
  

  

Abstract— This paper examines robust stability and robust 
transient growth in Iterative Learning Control (ILC).  It is well 
known that small perturbations in system dynamics can result 
in very large transient growth of some ILC systems.  Even 
larger perturbations can result in instability.  One ad hoc 
technique commonly employed to improve robustness is to slow 
the learning rate by reducing the learning filter gain or lowpass 
filtering the error signal.  Here, pseudospectra analysis is used 
to analyze the robustness of ILC algorithms with slow learning. 
It is found that robustness bounds can be increased and 
transient growth decreased with decreasing learning gain. This 
result provides a new theoretical foundation for tuning 
approaches for improving robustness.  

I. INTRODUCTION 
TERATIVE learning control (ILC) [1-3] is used to 
improve the performance of systems that repeat the same 
operation many times.  ILC uses the tracking errors from 

previous iterations of the repeated motion to generate a 
feedforward control signal for subsequent iterations.  
Convergence of the learning process results in a feedforward 
control signal that is customized for the repeated motion, 
yielding very low or zero tracking error. 
 ILC is a performance-improving control algorithm, rather 
than a stabilizing algorithm, and thus the emphasis of much 
of the ILC literature focuses on behavior at convergence.  Of 
course, convergence of the algorithm is typically 
demonstrated, but comparatively little attention is given to 
the nature of the convergence.  The transient behavior of the 
learning process, however, is critically important in many 
practical applications.  For example, in robotics and 
manufacturing applications, slow convergence leads to 
delays in process startup and possibly costly material waste.  
Perhaps of greater concern to the ILC designer is the 
problem of large transient growth [4], whereby the error 
may grow rapidly and with little warning, potentially 
damaging hardware. 
 The problem of large transient growth has been studied 
extensively by Longman and colleagues [4-8].  These and 
other works [9-11] use norm-based tools for analysis and 
design.  The norm-based tools are limited in that they are 
unable to distinguish between small and large transient 
growth.  Thus, designs based on these tools always result in 
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monotonic convergence (no transient growth).  Although 
this is a desired property, it is an artificial constraint for 
many applications, and thus may result in sub-optimal 
performance. 

Recently, the authors proposed the use of pseudospectra 
analysis as an alternative to the norm-based approaches [12].  
The pseudospectra is used to estimate transient growth, and 
thus may provide a suitable framework for ILC design with 
“softer” transient constraints. 

In practice, it is common to reduce learning rate to 
improve the robustness and transient growth.  However, 
there is little rigorous theoretical work to support this 
approach.  In this paper we use the pseudospectra tools to 
analyze the robust stability and transient growth behavior of 
a class of ILC algorithms with slow learning rate.  Notably, 
we find that this approach does have theoretical foundations 
and further that the recursive filtering of the control signal 
may play a central role. 

The remainder of this paper is organized as follows.  In 
Section II we set up the problem of transient growth in ILC 
and introduce the pseudospectra analysis tools.  Section III 
develops robust analysis for stability and transient growth of 
slow-learning ILC algorithms.  Finally, concluding remarks 
are given in Section V. 

II. BACKGROUND 
Consider the general description for the finite-time 

response of a linear time-varying (LTV), multi-input, multi-
output (MIMO), discrete-time (DT) servo system, 

 0= +e Pu e , (1) 

where, 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )0 0 0 0

1 1 ,

0 1 1 ,

1 1 .

T

T

T

e m e m e m N

u u u N

e m e m e m N

⎡ ⎤= + + −⎣ ⎦

⎡ ⎤= −⎣ ⎦

⎡ ⎤= + + −⎣ ⎦

e

u

e

L

L

L

 

are the vector descriptions of the tracking error e(k) at time 
k, the ILC input u(k), and the nominal tracking error e(k), 
respectively, and m is the system delay.  The matrix P is the 
convolution matrix relating the ILC input to the error, and is 
given by,  
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The model (1) is sufficiently general to represent a variety of 
control system configurations [3]. 

One common configuration is the so-called “plug-in ILC” 
whereby the ILC input is added to the control signal of an 
existing feedback controller, as illustrated in Figure 1.  In 
this case, e0 is the tracking error achieved by the feedback 
controller, which may include initial condition response and 
disturbances.  The elements of the convolution matrix P are 

,i l i lp h −= , where 0 1, 2, ,h h h K  is the impulse response of the 
transfer function between u and e, 

( ) ( ) ( ) 1
G z I G z C z

−
⎡ ⎤− +⎣ ⎦ . 

In the ILC setting, we consider repetitions of the tracking 
process, 

 0j j= +e Pu e , (3) 

where j is the iteration index.  It is assumed that e0 is 
iteration-invariant (and thus the reference, disturbances, and 
initial conditions are iteration-invariant).  A commonly used 
ILC algorithm for this process is the first-order algorithm, 

 1j j j+ = +u eu L u L e , (4) 

where Lu and Le are NxN matrices.   
 

Figure 1.  Plug-in ILC configuration. 

A. Stability and Transient Analysis 
Combining (3), (4), closed-loop dynamics in the iteration-

domain are given by, 

 1 0j j+ = +u Tu f , (5) 

where = −u eT L L P  and 0 0= ef L e .  It follows that the ILC 
system is stable if ( ) 1ρ <T , where ( )ρ T  is the spectral 
radius, or largest absolute value of the eigenvalues, of T.  If 
the system is stable, define lim j j∞ →∞=u u , and rewrite (5) 
as, 

 ( )1j j∞ + ∞− = −u u T u u ,  

or equivalently, 

 ( )0
j

j∞ ∞− = −u u T u u , (6) 

Thus, 0
j

j∞ ∞− ≤ ⋅ −u u T u u , where the norm is the 

standard 2-norm.  Therefore, the transient response of the 
learning process is bounded by the sequence, 

 2 3, , , , ,jT T T TK K . (7) 

If T is known, one may numerically compute the 
sequence (7), at least for some finite number of iterations.  
However, such an approach does not provide meaningful 
design insight.  Furthermore, it is numerically expensive 
when N is large and many iterations need to be calculated to 
determine the behavior of (7).  One approach to analyzing 
the transient response is the pseudospectra, given by the 
following definition. 

Definition 1 [13]: The ε -pseudospectra of a matrix T is 
the set ( )

εσ T  in the complex plane consisting of all points 
z ∈C  such that z is an eigenvalue of T+E for some 

N N×∈E C  with ε<E . Equivalently, the pseudospectra is 

the set where the resolvent matrix ( ) 1z −
−I T  is large:   

 ( ) 11( ) { : }.z zεσ ε −−= ∈ − >T I TC  

 The pseudospectra can be used to generate a number of 
bounds on the transient response [13].  One such bound is 
given by, 

 ( )[ ] 1
/

kk
ερ ε

+
≤ TT , (8) 

where, 

 ( ) ( ){ }max :z zε ερ σ= ∈T T , (9) 

is referred to as the ε -pseudospectra radius.  Numerical 
tools for efficiently calculating the pseudospectra for large 
matrices are developed in [13] and implemented in [14]. 

III. ROBUSTNESS ANALYSIS OF SLOW LEARNING SYSTEMS 
Methods of slowing the learning rate to improve 

robustness are commonly employed in ILC.  Here, we 
consider a general a class of these algorithms, given by, 

 ( )1j j jφ+ = +u eu L u Φ L e , (10) 

3670



  

where ( )φΦ  is an NxN matrix and φ  is a scalar.  Several 
examples of such algorithms reported in the literature are: 

• Uniform scaling: ( )φ φ=Φ , 0 1φ≤ ≤  

• Lowpass filtering [8]: ( )φΦ  is a lowpass filter with 
bandwidth φ  

• Exponential weighting [15]: 
( ) { }2, , , Ndiagφ φ φ φ=Φ K , 0 1φ≤ ≤  

We make several assumptions regarding the slowing filter. 
1. ( ) ( )1 2φ φ<Φ Φ  if 1 2φ φ< . 

2. ( )0lim 0φ φ→ =Φ . 

A. Robust Stability 
Substituting the slow learning ILC algorithm, (10), for the 

first-order algorithm, (4), stability and transient analysis 
follows identically to the analysis presented in Section II.A. 
The transition matrix for the slow learning algorithm is 
given by, 

 ( )s φ= −u eT L Φ L P . (11)  

It follows from Assumption 2 above, that the dynamics of 
the slow-learning system approach the dynamics of the Lu 
filter as the learning rate slows, or, 

 
0

lim sφ →
= uT L . (12) 

Thus, in the limit, the dynamics of the ILC system are 
independent of the plant, P.  This fact provides the basis for 
the following theorem, in which φ  can be used to provide 
robustness to arbitrarily large plant perturbations. 

 Theorem 1:  Let Le and P be any bounded matrices.  If 
Lu is strictly stable, ( ) 1ρ <uL , then there exists a φ  such 

that the slow-learning ILC system is stable for all 0 φ φ< ≤ . 

 Proof:  From (12), we have that Ts converges to Lu in 
norm.  This norm convergence and eigenvalue perturbation 
theory [17] gives that the eigenvalues of Ts converge to the 
eigenvalues of Lu as 0φ → .  This proves the result. 

Remark 1: Note that in the eigenvalues of Lu must be 
strictly inside of the unit disk to achieve the robustness 
properties described in Theorem 1.  Conversely, it is well 
known that Lu=I is necessary for convergence to zero error 
[3].  Thus, the robustness properties of Theorem 1 do not 
apply to zero-error convergence algorithms. 

The parameter φ  can be estimated using pseudospectra 
analysis as shown in the following corollary. 

 

 

Corollary 1:  Let ε  be the (unique) ε -pseudospectra 
radius such that ( ) 1ερ =uL  and select φ  such that 

( )φ ε< eΦ L P .  Then, the slow-learning ILC system is 

stable for all 0 φ φ< ≤ . 

Proof:  Let ( )σ sT  be the spectra, or set of eigenvalues, 

of Ts.  Define ( ) ( )ε̂ φ φ= ⋅ eΦ L P .  Then, from Definition 

1, 

 ( ) ( )( ) ( ) ( )ε̂ φσ σ φ σ= − ⊂s u e uT L Φ L P L , 

and likewise, 

 ( ) ( )( ) ( ) ( )ε̂ φρ ρ φ ρ= − ≤s u e uT L Φ L P L .  

Note that ( )ε̂ φ ε< , and because ( ) 1ερ =uL , it follows 

that ( ) ( )ˆ 1ε φρ <uL .  Furthermore, 

 ( ) ( ) ( ) ( ) ( )ˆ ˆ 1ε φ ε φρ ρ ρ≤ ≤ <s u uT L L , for 0 φ φ< ≤ . ■ 

B. Robust Transients 
As discussed in Section II, the transient growth in an ILC 

system is related to the pseudospectra of the transition 
matrix.  The following theorem provides a relationship 
between the Lu pseudospectra and the Ts pseudospectra.  As 
the learning gain ( )φΦ  approaches zero, the 
pseudospectra converge. 

Theorem 2:  The ε-pseudospectra of Ts is bounded by 
ˆε ε+ -pseudospectra of Lu, 

 ( ) ( )ˆε ε εσ σ +⊂s uT L , 

where ( )ε̂ φ= ⋅ eΦ L P . 

 Proof:  By definition, the ε-pseudospectra of Ts is the set 
( )σ +sT E , ε≤E .  Then, 
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which completes the proof. 

 Since the pseudospectra is related to transient growth, the 
above result gives that the transient response of Ts will be 
close to the transient response of  Lu if ( )φΦ  is small 

enough. 

3671



  

C. Implications for Lu Design 
As evident from (12), the ILC system dynamics approach 

the Lu dynamics for slow learning.  Corollary 1 indicates 
that the design of Lu plays an important role in the tradeoff 
between the slow learning gain and the system robustness.  
Specifically, it is desirable that ε -pseudospectra sets of Lu 
lie inside of the unit circle for large ε .  Thus, particular Lu 
designs may have robustness advantages over other designs. 

Figure 2 shows the pseudospectra for four different 
lowpass filter designs.  All four filters have a digital 
bandwidth of 0.05 (1/samples) and are described in Table 1.  
The first two filters are causal Butterworth filters of 
differing order.  The last two filters are noncausal, zero-
phase implementations of the first two, using a forward-
backward filtering method [16]. 

The results of the pseudospectra calculations for the four 
lowpass filter designs show that although the filter 
bandwidths are the same, the pseudospectra are quite 
different.  Notably, the causal filters, Filter 1 and 2, appear 
significantly more robust than the noncausal filters, Filter 3 
and 4.  Interestingly, for the causal filters, a higher order is 
more robust, but the opposite is true for the noncausal filters. 

 

 

   
Figure 2.  ε-Pseudospectra for the four filters listed in 

Table 1. The color bar is on a 10log  scale so that the values 

of ε are 5 0.510 , ,10− −K  from inside to outside. 

Table 1.  Four designs for lowpass Lu filters. 
Filter 1: 
   1st Order 
   Butterworth 

( ) ( )
1
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0.7265u

z
L z

z
+

=
−
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ε
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Filter 3: 
   Zero‐phase 1st 
   Order Butterworth 

( ) ( ) ( )1
3 1 1u u uL z L z L z−=  

210

ε
−

=
 

Filter 4: 
   Zero‐phase 8th 
   Order Butterworth 

( ) ( ) ( )1
4 2 2u u uL z L z L z−=  

410

ε
−

=
 

 

IV. CONCLUSIONS 
This work considered robust stability and robust transient 

growth in slow learning ILC.  Although in practice it is 
common to slow the learning rate to increase stability and 
yield less transient growth, there has been little theory to 
support this approach.  We applied pseudospectra to this 
problem and gave a rigorous bound on the learning gain to 
ensure stability in the slow learning system.  Furthermore, 
we found that decreasing the learning gain will cause the 
transient growth in the slow learning system to approach the 
growth in the Lu system.  Moreover, pseudospectra can be 
used in the analysis and design of the Lu system to control 
transient growth. 
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