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Instituto de Ingenierı́a Eléctrica – Facultad de Ingenierı́a

Universidad de la República

Montevideo, Uruguay

Abstract— The present paper is concerned with state-
feedback stabilizability in discrete-time switched positive linear
systems. Necessary and sufficient conditions for state-feedback
exponential stabilizability, in this class of switched systems,
are presented. It is shown that, a switched positive linear
system is state-feedback exponentially stabilizable if and only
if an associated sequence, whose elements are computable via
linear programming, has an element smaller than one. Also, a
switched positive linear system is state-feedback exponentially
stabilizable if and only if there exits a product of their
modes matrices whose spectral radius is smaller than one.
Equivalently, the state-feedback exponential stabilizability of
a switched positive linear system is shown to be equivalent to
the solvability of an associated dynamic programming equation
on a given convex cone. That associated dynamic programming
equation it is shown to have at most one solution. This unique
solution, of the associated dynamic programming equation, is
shown to be concave, monotonic, positively homogeneous, and
the optimal cost functional of a related optimal control problem
(involving the switched positive linear system) whose complete
solution is also presented in this communication.

I. INTRODUCTION

In this paper, we use the term switched system to refer to

a dynamical system described by a differential or difference

equation whose right hand side is dynamically selected from

a given finite set of functions, and this selection is governed

by a function (of the time) termed switching signal.

Stability and stabilizability problems, concerning switched

systems, have lately been extensively investigated, and some

of the vast research in this area is documented in various

surveys [4], [3], [11] and monographs [13], [10], [5], [12].

The topic of the present communication is concerned with

the problem of finding necessary and sufficient conditions

for the existence of a state-feedback that exponentially sta-

bilizes a discrete-time switched linear systems. In [6] we

presented complete and general solutions for that problem.

That paper includes three different (but equivalent) necessary

and sufficient conditions for the existence of a state-feedback

that exponentially stabilizes a general switched linear system.

Convex analysis was also already used in [6] in order to ob-

tain a sufficient (conservative) state-feedback stabilizability

condition based on solving convex programming problems.

Further extensions and refinements were also included in [7]

and [8]. In the present work we specialize some of those

results and techniques (developed in [6] and [7]) in order to
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address, in a convex (but not conservative) manner, the state-

feedback stabilizability problem in discrete-time switched

positive linear systems.

The organization of the paper is as follows. Mathematical

preliminaries are in section II. Different but equivalent neces-

sary and sufficient conditions for state-feedback exponential

stabilizability of the switched positive linear systems are pre-

sented and proved in section III. A sequence, whose elements

are computable by solving linear programming problems, is

associated to the switched positive linear system, and we

prove that the state-feedback stabilizability of the switched

system is equivalent to the existence of an element smaller

than one in that sequence. The state-feedback stabilizability

of the switched system is also proved to be equivalent

to the solvability of an associated dynamic programming

equation on some specific convex cone. Results regarding the

solvability of the associated dynamic programming equation

are in section IV. Some observations regarding stabilizing

state-feedback mappings and their corresponding Lyapunov

functions are included in section V. The complete solution

of a related optimal control problem is presented in section

VI. Summary and concluding remarks are in section VII.

Most of the notation used through the paper is standard.

Z
+ denote the non-negative integers. For k ∈ Z

+, we use

Z
[0,k] to also denote the set Z[0,k] = {0, . . . , k}. We use ln+

to denote the set of all the sequences {xk} ⊂ R
n, k ∈ Z

+.

For x ∈ R
n we use ‖x‖ =

√
∑n

i=1 x
2
i , ‖x‖1 =

∑n
i=1 |xi| ,

‖x‖∞ = maxi∈{1,...,n} |xi| , and we denote by |x| ∈ (Rn)+

the vector whose i-element is |xi|. 1 ∈ (Rn)+ is the vector

with all its elements equal to 1. For x ∈ R
n, y ∈ R

n, and

X ∈ R
n×n, we use x ≥ 0, x ≥ y, and X ≥ 0 to mean

x ∈ (Rn)+, x−y ∈ (Rn)+, and X ∈ (Rn×n)+ respectively.

ρ(X) is the spectral radius of X ∈ R
n×n, and λPF (X) is

the Perron-Frobenius eigenvalue of X ∈ (Rn×n)+.

II. PRELIMINARIES

Let N ∈ Z
+, N > 0, be given. We denote by Q the

set Q = {1, . . . , N}. Let us introduce the following sets of

control functions (or switching signals)

Qk = {q | q : Z[0,k−1] −→ Q} , k ∈ Z
+ , k > 0 ,

Q∞ = {q | q : Z+ −→ Q} .
Let Ai ∈ R

n×n, i ∈ {1, . . . , N}, be given matrices.

The present article is concerned with the dynamical system
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described by

x(k+1) = Aq(k)x(k) , k ∈ Z
+ , x(0) = x0 ∈ R

n , q ∈ Q∞ ,

(1)

which will be referred as the switched linear system (1).

And in case that Ai ≥ 0, ∀i ∈ {1, . . . , N}, that is, when all

the matrices are element-wise non-negative, we refer to such

system as the switched positive linear system (1). The motion

of such a controlled dynamical system will be denoted by

x(· ;x0, q). It is clear that the non-negative orthant, (Rn)+,

is an invariant set for the switched positive linear system (1).

To each mapping κ : Rn −→ Q we associate the diagonal

(or static) operator Fκ : ln+ −→ Q∞ defined by

Fκ(x)(k) = κ(x(k)) , k ∈ Z
+ .

It is clear that if we also associate to each mapping κ :
R

n −→ Q the (closed-loop) dynamical system described by

xcl(k+1) = Aκ(xcl(k))xcl(k) , k ∈ Z
+ , xcl(0) = x0 ∈ R

n ,

(2)

then, it follows that x(· ;x0,Fκ(x)) = xcl(· ;x0).
The following definitions, [6], are used in this work.

Definition 1: The switched system (1) is state-feedback

exponentially stabilizable whenever there exist a mapping

κ : Rn −→ Q and scalars α ≥ 1 and 0 < β < 1 such that

the motions of the associated (closed-loop) dynamical system

(2) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z
+ , x0 ∈ R

n .

Definition 2: The switched system (1) is uniformly expo-

nentially convergent whenever there exist scalars α ≥ 1 and

0 < β < 1 that obey the following property:

For each x0 ∈ R
n there exists qx0

∈ Q∞ such that the

corresponding motion of (1) satisfies

‖x(k;x0, qx0
)‖ ≤ αβk‖x0‖ , k ∈ Z

+ .

In [6] it was proved that the above two concepts are in fact

equivalent. That is, we proved that:

Theorem 1 ([6]): The switched linear system (1) is state-

feedback exponentially stabilizable if and only if, it is

uniformly exponentially convergent.

III. CONVEX CONDITIONS FOR STATE-FEEDBACK

STABILIZABILITY IN SWITCHED POSITIVE LINEAR

SYSTEMS

We associate to the sets Qk, k ∈ Z
+, k > 0, of control

functions, the following sets Sk, k ∈ Z
+, k > 0, of matrices:

Sk = {S ∈ R
n×n : S = Aq(k−1) . . . Aq(0) , q ∈ Qk} .

We also associate to the switched positive linear system (1),

the sequence of functions {Πk}, where Πk : (Rn)+ −→ R
+,

k ∈ Z
+, k > 0, is defined by

Πk(x0) = min
q∈Qk

‖x(k;x0, q)‖1 = min
S∈Sk

1
∗Sx0 , (3)

and the sequence {πk}, where πk ∈ R
+, k ∈ Z

+, k > 0, is

defined by

πk = max
x0∈{x0∈(Rn)+:‖x0‖1≤1}

Πk(x0)

= max
x0∈{x0∈(Rn)+:‖x0‖1≤1}

min
S∈Sk

1
∗Sx0 . (4)

Some useful simple properties of these sequences {Πk} and

{πk} are included in the next Fact.

Fact 1: For each given k ∈ Z
+, k > 0, it follows that

(1) Πk is concave.

(2) Πk(λx0) = λΠk(x0) , λ ∈ (R)+ , x0 ∈ (Rn)+ .

(3) πk = maxx0∈{x0∈(Rn)+:‖x0‖1=1} Πk(x0) .

(4) πk = max‖x0‖1≤1 minq∈Qk
‖x(k;x0, q)‖1 .

(5) πk ≤ minS∈Sk
maxj∈{1,...,n} ‖(S)j‖1

= minS∈Sk
‖S∗

1‖∞ .

(6) For each given h ∈ Z
+, h > 0, it follows that

πhk ≤
(

πk

)h
.

We further associate to the switched positive linear system

(1) the sequence {δk}, where δk ∈ R
+, k ∈ Z

+, k > 0, is

defined via the following linear programming problem

δk = min
ν∈R+, λ∈(RNk )+ :

∑
q∈Qk

λq=1 ,
∑

q∈Qk
λqS∗

q1≤ν1

ν . (5)

The following result is a consequence of the convexity of

the functions −Πk, k ∈ Z
+, k > 0.

Lemma 1: Consider the switched positive linear system

(1) and the associated sequences {πk} and {δk}. It is always

verified that

πk = δk , k ∈ Z
+ , k > 0 .

Proof: Notice that, for each given k ∈ Z
+, k > 0, we

have that

−πk = min
x0∈{x0∈(Rn)+ : 1∗x0≤1}

−Πk(x0) =

min
(t0,x0)∈{t0∈R,x0∈(Rn)+ : 1∗x0≤1 ,−1∗Sqx0≤t0 ,∀q∈Qk}

t0 .

The proof follows by observing that the convex programming

problem in (5) (in fact a linear programming problem)

is related, via Lagrange duality [1], with the last convex

programming problem (which is also a linear programming

problem). Clearly, the Lagrangian [1] associated with the

above convex optimization problem is the function

L(t0, x0, η, ν, λ) =

−ν +
(

1−
∑

q∈Qk

λq

)

t0 +
(

ν1∗ − η∗ −
∑

q∈Qk

λq1
∗Sq

)

x0 ,

η ∈ (Rn)+ , ν ∈ R
+ , λ ∈ (RNk

)+ ,

and the Lagrange dual function is

g(η, ν, λ) = inf
(t0,x0)∈R×Rn

L(t0, x0, η, ν, λ) =

{

−ν ,
∑

q∈Qk
λq = 1 , ν1−∑

q∈Qk
λqS

∗
q1 = η

−∞ , otherwise
,

η ∈ (Rn)+ , ν ∈ R
+ , λ ∈ (RNk

)+ .

Thus, the Lagrange dual optimization problem is

sup
η∈(Rn)+ , ν∈R+ , λ∈(RNk )+

g(η, ν, λ) =

max
ν∈R+, λ∈(RNk )+ :

∑
q∈Qk

λq=1 ,
∑

q∈Qk
λqS∗

q1≤ν1

−ν ,

whose optimal value (as clearly follows from (5)) is −δk.

Since the Slater condition for the convex (primal) optimiza-

tion problem is satisfied, it then follows [1] that strong

duality is achieved. That is, −πk = −δk .
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The main result in the section is presented next.

Theorem 2: For the switched positive linear system (1)

the following assertions are equivalent:

(i) The switched positive linear system (1) is state-

feedback exponentially stabilizable.

(ii) There exists k0 ∈ Z
+, k0 > 0, such that δk0

< 1 .

(iii) limk→+∞ δk = 0 .

(iv) There exists k0 ∈ Z
+, k0 > 0, such that

minS∈Sk0
ρ(S) < 1 .

(v) limk→+∞ minS∈Sk
ρ(S) = 0 .

(vi) There exists a concave function W : (Rn)+ −→
R

+ satisfying

• W (λx0) = λW (x0) , λ ∈ R
+ , x0 ∈ (Rn)+,

• W (x0) ≤ W (y0) , x0 ∈ (Rn)+ ,

(y0 − x0) ∈ (Rn)+,

• ‖x0‖1 ≤ W (x0) ≤ γ‖x0‖1 , x0 ∈ (Rn)+,

for some γ > 1,

which solves the following associated dynamic

programming equation:

W (x0) = 1
∗x0 +min

q∈Q
W (Aqx0) , x0 ∈ (Rn)+ . (6)

Moreover, any state-feedback mapping κ : R
n −→ Q

defined by

κ(x0) ∈ argmin
q∈Q

W (Aq|x0|) , x0 ∈ R
n , (7)

with W as in (vi), exponentially stabilizes the switched

positive linear system (1). And furthermore, the function

W (|·|) is a Lyapunov function for the exponential stability of

the trivial solution of the associated closed-loop dynamical

system (2).

Proof: This proof is organized as follows: It is proved

that (i) =⇒ (ii) =⇒ (vi) =⇒ (i). We also prove that (ii) =⇒
(iii) =⇒ (v) (notice that it trivially follows that (v) =⇒ (iv)),

and finally (iv) =⇒ (ii).

((i) =⇒ (ii).) By assumption there exist a mapping κ :
R

n −→ Q and scalars α ≥ 1 and 0 < β < 1 such that the

motions of the associated (closed-loop) system (2) satisfy

1√
n
‖xcl(k;x0)‖1 ≤ ‖xcl(k;x0)‖ ≤

αβk‖x0‖ ≤ αβk‖x0‖1 , k ∈ Z
+ , x0 ∈ R

n .

Choose k0 ∈ Z
+, k0 > 0, such that

√
nαβk0 < 1. And

define the following family of control functions:

qx0
= Fκ(xcl(· ;x0)) , x0 ∈ R

n , ‖x0‖1 ≤ 1 .

Then, we have that

min
q∈Qk0

‖x(k0;x0, q)‖1 ≤ ‖x(k0;x0, qx0
)‖1 =

‖xcl(k0;x0)‖1 ≤
√
nαβk0 , x0 ∈ R

n , ‖x0‖1 ≤ 1 .

It therefore follows from Lemma 1 and from Fact 1 that

δk0
= πk0

= max
‖x0‖1≤1

min
q∈Qk0

‖x(k0;x0, q)‖1 ≤
√
nαβk0 < 1 .

((ii) =⇒ (iii).) By assumption there exists k0 ∈ Z
+, k0 > 0,

such that δk0
= πk0

< 1. It can be assumed, without loss of

generality, that k0 > 1. Notice that in case that k0 = 1 we

can appeal to Fact 1 (property (6)) to define a new knew
0 =

hk0 with h ∈ Z
+, h > 1. Thus, knew

0 > 1, and moreover

πknew
0

≤ (πk0
)h < 1. Now, for a given x0 ∈ (Rn)+, we will

consider the optimal control problem

min
q∈Qk0

‖x(k0;x0, q)‖1 , (8)

and we will use q̂k0,x0
to denote a solution for that problem.

Therefore, for any given x0 ∈ (Rn)+

‖x(k0;x0, q̂k0,x0
)‖1 = min

q∈Qk0

‖x(k0;x0, q)‖1 =

Πk0
(x0) ≤ πk0

‖x0‖1 .
Let us define

Mk0
= max{1 , max

S∈⋃k0−1
j=1 Sj

‖S∗
1‖∞} .

Let x0 ∈ (Rn)+ be given, and let h ∈ Z
+, h > 0, be

given. Let q̃hk0,x0
∈ Qhk0

be a control function made up by

concatenating solutions of the optimal control problem (8)

with the following initial conditions:

x̂0 = x0 , x̂1 = x(k0; x̂0, q̂k0,x̂0
) , . . . ,

x̂h−1 = x(k0; x̂h−2, q̂k0,x̂h−2
) .

That is, using the above notation, the control function q̃hk0,x0

is defined by

q̃hk0,x0
(jk0 + i) = q̂k0,x̂j

(i) ,

i ∈ {0, . . . , (k0 − 1)} , j ∈ {0, . . . , (h− 1)} .
Now, it is easy to see that, with the above defined control

function q̃hk0,x0
the following inequalities are satisfied:

‖x(k;x0, q̃hk0,x0
)‖1 ≤ Mk0

π
j
k0
‖x0‖1 ,

k ∈ Z
+ , k ∈ {jk0, . . . , jk0 + (k0 − 1)} ,

j ∈ {0, . . . , (h− 1)} , and

‖x(k;x0, q̃hk0,x0
)‖1 ≤ Mk0

πh
k0
‖x0‖1 , k = hk0 .

It is then clear that the above expression implies that

limk→+∞ δk = limk→+∞ πk = 0. Given ǫ > 0 arbitrary,

we choose j0 ∈ Z
+, j0 > 0, such that Mk0

π
j0
k0

< ǫ. Then,

for any k ∈ Z
+, k ≥ j0k0, it is verified that (where we have

chosen h ∈ Z
+, h > 0, such that k ≤ hk0; thus j ≥ j0)

δk = πk = max
z∈(Rn)+:‖z‖1≤1

Πk(z) = Πk(x0) =

min
q∈Qk

‖x(k;x0, q)‖1 ≤ ‖x(k;x0, q̃hk0,x0
)‖1 ≤

Mk0
π
j
k0

≤ Mk0
π
j0
k0

< ǫ ,

where x0 denotes an optimal solution for the problem

maxz∈(Rn)+:‖z‖1≤1 Πk(z).
((ii) =⇒ (vi).) (In this part of the proof we continue with

the line of reasoning developed at the previous part, ((ii)

=⇒ (iii)).) For each k ∈ Z
+, k > 0, we now define the cost

functional Jk : (Rn)+ ×Qk −→ R
+ by

Jk(x0, q) =

k
∑

i=0

‖x(i;x0, q)‖1 =

k
∑

i=0

1
∗x(i;x0, q) . (9)
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For any given x0 ∈ (Rn)+ we will consider the following

family of optimal control problems (where k ∈ Z
+, k > 0):

min
q∈Qk

Jk(x0, q) , (10)

and we will denote by Uk(x0) the optimal values of those

problems. It immediately follows that the functions Uk :
(Rn)+ −→ R

+, k ∈ Z
+, k > 0, are concave and continuous

in the whole non-negative orthant (Rn)+, and also verify the

following two properties:

Uk(λx0) = λUk(x0) , λ ∈ R
+ , x0 ∈ (Rn)+ , (11)

Uk(x0) ≤ Uk(y0) , x0 ∈ (Rn)+ , (y0−x0) ∈ (Rn)+ . (12)

Moreover, for any given x0 ∈ (Rn)+, we have that (choosing

h ∈ Z
+, h > 0, such that k ≤ hk0)

Uk(x0) = min
q∈Qk

Jk(x0, q) ≤ min
q∈Qhk0

Jhk0
(x0, q) ≤

Jhk0
(x0, q̃hk0,x0

) =

hk0
∑

i=0

‖x(i;x0, q̃hk0,x0
)‖1 ≤

h
∑

j=0

k0Mk0
π
j
k0
‖x0‖1 ≤ k0Mk0

(1− πk0
)
‖x0‖1 , k ∈ Z

+ , k > 0 .

It was therefore proved that

‖x0‖1 ≤ Uk(x0) ≤
k0Mk0

(1− πk0
)
‖x0‖1 ,

x0 ∈ (Rn)+ , k ∈ Z
+ , k > 0 . (13)

It is also easy to see that the following property is verified:

Uk+1(x0) ≥ Uk(x0) , x0 ∈ (Rn)+ , k ∈ Z
+ , k > 0 . (14)

It then follows that, for each given x0 ∈ (Rn)+, the limit

limk→+∞ Uk(x0) exists. That fact lead us to the introduction

of the function W : (Rn)+ −→ R
+ defined by

W (x0) = lim
k→+∞

Uk(x0)

which, as can be easily verified, inherits all of the aforemen-

tioned properties the functions Uk have. That is, the function

W is concave and also verifies

W (λx0) = λW (x0) , λ ∈ R
+ , x0 ∈ (Rn)+ ,

W (x0) ≤ W (y0) , x0 ∈ (Rn)+ , (y0 − x0) ∈ (Rn)+ ,

‖x0‖1 ≤ W (x0) ≤
k0Mk0

(1− πk0
)
‖x0‖1 , x0 ∈ (Rn)+ .

Furthermore, since

Uk+1(x0) =
(

‖x0‖1 +min
q∈Q

Uk(x(1;x0, q))
)

=
(

‖x0‖1 +min
q∈Q

Uk(Aqx0)
)

,

x0 ∈ (Rn)+ , k ∈ Z
+ , k > 0 ,

it then follows that W is a solution of the following dynamic

programming equation:

W (x0) = 1
∗x0 +min

q∈Q
W (Aqx0) , x0 ∈ (Rn)+ .

((vi) =⇒ (i).) (Without lose of generality we use γ =
k0Mk0

(1−πk0
) > 1 in this part of the proof.) We now claim that

any mapping κ : Rn −→ Q defined via

κ(x0) ∈ argmin
q∈Q

W (Aq|x0|) , x0 ∈ R
n

is an exponentially stabilizing state-feedback mapping.

Clearly, using the function W (| · |) : R
n −→ R

+ as a

Lyapunov candidate we immediately obtain that

W (|Aκ(x0)x0|)−W (|x0|) ≤
W (Aκ(x0)|x0|)−W (|x0|) = −‖x0‖1 , x0 ∈ R

n ,

which means that W (| · |) is indeed a Lyapunov function

for the exponential stability of the trivial solution of the

associated closed-loop dynamical system (2). It is now easy

to verify that, when using the above state-feedback mapping,

the motions of the associated closed-loop dynamical system

(2) satisfy

‖xcl(k;x0)‖1 ≤ W (|xcl(k;x0)|) ≤
(

1− (1− πk0
)

k0Mk0

)k

W (|x0|) ≤

k0Mk0

(1− πk0
)

(

1− (1− πk0
)

k0Mk0

)k

‖x0‖1 , x0 ∈ R
n ,

implying that

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z
+ , x0 ∈ R

n ,

with , α =

√
nk0Mk0

(1− πk0
)

, β =
(

1− (1− πk0
)

k0Mk0

)

.

((iii) =⇒ (v).) That limk→+∞ minS∈Sk
ρ(S) = 0 , is a direct

consequence of the fact that

δk = min
λ∈(RNk )+, ν∈R+ :

∑
q∈Qk

λq=1 ,
∑

q∈Qk
λqS∗

q1≤ν1

ν =

min
λ∈(RNk )+ :

∑
q∈Qk

λq=1
max

j∈{1,...,n}
‖
(

∑

q∈Qk

λqSq

)

j
‖1 ≥

min
λ∈(RNk )+ :

∑
q∈Qk

λq=1

1

n

n
∑

i,j=1

(

∑

q∈Qk

λqSq

)

ij
=

min
S∈Sk

1

n

n
∑

i,j=1

(

S
)

ij
≥ 1

n
min
S∈Sk

max
j∈{1,...,n}

‖
(

S
)

j
‖1 ≥

1

n
min
S∈Sk

λPF (S) =
1

n
min
S∈Sk

ρ(S) .

((iv) =⇒ (ii).) If there is k0 ∈ Z
+, k0 > 0, such that

minS∈Sk0
ρ(S) < 1 , then, for h ∈ Z

+, h > 0, big enough,

and k1 = hk0 it will be that minS∈Sk1
‖S∗

1‖∞ < 1 . The

proof is now completed by invoking Fact 1 (property (5))

and Lemma 1.

Remark 1: It immediately follows from Theorem 2 that,

when the switched positive linear system (1) is state-

feedback exponentially stabilizable, an exponentially stabi-

lizing state-feedback mapping κ : Rn −→ Q, given by (7),

can always be chosen with the following property:

κ(λx0) = κ(x0) , λ ∈ (R \ {0}) , x0 ∈ R
n .
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That particular observation is also valid for general switched

linear system as it was already pointed out in [6].

It is important to point out here, that in [2], it was al-

ready proved that: The switched positive linear system

(1) is uniformly exponentially convergent if and only if

minS∈Sk
ρ(S) < 1 , for some k ∈ Z

+, k > 0 . Notice that,

this result jointly with Theorem 1 provide an alternative proof

for the equivalence (i) ⇐⇒ (iv) in Theorem 2.

IV. ON THE SOLVABILITY OF THE ASSOCIATED

DYNAMIC PROGRAMMING EQUATION

This section is devoted to present results, which are

related with Theorem 2, and which are concerned with the

solvability of the associated dynamic programming equation

(6), with the number of solutions this equation has, and

also with the properties of their solutions. Let us begin by

introducing the following sets, L+ and L++, of functions as

L+ = {Φ : (Rn)+ −→ R
+ : ∃ γ2 > 0 :

Φ(x0) ≤ γ21
∗x0 , ∀x0 ∈ (Rn)+} ,

L++ = {Φ : (Rn)+ −→ R
+ : ∃ γ1 > 0 , γ2 > 0 :

γ11
∗x0 ≤ Φ(x0) ≤ γ21

∗x0 , ∀x0 ∈ (Rn)+} .

Theorem 3: The dynamic programming equation (6) as-

sociated to the switched positive linear system (1) has a

solution W inside the convex cone L+, if and only if,

the switched positive linear system (1) is state-feedback

exponentially stabilizable. Moreover:

(1) The convex cone L+ admits at most one solution

of the dynamic programming equation (6).

(2) If W ∈ L+ is the solution of the associated

dynamic programming equation (6), then, W ∈
L++ and it has the following properties:

(i) W is concave and continuous on (Rn)+.

(ii) It is verified that

W (λx0) = λW (x0) , λ ∈ R
+ , x0 ∈ (Rn)+.

(iii) It is also verified that

W (x0) ≤ W (y0) , x0 ∈ (Rn)+ , (y0 − x0) ∈ (Rn)+.

(iv) For each given k ∈ Z
+, k > 0, it is

0 ≤ W (x0)− Uk(x0) ≤
( k0Mk0

(1−δk0
) − 1

)

(

1 +
(1−δk0

)

k0Mk0
M2

)k
1
∗x0 , x0 ∈ (Rn)+,

where, in the last expression, k0 ∈ Z
+, k0 > 1, is

such that δk0
< 1,

Ml = max{1 , max
S∈⋃l−1

j=1 Sj

‖S∗
1‖∞} , l ∈ Z

+ , l > 1 ,

and where the approximating functions Uk, k ∈
Z
+, k > 0, can be expressed as follows:

Uk(x0) = 1
∗x0 + min

q∈Qk

c∗qx0 , x0 ∈ (Rn)+,

cq =

k
∑

l=1

(Aq(l−1) . . . Aq(0))
∗
1 , q ∈ Qk .

Proof: In Part 1 we prove the necessary and sufficient

condition for existence of solution in L+. In Part 2, we prove

the rest of the statement.

Part 1.- (Sufficiency.) It was already proved, in Theorem 2,

that if the switched positive linear system (1) is state-

feedback exponentially stabilizable, then, there exists W ∈
L++⊂ L+ that solves the dynamic programming equation.

(Necessity.) If W ∈ L+ and solves the dynamic pro-

gramming equation (6), then, it immediately follows that

W ∈ L++, with γ1 = 1. Thus, any state-feedback

mapping κ : (Rn)+ −→ Q obeying κ(x0) ∈
argminq∈Q W (Aqx0) , x0 ∈ (Rn)+ , exponentially stabi-

lizes, within the non-negative orthant (Rn)+, the switched

positive linear system (1). Clearly, it follows from

W (Aκ(x0)x0)−W (x0) = −‖x0‖1 , ∀x0 ∈ (Rn)+

that for the motions of the associated closed-loop dynamical

system (2) it is

‖xcl(k;x0)‖1 ≤ γ2
(

1− 1

γ2

)k‖x0‖1 , x0 ∈ (Rn)+ .

Choosing k0 ∈ Z
+, k0 > 0, such that γ2

(

1 − 1
γ2

)k0
< 1,

and defining the following family of control functions:

qx0
= Fκ(xcl(· ;x0)) , x0 ∈ (Rn)+ , ‖x0‖1 ≤ 1 ,

we obtain, for x0 ∈ (Rn)+, ‖x0‖1 ≤ 1, that

min
q∈Qk0

‖x(k0;x0, q)‖1 ≤ ‖x(k0;x0, qx0
)‖1 =

‖xcl(k0;x0)‖1 ≤ γ2
(

1− 1

γ2

)k0
.

It therefore follows from Lemma 1 that

δk0
= πk0

= max
x0∈(Rn)+ : ‖x0‖1≤1

min
q∈Qk0

‖x(k0;x0, q)‖1 ≤

γ2
(

1− 1

γ2

)k0
< 1 .

Now, by invoking Theorem 2, it follows that the switched

positive linear system (1) is state-feedback exponentially

stabilizable.

Part 2.- Assume W ∈ L+ is solution of the dynamic

programming equation (6). Then, since the switched positive

linear system (1) is state-feedback stabilizable, it follows

from Theorem 2 that there exists k0 ∈ Z
+, k0 > 1,

such that δk0
< 1. As in the part ((ii) =⇒ (vi)) of the

proof of Theorem 2, we consider the costs functionals Jk :
(Rn)+×Qk −→ R

+, k ∈ Z
+, k > 0, defined by (9), and for

given x0 ∈ (Rn)+ we consider the family of optimal control

problems defined in (10) and we will denote by Uk(x0) the

optimal values of these problems. It follows (as it was shown

in the ((ii) =⇒ (vi)) part of the proof of Theorem 2) that the

functions Uk : (Rn)+ −→ R
+ are concave and continuous

on (Rn)+, and they also obey properties (11), (12), (14),
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and (13). As a result of all that, we can define a function

U∞ : (Rn)+ −→ R
+ by

U∞(x0) = lim
k→+∞

Uk(x0)

which therefore will also be concave and will verify

U∞(λx0) = λU∞(x0) , λ ∈ R
+ , x0 ∈ (Rn)+ ,

U∞(x0) ≤ U∞(y0) , x0 ∈ (Rn)+ , (y0 − x0) ∈ (Rn)+ ,

U∞(x0) ≥ Uk(x0) , x0 ∈ (Rn)+ , k ∈ Z
+ , k > 0 ,

and , 1
∗x0 ≤ U∞(x0) ≤

k0Mk0

(1− δk0
)
1
∗x0 , x0 ∈ (Rn)+ .

Further, since

Uk+1(x0) =
(

1
∗x0 +min

q∈Q
Uk(Aqx0)

)

,

x0 ∈ (Rn)+ , k ∈ Z
+ , (15)

it then follows that

U∞(x0) = 1
∗x0 +min

q∈Q
U∞(Aqx0) , x0 ∈ (Rn)+ .

We now claim that U∞ = W . By assumption W ∈ L++,

that is, there are γ1 > 0, γ2 > 0, such that

γ11
∗x0 ≤ W (x0) ≤ γ21

∗x0 , x0 ∈ (Rn)+ . (16)

Without loss of generality, we will assume that γ1 ≤ 1, and

γ2 > 1. We now use (15) and (16) to invoke Lemma 2 (stated

after this proof) from which it is concluded that

−(γ−1
1 − 1)γ2

(1 + (γ2M2)−1)k
1
∗x0 ≤ W (x0)− Uk(x0) ≤

(1− γ−1
2 )γ2

(1 + (γ2M2)−1)k
1
∗x0 , x0 ∈ (Rn)+ , k ∈ Z

+ , k > 0 .

The above bounds imply that for each given x0 ∈ (Rn)+

lim
k→+∞

Uk(x0) = W (x0) .

Hence, U∞ = W , and the claim was proved. The above

bounds also imply that

lim
k→+∞

sup
x0∈(Rn)+ : ‖x0‖1≤1

|W (x0)− Uk(x0)| = 0 ,

and therefore, the continuity of W , on the whole non-

negative orthant (Rn)+, follows from the continuity of the

functions Uk, k ∈ Z
+, k > 0. The final properties of

the solution W ∈ W+ follow now from the properties

we have already established on U∞, and (then) by setting

γ2 =
k0Mk0

(1−δk0
) on the above upper bound.

In the proof of Theorem 3 we have used the next result that

we have adapted from [9] to fit in the setting of the present

discussion.

Lemma 2: Consider the switched positive linear system

(1). Let W : (Rn)+ −→ R
+ satisfying

γ11
∗x0 ≤ W (x0) ≤ γ21

∗x0 , ∀x0 ∈ (Rn)+ ,

for some given 1 ≥ γ1 > 0, γ2 > 1, be a solution of the

associated dynamic programming equation (6). Let {Uk},

k ∈ Z
+, be the sequence of functions generated by

Uk+1(x0) =
(

1
∗x0 +min

q∈Q
Uk(Aqx0)

)

,

U0(x0) = 1
∗x0 , x0 ∈ (Rn)+ , k ∈ Z

+ .

Then, under these conditions,

−(γ−1
1 − 1)

(1 + (γ2M2)−1)k
W (x0) ≤ W (x0)− Uk(x0) ≤

(1− γ−1
2 )

(1 + (γ2M2)−1)k
W (x0) , x0 ∈ (Rn)+ , k ∈ Z

+ ,

where M2 = max{1 ,maxq∈Q ‖A∗
q1‖∞}.

V. ON STABILIZING STATE-FEEDBACK MAPPINGS AND

THEIR CORRESPONDING LYAPUNOV FUNCTIONS

Straightforward but important conclusions regarding sta-

bilizing state-feedback mappings and their corresponding

Lyapunov functions are obtained from Theorem 3 and sum-

marized in the next result.

Corollary 1: Assume the switched positive linear system

(1) is state-feedback exponentially stabilizable; that is, there

exists k0 ∈ Z
+, k0 > 1, such that δk0

< 1. Let k1 ∈ Z
+,

k1 > 0, be such that ǫ1 =

(

k0Mk0
(1−δk0

)
−1

)

(

1+
(1−δk0

)

k0Mk0
M2

)k1
< 1 , where

Ml, l ∈ Z
+, l > 1, is as in Theorem 3. Let k ∈ Z

+, k ≥
k1, be given, but arbitrary, and consider the corresponding

finite subsets {pq}q∈Qk+1
⊂ (Rn)+ and {cq}q∈Qk

⊂ (Rn)+

defined as

pq =

k+1
∑

l=1

(Aq(l−1) . . . Aq(0))
∗
1 , q ∈ Qk+1 , (17)

cq =

k
∑

l=1

(Aq(l−1) . . . Aq(0))
∗
1 , q ∈ Qk . (18)

Then, under these conditions, the following holds:

• Every state-feedback mapping κk : Rn −→ Q given by

κk(x0) ∈
(

arg min
q∈Qk+1

p∗q |x0|
)

(0) , x0 ∈ R
n , (19)

exponentially stabilizes the switched system (1).

• Also, the function Uk(| · |) which can be expressed as

Uk(|x0|) = 1
∗|x0|+ min

q∈Qk

c∗q |x0| , x0 ∈ R
n , (20)

is a Lyapunov function for the exponential stability of

the trivial solution of the associated closed-loop system

(2) (that uses the corresponding feedback mapping κk).

Proof: Let W ∈ L++ be the solution of the associated

dynamic programming equation (6) (that by virtue of The-

orems 2 and 3 it is known to exist). It is a consequence of

Theorem 3 that for each k ∈ Z
+, such that k ≥ k1, it is

0 ≤ W (|x0|)− Uk(|x0|) ≤ ǫ1‖x0‖1 , ∀x0 ∈ R
n ,

=⇒ Uk+1(|x0|)− Uk(|x0|) ≤ ǫ1‖x0‖1 , ∀x0 ∈ R
n .

Then, using properties (12) and (15) (enjoyed by the func-

tions Uk) jointly with the underlying assumptions, we obtain,

for each k ∈ Z
+, k ≥ k1, that

Uk(|Aκk(x0)x0|)− Uk(|x0|) ≤
Uk(Aκk(x0)|x0|)− Uk(|x0|) =
min
q∈Q

Uk(Aq|x0|)− Uk(|x0|) ≤ −(1− ǫ1)‖x0‖1 , ∀x0 ∈ R
n.
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Finally, noticing that the functions Uk obey property (13)

(=⇒ Uk ∈ L++) completes the proof.

Remark 2: Expressions (19) and (20) constitute explicit

formulas for a stabilizing state-feedback mapping and its cor-

responding Lyapunov function respectively. And the sets of

vectors, {pq}q∈Qk+1
in (17) and {cq}q∈Qk

in (18), constitute

representations for that state-feedback mapping κk and for

the corresponding Lyapunov function Uk(| · |) respectively.

Concerning these representations, it is important to remark

that, typically, these sets of vectors include vectors that are

redundant, and therefore they can be eliminated by means

of some selection procedure. For instance, it is clear that a

vector, in {pq}q∈Qk+1
, that belongs to the convex hull of a

different subset of vectors in {pq}q∈Qk+1
is redundant.

Remark 3: We further remark that in order to find a

stabilizing state-feedback mapping it is enough to find k ∈
Z
+, k > 0, satisfying the condition

Uk+1(x0)− Uk(x0) < 1 , ∀x0 ∈ (Rn)+ : ‖x0‖1 = 1 .

It immediately follows from the proof of Corollary 1 that, for

such a k, the state-feedback mapping κk in (19) is stabilizing

and Uk(| · |) is its corresponding Lyapunov function.

VI. ON A RELATED OPTIMAL CONTROL PROBLEM

In this section we present a complete solution for an

optimal control problem involving the switched positive

linear system (1) which is closely related with the state-

feedback exponential stabilization problem in a sense that

will be precisely stated next, in Theorem 4. We begin with

the following definition.

Definition 3: The switched linear system (1) is said to be

uniformly l1 bounded whenever there exists a scalar γ ≥ 1
that obeys the following property:

For each x0 ∈ R
n there exists qx0

∈ Q∞ such that the

corresponding motion of (1) satisfies

k
∑

i=0

‖x(i;x0, qx0
)‖1 ≤ γ‖x0‖1 , k ∈ Z

+ . (21)

In relation with the switched positive linear system (1)

we introduce the following cost functional J∞ : (Rn)+ ×
Q∞ −→ (R(ext))+ defined as

J∞(x0, q) = lim
k→+∞

k
∑

i=0

‖x(i;x0, q)‖1 . (22)

For each given x0 ∈ (Rn)+, we will consider, and also solve

in this section, the following optimal control problem:

inf
q∈Q∞

J∞(x0, q) , (23)

for which it will be denoted by U : (Rn)+ −→ (R(ext))+ the

optimal cost functional

U(x0) = inf
q∈Q∞

J∞(x0, q) . (24)

We further associate, to the switched positive linear system

(1), the sequence {υk}, k ∈ Z
+, k > 0, defined as

υk = max
x0∈(Rn)+ : ‖x0‖1≤1

Uk(x0) . (25)

Regarding the above posed optimal control problem (23) we

have the following important result.

Theorem 4: For the switched positive linear system (1)

and the optimal control problem (23) the following assertions

are equivalent:

(i) The optimal cost functional U , defined in (24), is

continuous at x0 = 0.

(ii) The switched positive linear system (1) is uniformly

l1 bounded.

(iii) The switched positive linear system (1) is state-

feedback exponentially stabilizable.

(iv) The associated sequence {υk}, k ∈ Z
+, k > 0, is

bounded.

Further, in case the above conditions are satisfied, we have

U(x0) = min
q∈Q∞

J∞(x0, q) = W (x0) , x0 ∈ (Rn)+ ,

where W ∈ L++ is the solution of the associated dynamic

programming equation (6). Moreover,

q̂x0
= Fκ(x(·;x0,Fκ(x))) , x0 ∈ (Rn)+

with , κ(x0) ∈ argmin
q∈Q

W (Aqx0) , x0 ∈ (Rn)+

is an optimal solution for the optimal control problem under

consideration.

Proof: ((ii) =⇒ (i).) The continuity of U at x0 = 0
follows from

0 ≤ U(x0) ≤ J∞(x0, qx0
) ≤ γ‖x0‖1 , x0 ∈ (Rn)+ .

((i) =⇒ (ii).) By hypothesis, there is δ > 0 such that

U(x0) ≤ 1, ∀x0 ∈ (Rn)+ : ‖x0‖1 ≤ δ. Since U is

positively homogeneous, we have that

U(x0) ≤
1

δ
‖x0‖1 , ∀x0 ∈ (Rn)+ ,

from which, choosing γ = 2
δ

, the condition (21) is satisfied

for each x0 ∈ (Rn)+, and therefore for each x0 ∈ R
n.

((ii) =⇒ (iv).) By hypothesis, for each x0 ∈ (Rn)+, we have

Uk(x0) ≤ Jk(x0, qx0
) ≤ γ‖x0‖1 , k ∈ Z

+ , k > 0 ,

implying that υk ≤ γ, k ∈ Z
+, k > 0.

((iv) =⇒ (iii)) Invoking Lemma 3

δk ≤ υk

k
∏

j=1

(
υj − 1

υj
) ≤ γ(1− 1

γ
)k , k ∈ Z

+ , k > 0 ,

hence there exists k0 ∈ Z
+, k0 > 0, obeying δk0

< 1.

Theorem 2 completes this part of the proof.

((iii) =⇒ (ii)) An exponentially stabilizing mapping κ :
R

n −→ Q (will be associated with scalars α ≥ 1 and

0 < β < 1, and) generates control functions qx0
∈ Q∞ via

qx0
= Fκ(x(·;x0,Fκ(x))), x0 ∈ R

n, for which the motions

of (1) satisfy

‖x(k;x0, qx0
)‖ ≤ αβk‖x0‖ , k ∈ Z

+ , x0 ∈ R
n .

Then, condition (21) holds with γ =
√
nα

(1−β) .

The last part of the Theorem is now proved. By assumption

there is W ∈ L++, the unique solution of the associated dy-

namic programming equation (6). Consider a state-feedback
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mapping κ : Rn −→ Q defined as in (7), and consider the

family of control functions q̂x0
∈ Q∞, x0 ∈ R

n, generated

when closing the loop with the above feedback, that is

q̂x0
= Fκ(x(·;x0,Fκ(x))) , x0 ∈ R

n . Then, for each given

x0 ∈ (Rn)+, we have that

J∞(x0, q̂x0
) = lim

k→+∞

k
∑

i=0

‖x(i;x0, q̂x0
)‖1 =

lim
k→+∞

(

W (x0)−W (x(k + 1;x0, q̂x0
))
)

= W (x0) .

Now, for each given x0 ∈ (Rn)+, let qx0
∈ Q∞ be any

control function for which J∞(x0, qx0
) is finite. It then

follows that limi→+∞ ‖x(i;x0, qx0
)‖1 = 0, implying that

limi→+∞ W (x(i;x0, qx0
)) = 0. It also follows that

J∞(x0, qx0
) = lim

k→+∞

k
∑

i=0

‖x(i;x0, qx0
)‖1 ≥

lim
k→+∞

k
∑

i=0

(

W (x(i;x0, qx0
))−W (x(i+ 1;x0, qx0

))
)

=

lim
k→+∞

(

W (x0)−W (x(k + 1;x0, qx0
))
)

= W (x0) ,

which completes the proof of the Theorem.

The next result provides with a needed relation between the

associated sequences {υk} and {δk}.

Lemma 3: Let x0 ∈ (Rn)+ and k ∈ Z
+, k > 0, be given.

Let q̂k,x0
∈ Qk be such that

Uk(x0) = Jk(x0, q̂k,x0
) = min

q∈Qk

Jk(x0, q) .

Then, ‖x(k;x0, q̂k,x0
)‖1 ≤ υk

∏k
j=1(

υj−1
υj

) ‖x0‖1 ,

and therefore, δk = πk ≤ υk
∏k

j=1(
υj−1
υj

) .

Proof: Let us use xi = x(i;x0, q̂k,x0
), i = 0, . . . , k,

and zi = ‖x(i;x0, q̂k,x0
)‖1, i = 0, . . . , k. By the optimality

of q̂k,x0
∈ Qk it follows that

k
∑

i=j

zi = Uk−j(xj) ≤ υk−j ‖xj‖1 = υk−j zj ,

j ∈ {0, . . . , k − 1} .
To compute an upper bound for zk, we use the above k

linear inequalities to pose and solve the following linear

programming problem (in the variables z1, . . . , zk):

max zk

s.t. Xk

(

z1 . . . zk
)∗ ≤ bk ,

z1 ≥ 0 , . . . , zk ≥ 0 ,

where Xk ∈ R
k×k, bk ∈ R

k are

Xk =















1 1 1 · · · 1 1
(1− υk−1) 1 1 · · · 1 1

0 (1− υk−2) 1 · · · 1 1
...

...

0 0 0 · · · (1− υ1) 1















,

bk =
(

(υk − 1)z0 0 0 · · · 0
)∗

.

The proof of the Lemma is now consequence of the fact

that the optimal value for that linear programming problem

is exactly given by υk
∏k

j=1(
υj−1
υj

) z0 .

VII. SUMMARY AND CONCLUDING REMARKS

It has been proved that a discrete-time switched positive

linear system is state-feedback exponentially stabilizable if

and only if for the associated sequence {δk}, whose elements

are computable by solving linear programming problems,

there exists k0 ∈ Z
+, k0 > 0, with the property that δk0

< 1.

The last was also proved to be equivalent to the existence of

k0 ∈ Z
+, k0 > 0, for which minS∈Sk0

ρ(S) < 1. It was also

shown that a switched positive linear system is state-feedback

exponentially stabilizable if and only if an associated dy-

namic programming equation has a solution W on a convex

cone. Such a solution, W , which was shown to be unique,

defines a stabilizing state-feedback mapping κ : Rn −→ Q
via κ(x) ∈ argminq∈Q W (Aq|x|). Such a mapping κ can

always be chosen to be conic-wise constant. The function

W : (Rn)+ −→ R
+ is continuous, concave, monotonic,

positively homogeneous, can be uniformly approximated

on compacts using a finite set of linear functionals, and

moreover, W (| · |) is a Lyapunov function for the exponential

stability of the trivial solution of the associated closed-loop

dynamical system. It was also shown that a switched positive

linear system is state-feedback exponentially stabilizable if

and only if it is uniformly l1 bounded. Further, the state-

feedback exponential stabilizability of the switched positive

linear system was related to an optimal control problem

whose complete solution was also presented. The optimal

cost functional for that optimal control problem was shown

to be the above function W , and a state-feedback mapping

κ, as above, was shown to generate an optimal control.
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