York, LCC, 2003.

1673


