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Abstract—In this paper, vehicle stability is represented by a
cooperative dynamic game such that its two agents (players),
namely, the driver and the direct yaw controller (DYC), are
working together to provide more stability to the vehicle
system. While the driver provides the steering wheel control,
the DYC control algorithm is obtained by the well-known Nash
game theory to ensure optimal performance as well as
robustness to disturbances. The common bicycle model is put
into discrete form to develop the game equations of motion. To
evaluate the control algorithm developed, a nonlinear vehicle
model along with the combined-slip Pacejka tire model is used.
The control algorithm is evaluated for a lane change maneuver,
and the optimal set of steering angle and corrective yaw
moment is calculated and fed to the test vehicle. The simulation
results show that the optimal preview control algorithm can
significantly reduce lateral velocity and yaw rate which all
contribute to enhancing vehicle stability.

I. INTRODUCTION

Vehicle stability control systems, VSC, help drivers
maintain vehicle stability and avoid spinning out during
emergency braking and steering maneuvers. These systems
have been developed and recently commercialized by
several companies. A comprehensive literature review
conducted by Ferguson [1] reveals that VSC can effectively
reduce single-vehicle crashes in cars and SUVs by 30-50%.
Also, fatal rollover crashes are estimated to be about 70-90%
lower with VSC regardless of vehicle type.

Among all vehicle stability enhancement strategies, direct
yaw control (DYC) is one of the most effective methods of
active chassis control which can considerably enhance the
vehicle stability and controllability [2]. For vehicle control,
the yaw moment control is a way to control the lateral
motion of a vehicle during severe maneuvers using active
steering, e.g., front and/or four wheel steering [3], or active
differential braking using ABS [4]. However, it is reported
that introducing the driver as part of the control algorithm
will improve upon the performance of the vehicle stability
control system. This can be accomplished through forming a
common differential game.
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For decades, driver modeling has been an interesting issue
for both traffic and vehicle control research [5,6,7]. Driver
models are usually based on preview of the road ahead
where the driver is represented as an optimal preview
controller, constructing a path error functional by
previewing the road over a known preview distance, and
minimizing a weighted integral of squares of differences
between the previewed path points and the corresponding
estimated lateral position of the vehicle over the preview
distance. Sharp et al. [6] introduced a new representation of
optimal linear steering control where the standard
lateral/yaw linear vehicle model was transformed into
discrete-time formation that constructed a quadratic cost
function consisting of terms describing path and attitude
errors with respect to the road path. Based on this cost
function, steering wheel angle control was minimized by
linear quadratic regulator (LQR) control.

In 2001, Sharp et al. [6] proposed a simple linear vehicle
model with absolute lateral position, lateral velocity, yaw
angle, and yaw rate as the non-preview states in discrete
form and the road sample inputs as the preview states.

2= (10, WV Ty Vs Vg Vo) (1)
with y, is the road reference position at one step before the
current time, and y, is the current reference position, and
Vu2s- ¥,y are road reference positions at (N —1) steps

ahead.

The main purpose of the controller is stable path
following, the quality of which can be specified by the sum
of the squares of the differences between the y-coordinate of
the car's reference point and the corresponding value y, for

the lateral position of the road with respect to the fixed
ground frame, O .

Similarly, the human driver is assumed to have the
tendency to minimize the corresponding sum of squares of
attitude angle differences and minimize the higher-order
dynamics, typical terms that can be found analytically.
These priorities are reflected into a quadratic cost function
[9] by setting:
0=N"gN, (2)
where the matrix N is defined as,
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The relative importance attached to path errors, attitude
errors and steer angle are set by choosing the diagonal
values of ¢ appropriately [6].

Tamaddoni et al. [10,11] used Nash strategy to develop an
optimal control strategy which takes into account the driver
of the vehicle as an inherent part of the controller. In the
presented method, the driver, commanding the steering
wheel angle, and the vehicle stability controller, applying the
corrective yaw moment, are defined as dynamic players in a
2-player differential linear quadratic game. They found out
that the cooperative game theory method brings more
optimal performance by setting the driver’s steering angle
and the controller’s corrective yaw moment compared to the
independently optimized set of steering angle and corrective
yaw moment obtained through linear quadratic regulation
approach.

Following Tamaddoni et al. [10,11], the game theory
framework is adapted and modified in this paper to include
time-previewed driver model in collaboration with the VSC
system. To do so, the equations of motion are put into
discrete form and a preview system is defined. Using the
Riccati equation for discrete difference game, the optimal set
of the steering angle and the corrective yaw moment can be
obtained.

II. VEHICLE MODELS

A detailed standard nonlinear vehicle model is used in
numerical simulations to analyze the response of the
controlled vehicle. The model includes nonlinear tire models
according to combined sideslip theory [12], nonlinear spring
model, nonlinear front steering system, and incorporates the
major kinematics and compliance effects in the suspension
and steering systems including differential load transfer for
each wheel. However, to design the controller, a widely used
simplified linear single track vehicle model is considered
which captures the essential vehicle steering dynamics. In
this respect, the tire forces are assumed to be linear functions
of tire slip angle.

A. Evaluation Model

In order to study the handling and roll dynamic responses
of the vehicle, a nonlinear model of a vehicle is derived
which includes longitudinal and lateral translational motions,
and roll and yaw motions with rotational dynamics of each
of the four wheels [12]. It must be mentioned that the roll
dynamics and the suspension compliance properties play an
important role in providing a more realistic simulation

environment for evaluating the control algorithm that will be
developed in this paper.

Based on the vehicle coordinate system, parameters, and
external forces depicted in Fig. 1, the nonlinear vehicle
model is derived by writing the translational and rotational
equations in the vehicle fixed coordinate frame
m (\'/X - v),l/'/) - m¢h(¢y7 + 21/'/¢5) =(F g + Fyy )cos S,

_(FVFR + FyFL )Sin 5F + (FxBR + F.xBL )’

(4)

Ly + (140, 1. ))§ — m, (v, 0 — v, pyr) =
l[" (EYI"R + EYI"L )Sin 5[" + 1[" (EL’["R + EL’["L )COS 5["
_13 (F;rBR + FyBL ) (5)
+s, (FxBL + F €086, = Fpy sin 5F)

X

—S, (Fxﬂk + F g €08 O — F,pp sin é‘F),

m (v, + )+ moh(§ =0 ) = (Fopg + F.py )sin G, ©
+(FyFR + FyFL)COS Op + (F‘yBR + F‘yBL)’

(1,,+mh?)é+mh(v, +vyr)+Cd+(1.60 -1 )y
~(mgh* +1,, =1, )0y +(K, —m,gh)p=0.

Steering system is modeled as a second order system.

(7

5F+b51517+ksr[ F_55W]=0 )

Tt
The equation of motion that governs wheel dynamics is

given by

I od=—-FR, +T,

Driving

-T Braking (9)

Tire velocity for each wheel are approximated as
Ve =S¥ VS,
Vrr = s VL = ;
v, +1y v, + 1.y

, . (10)
Ve =S¥ v, TSy
Vigr = s Vs = X

Fig. 1. Vehicle evaluation model

Tire slip angle is defined as the angular difference
between the treads in the contact patch and the direction the
wheel is turned.
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Longitudinal slip of the tire is defined as the difference
between the tire tangential speed and the speed of the axle
relative to the road. For each wheel represented by index
ie {FR,FL,BR,BL}, tire slip is calculated as

(11)
ie{R,L}

X

R w —v .
W 1 wi _Slgn(
k=1 max{R, @, v} }

X
0 s Vi = Rwa)i

R w

wl

x x
Vwi ) v * Rwa)i

> Vi

(12)

Tire forces and moments are calculated based on a widely
used semi-empirical tire model based on trigonometric
functions known as Magic Formula [9]. Magic-Formula tire
models are considered the state-of-the-art for modeling tire-
road interaction in vehicle dynamics applications.

B. Control Model

The commonly used single track bicycle model is
considered in this paper [12]. This model captures the
needed dynamic information for yaw as well as lateral
degrees of freedom. In order to derive the equations, it is
assumed that vehicle motion is represented by its global
lateral position and velocity, and the yaw angle and yaw rate
at the vehicle center of mass as shown in Fig. 2. The state
variable vector becomes

x=(y v v y) (13)
where, y is the global lateral position of the vehicle CG,
is the global lateral velocity in Y direction with respect to a
fixed ground coordinate, and y,y are yaw angle and yaw

rate, respectively.
For the sake of simplicity, the mathematical model is
linearized around the operating conditions
X =04, 5, =0,M, =0
Thus, the equation of motion for a constant forward speed
is given by:

%.(=AX,()+ B, 0gy (t)+ By, M..(0) (14)
with
[0 1 v, 0 1
0 - CaF + CaB Y ZFCaF — IBCaB
mv, ! mv,
A = ’ ’
10 0 0 1
0 lFCaF _lBszB 0 _I;szF + ll:zfczzB
L ]:vx ]zvx i
C Lc, | 1|
B,=|0 —¢£ o L=\ B =000 —
rm 7l 1

where u, is the steering wheel angle (J,), u, is the
compensated yaw moment (M ), and C,.,C,, denote the
front and rear tire cornering stiffness, respectively, relating

linear tire forces to their corresponding linear sideslip
angles.

The relevant linear vehicle model is translated to the
discrete-time difference equation as,
x ik +1} = A, x, ik} + Byu, {k} + B, u, tk}
Ad > Bld ’ BZd

(15)

where are obtained by discretizing the

corresponding continuous-time matrices of 4., B,.,B,, .

le»

C. Preview Model

The idea of a multi-point preview model of path-
following steering control used by Sharp et al. originates
from linear discrete-time preview control of active
suspension [6]. The inputs to the model are effectively the
previewed path error and the lateral and yaw velocities of
the vehicle, and the output of the model is the steering angle.
Applying optimization theory he showed that the feedback
gains depended on the weights applied to path and heading
errors and steering control action, and that the preview gains
reflect the vehicle dynamics.

The relevant linear vehicle model is translated to the
discrete-time form of Eq. (15), and the lateral profile of the
road is considered in discrete sample value form, with
sample values from past observations of the road ahead
being stored as states of the full vehicle/road system. As the
system moves forward in time, a new road sample value is
read in and the oldest stored value is discarded,
corresponding to the vehicle having passed the point on the
road to which this oldest value refers. All the other road
sample values are shifted through the time step, nearer to the
vehicle. The dynamics of this shift register process are
represented mathematically by
y{k+1y =4,y {k} + By, {k}
where 4, and B, are of the form

(16)

01 0 .0 0
o0 1 .. .0 0
A=0 0 0 I .. 0}, B =|0
00 0 0 .. 0 1

Combining vehicle and road equations together, we obtain
the full dynamic system description

|:xd e+ 1}:| _ |:Ad 0 :||:xd {k}:| + |:Bld }5%/ (k)
y. 4k +1} 0 A ||y ik} 0

A7)
{BZ"}M {k} { 0 }y, {k}
0 z B |’
The complete problem is now in a standard form,
z{k + 1} = Az{k} + Byu, {k} + B,u, {k} + Ey,, {k} (18)

where u, =J,, is the discrete-time steering wheel angle

signal, and u, =M _, is the discrete corrective yaw moment

around the vehicle center of mass.

If the reference sample y, is a white-noise sample from a
random sequence, the state-preview system of Eq. (17) is
controllable if the state system of Eq. (14) is controllable,
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i.e., if (4.,B,) is controllable.

III. CONTROL ALGORITHM DESIGN
Consider the discrete-time infinite linear quadratic
difference game with 2 players as formed in Eq. (17), and
each player i=1,2 has a control function u, =(J,,M_) at

his disposal which is dynamically coupled by a system of
difference rewritten as,
z" = Az + Bu, + B,u, (19)
where the time step, & , is omitted for the sake of simplicity,
and the white-noise reference signal y, is neglected in the

difference game.
For every player i=1,2, a quadratic cost function is
defined as

0 =231 =13 70zt Yulr,
2/::0 2 J=1 s

k=0

(20)

where all weighting matrices are constant, Q, is symmetric,
R,>0.

The Nash equilibrium is defined such that it has the
property that there is no incentive for any unilateral
deviation by any one of the players. In the other words, at
Nash equilibrium with «; , the player who chooses to change
his/her strategy cannot improve his/her payoff. Therefore,
the Nash equilibrium is constituted by the N-tuple of
strategies u, if the following inequalities are satisfied for all

admissible strategies:
(pl* £ 2 (ulsu;)z 2 (“rau;)
20 (ul*’uZ)Z ?, (ul*’u;)
Restricting the controller to the linear feedback control
approach, the optimal solution becomes,
u, =-R;'BIP'z*, i=1,2 (22)
where P is found from the Riccati equation for discrete

i

@n

linear quadratic games as,
F=0 - GITR:‘]G] - GZTR:‘ZGZ

, (23)
+(4+BG, +B,G,) P"(A+BG, +B,G,)
and G, satisfies,
G =-(R,+B"P'B) B'P'(4+BG.) (24)

with i=(1,2) and i is the counter-coalition, i.e. the player

counter-acting to the player with index i .
The matrices P,Q, can be also rewritten in the following

form to simplify the Riccati equations,

) ) P, )
Qi=|:glr ZI”I} PI=|:PH71' I;m:|’ i=12

where the sub-matrices are in appropriate sizes.

(25)

Hence, the optimal preview linear feedback control (22)
becomes,

u =R'By[R; Pi]z,  i=12 (26)

The mathematical steps to derive the preview-time linear-
quadratic linear-feedback Nash optimal controller for the
vehicle system (18) are introduced in [13]. The optimal
controller is obtained by first solving Eq. (28), and then
feeding the resulting time-independent B, matrices into
Equation (29) to find the matrices P, . Substituting the

resulting P,, P,

im

into Eq. (26) yields the optimal preview

feedback control «; that guarantees Nash equilibrium.
By =0,
T
_Aj AIBITdPId + AZBZTdPZd) R, (AlBlePw + A2BZTdP2d )Ad
T

(
-4 (AsBlzPld + A4Bzrd1:§d )T R, (ABBITde + A4Bzrsz.1 )Ad
(

T
+A§ [+(BldAl +BZdA3)BlZ[)Id +(BldA2 +BZdA4)BZTdPZz{)
F, (1 + (BldAl + By A, )BIC’PId + (BwAz +B,,A, )BZTz{PZd )Ad
(28)

and

Pu; =Qim

T
_AdT (AlBlrdpld + AZBZTdPZd) Ril (AlBltiplm +AszrdP2m)Ar

T
_AdT (AsBled +A4BszPZd) R;z (AsBlrdp

Im

+A,B] P,

Zm)A

T
_A: ([+(BldAl +B2dA3)Ble})1d +(B1dA2 +BZdA4)B2TdP2d)
Rd ((BldAl +B211A3)Blc’l)lm + (BMAZ +BZdA4)B2Td})2m )A

-

29

IV. SIMULATION AND RESULTS
It is known that handling stability is guaranteed provided
that the controller can keep the vehicle yaw rate close to the
desired value that can be dynamically calculated based on
the driver’s steering input and vehicle forward speed:

— 30
(L +1,) (1K) 30)

. v
Y desired =

where k,, or so-called understeering coefficient, is a

positive constant.

The control objective is to guarantee handling
performance in a single lane change maneuver using the
following desired states:

. r
Xiesired = (Vaesied 0 0 Wosiea )
where y,., =4m.

€2))

The optimal strategies defined in equations (30) are
computed for the CarSim’s D-class sedan at a nominal speed
v,=20m/s and the following values of other involved

parameters:
m=1450 kg,

I, =4192 kg.m’,

r, =0y, [0, =17.8,

/. =1.11 m, l, =167 m,
C,. =C,, =80000 N/rad.

To discretize the above system, the MATLAB function
‘c2d’ (continuous to discrete) is used in this paper. The

(32)

5252



sampling frequency of 100Hz that corresponds to the
sampling time of 7, =0.01 sec is assumed.

These priorities of the cost function are reflected by
arbitrarily setting:

Q NTQId |:Q2d
0
10 0 0 0 00
0 001 0 0 01 0 0
Qu=l, o} 0 0 00| (33)
0 0 001 0 0 01
R, =1 R

12
R, =10, R, =10’7,
where the matrix N is defined in Eq. (3).

To reserve solution accuracy, the solving frequency in
MATLAB was set to 1000 Hz , while using “down sample”

block in Simulink, the control frequency was reduced to
100 Hz .

Following the aforementioned procedure in Section 3.3,
the optimal feedback gains are obtained for three different
number of preview windows, namely, no preview time
(T, =0s), short preview time (7, =307, =0.3s), and long

preview time (7, =1007, =15) .

The optimal steering angle and corrective yaw moment
are obtained for the three cases: non-previewed, short-
previewed, and long-previewed.

Fig. 2 shows the simulation results of the vehicle states,
including lateral position and velocity, yaw and roll, angles
and rates.

Figure 2(a) shows that all three drivers successfully steers
the vehicle through a single lane change maneuver of four
meters; however, the vehicle with the driver of larger
preview time ability kicks off the lane changing sooner. As
the preview time decreases, the vehicle exhibits slower
response and more overshoot.

Figure 2(b) show that the vehicle lateral motion is more
stable as the preview time increases. In the other words, the
preview time gives the vehicle more time to cope with the
dynamics of the previewed maneuver.

Figure 2(d) indicates that the vehicle yaw rate is more
close to its corresponding desired yaw rate as the preview
time increases; thus, it is concluded that the handling
performance is best guaranteed for the driver with higher
preview time ability.

Lateral Position (m)

Tp=0.0s
- ==Tp=0.3s
Tp=1.0s

0 05 1 15 2 25 3 35 4 45 5
Time (s)

(2)

Tp=0.0s
- =<=Tp=03s
Tp=1.0s

Lateral Velocity (m/s)
S
1
1
1

0 05 1 15 2 25 3 35 4 45 5
Time (s)

(®)

Tp=0.0s
- ==Tp=0.3s
Tp=1.0s

Yaw Angle (deg)

0 05 1 15 2 25 3 35 * 45 5

Tp=0.0s
" ) ~ (desired)

& -=-=-Tp=03s
% i R AR 1 [P ~ (desired)
Tp=1.0s
~ (desired)

Yaw Rate (deg/s)

0 05 1 15 2 25 3 35 4 45 5
Time (s)

(d)
Fig. 2. Time history of vehicle states in a lane change maneuver of 4m:
(a) lateral position, (b) lateral velocity, (c) yaw angle, (d) yaw rate.

Fig. 3 shows the driver’s steering angle and the corrective
yaw moment. It can be seen from Fig. 3 that the driver and
the controller get involved sooner to follow the direction
change as the preview time increases. Hence, as the preview
time increases, the steering wheel angle is extended more in
time, but the peak value drops. It is also shown that the
required corrective yaw moment is similarly extended more
in time as the preview time increases, however the peak
value drops with preview time.
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S
-6000
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(b)
Fig. 3. Time history of control inputs: (a) steering wheel angle, and wheel
brake torque: (b) corrective yaw moment

V. CONCLUSION

A new structure for optimal linear car steering and yaw
control has been devised based on the game theory concept.
Using the definition of a linear quadratic difference game,
the driver’s steering input and the controller’s corrective
yaw moment are defined as two dynamic players of the
game “vehicle stability”, and their corresponding control
efforts are optimized through the Nash optimal strategy. The
game theory framework provides an optimal set of the
steering wheel angle and the corrective yaw moment that
needs to be applied by the driver and the vehicle controller,
respectively. Hence, if a player deviates from his/her optimal
strategy, his/her payoffs cannot improve.

Results show that in all cases, the game theory approach
resulted in different sets of feedback gains to form the
driver’s steering wheel angle and the vehicle stability control
system’s corrective yaw moment. The final control system
successfully maneuvered the vehicle through the desired
lane change. It is concluded that the look-ahead preview
information brings more time to the driver to cope with the
desired path, and reduces the instability in lateral and yaw
motions due the sudden direction change. Compared to the
previewed control cases, the vehicle with no preview of
ahead road reference experiences larger steering angle
peaks, and consequently, more severe yaw dynamics.
Similarly, the wheel braking torque is extended more
through time and its peak value is lowered as the preview
time increases.
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