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Abstract— We consider the unaddressed problem of network
discovery, in which, an agent attempts to formulate an estimate
of the global network topology using only locally available
information. We show that under two key assumptions, the
network discovery problem can be cast as a parameter es-
timation problem. Furthermore, we show that some form of
excitation must be present in the network to be able to converge
to a solution. The performance of two methods for solving the
network discovery problem is evaluated in simulation.

I. INTRODUCTION

Successful negotiation of real world missions often re-

quires diverse teams to collaborate and synergistically com-

bine different capabilities. The problem of controlling such

networked teams has become highly relevant as advances

in sensing and processing enable compact distributed sys-

tems with wide ranging applications, including networked

Unmanned Aerial Systems (UAS), decentralized battlefield

negotiation, decentralized smart-grid technology, and internet

based social-networking (see for example [15], [11], [2],

[5], and [14]). The development of these systems however,

present many challenges as the presence of a central con-

trolling agent with access to all the information cannot be

assumed.

There have been significant advances in control of net-

worked systems using information available only at the agent

level, including reaching consensus in networked systems,

formation control, and distributed estimation (see for exam-

ple [15], [5]). The emphasis has been to rely only on local

interactions to avoid the need for a central controlling agent.

However, there are many applications where the knowledge

of the global network topology is needed for making in-

telligent inferences. Inferences such as identifying the in-

teractions between agents, identifying faulty or misbehaving

agents, or identifying agents that enjoy high connectivity and

are in a position to influence the decisions of the networked

system. This information in turn, can allow agents to make

intelligent decisions about how to control a network and how

to build optimal networks in real-time. The key problem that

needs to be addressed for enabling the needed intelligence is:

How can an agent use only information available at the agent

level to make global inferences about the network topology?

We term this problem as Network Discovery, and formulate

the problem in the framework of estimation theory.
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The idea of using measured information to make infer-

ences about the network characteristics was explored by

Franceschelli et al. through the estimation of the eigenvalues

of the network graph Laplacian [6]. They proposed a de-

centralized method for Laplacian eigenvalue estimation by

providing an interaction rule that ensured that the state of

the agents oscillate in such a manner such that the problem

of eigenvalue estimation can be reduced to a problem of

signal processing. The eigenvalues are then estimated using

Fast Fourier Transforms. The Laplacian eigenvalues contains

useful information that can be used to characterize the

network, particularly the second eigenvalue of the Laplacian

contains information on the connectivity of the network and

how fast it can reach agreement. However, the knowledge of

eigenvalues does not yield information about other details

of the topology, including the degree of connectivity of

individual agents and the graph adjacency matrix.

Agent level measurements of other agents’ states was used

by Franceschelli, Egerstedt, and Giua for fault detection

through the use of motion probes [7]. The idea behind motion

probes is that individual agents perform in a decentralized

way a maneuver that leaves desirable properties of the con-

sensus protocol invariant and analyze the response of others

to detect faulty or malicious agents. This work emphasized

the importance of excitation in the network states for network

property discovery.

Muhammad and Jabdabaie have proposed using Gossip-

like algorithms for minimizing communications overhead in

discovering network properties through relayed information

[11], while Abdolyusefi and Mesbahi have proposed a node

knockout procedure [12] for identifying network topology.

These algorithms rely on the internal communication in the

network to relay relevant information to identify the network

topology. There are various situations however, where such

communication may not be possible or cannot be trusted.

For example, communications based approach cannot work

if some of the agents have become faulty, are unable to

communicate, are maliciously relaying wrong information,

or if the aim is to covertly discover the network topology

of a (possibly unfriendly) network. In this paper, we do not

assume access to the networks internal communication proto-

col, and concentrate on the development of network discov-

ery algorithms that use only measured or sensed information

at the agent level. Clearly the addition of communications

would compliment any of the presented approaches.

Finally, we mention that the problem we are concerned

with is quite different from that of distributed estimation

(see for example reference [9] and the references therein).

In distributed estimation the purpose is to reach consensus
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III. POSING NETWORK DISCOVERY AS AN

ESTIMATION PROBLEM

Obtaining a solution to problem 1 in the most general case

can be a quite daunting task due to a number of reasons,

including:

• The neighbors of the target agent may change with time,

• The estimating agent may not be able to sense informa-

tion about all of target agent’s neighbors,

• The target agent may be actively trying to avoid iden-

tification of its consensus protocol.

In order to progress, we will make the following simplifying

assumption.

Assumption 1 Assume that the network edge set does

not change for a predefined time interval ∆(t), that is the

network is slowly varying.

The above assumption requires that within a time interval

∆(t), W (t) = W , that is the Laplacian vector W (t) is time

invariant for a predefined amount of time, which amounts

to“slow” variation in the network topology. Such slowly

varying networks can be used to model many real-world

networked systems. This assumption allows us to cast the

problem of network discovery as a problem of estimating

the constant Laplacian vector of the target agent over a time

interval. The Laplacian vector contains the information about

the degree of agent i and its adjacency to other agents in the

network, information that can be used to solve the network

discovery problem. Let x̄ ∈ ℜk contain the measurements

of the states of agents that are available to the estimating

agent. Note that without loss of generality we can assume

that the agents whose states the target agent can measure are

bounded above by the total number of agents in the network,

i.e. k ≤ N ; for if k > N , that is when not all agents whose

measurements are available are part of the network, then we

can always set N = k. Then, letting Ŵ ∈ ℜk the following

estimation model can be used for estimating W :

ν(t) = ŴT (t)x̄(t). (2)

Recalling that y(t) = WT (t)x(t) the estimation error can be

formulated as:

ǫ(t) = ν(t)− y(t) = ŴT (t)x̄(t)−WTx(t). (3)

One way to approach the network discovery problem, is to

design a weight law
˙̂
W (t) such that ǫ(t) → 0 uniformly

in finite time, that is ǫ(t) is identically equal to zero after

some time T (ǫ(t) ≡ 0 ∀t > T ). The following proposition

shows that when only a single estimating agent it used, then

if the estimating agent cannot measure the states of all of

the target agent’s neighbors, then ǫ(t) cannot be identically

equal to zero.

Proposition 1 Consider the estimation model of (2) and

the estimation error ǫ of (3), and suppose x̄ does not contain

the state measurements of all of the target agent’s neighbors,

then ǫ(t) cannot be identically equal to zero.

Proof: Ignoring the irrelevant case when the target

agent has no neighbors, let ζ ∈ ℜm denote the vector

containing all of target agent’s neighbors. Then letting i

denote the identifying subscript for the target agent, and

degi denote the degree of i we have that y(t) = ẋi(t) =
[−1,−1, ..., degi, ...,−1]T ζ(t) = W̌T ζ(t). Therefore the

vector W̌ ∈ ℜm contains only nonzero elements. Let x̄ ∈
ℜk, and assume that k < m (the case when k > m

follows in a similar manner), furthermore, let ζ = [x̄, ξ],
with ξ ∈ ℜm−k. Suppose ad absurdum ǫ(t) is identically

equal to zero, then we have that:

ν(t)− y(t) = [Ŵ (t), 0..0]T [
x̄(t)
ξ(t)

]− W̌ ζ(t) = 0. (4)

Since we claim that ǫ(t) is identically equal to zero, then

in the nontrivial case (i.e. ζ(t) 6= 0) we must have that

[Ŵ (t), 0..0] − W̌ = 0, for all t > T in order to satisfy

(4). Therefore W̌ must contain m− l zero elements, which

contradicts the fact that W̌ contains only nonzero elements.

Hence, if x̄ does not contain the state measurements of all of

the target agent’s neighbors, then ǫ(t) cannot be identically

equal to zero.

Remark 1 Note that in the above proof we ignored the

case when ζ(t) is identically equal to zero. If ζ(t) is

identically equal to zero then the states of all agents have

converged to the origin, an unlikely prospect, considering

the consensus law only guarantees x → span(1). Another

unlikely but interesting case arises when ζ(t) is such that

[Ŵ (t), 0..0] − W̌ ⊥ ζ(t) ∀t > T . In both these cases, one

can argue that ζ(t) does not contain sufficient excitation,

and proposition 1 becomes irrelevant. The importance of

excitation in the states for solving the network discovery

problem is explored further in section III-A.

Remark 2 Proposition 1 formalizes a fundamental ob-

struction to obtaining a solution to the problem of network

discovery: If the estimating agent cannot measure or other-

wise know the states of the target agent’s neighbors, then an

estimation based approach with only one estimating agent

cannot be used to solve the network discovery problem.

Future work will consider multiple estimating agents.

Therefore, we have shown that in order to use the esti-

mation model of (2) to solve the network discovery problem

with one estimating agent, the following assumption must be

satisfied:

Assumption 2 Assume that the estimating agent can mea-

sure or otherwise perceive the position of all of the target

agent’s neighbors.

The following theorem shows that if a weight update law
˙̂
W (t) exists such that ǫ(t) can be made identically equal

to zero, then a solution to the network discovery problem

(problem 1) can be found.
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Theorem 1 Suppose assumption 2 is satisfied, and x(t) is

not identically equal to zero, then finding a weight update law
˙̂
W (t) such that ǫ(t) becomes identically equal to zero (that

is ǫ(t) = 0 ∀t > T ), is equivalent to finding a solution to the

network discovery problem for the case of static networks

(assumption 1).

Proof: Suppose there exists a weight update law
˙̂
W (t)

exists such that ǫ(t) becomes identically equal to zero. Since

assumption 2 holds, we can arbitrarily reorder the states such

that x̄ = [ζ, ξ], where ξ denote the states of the agents which

are not neighbors of the target agent, hence we have:

ν − y = ŴT (t)x̄(t)− [W, 0..0]T [
ζ

ξ
] = 0. (5)

Letting W̃ = Ŵ − [W, 0..0], we have:

ν(t)− y(t) = W̃ (t)x̄(t) = 0. (6)

Since x(t) is assumed to be not identically equal to zero,

in the nontrivial case we must have that W̃ (t) = 0 ∀t >

T . Therefore it follows that Ŵ = [W, 0..0] contains the

Laplacian vector of the target agent, which is sufficient to

identify the degree and neighbors of the target agent.

Remark 3 As in the proof of proposition 1, an interesting

but unlikely case arises when W̃ (t) ⊥ x̄(t). Once again this

relates to a notion of sufficient excitation in the system states

and is further explored in section III-A.

To simplify the notation, we can let x̄ = x. Due to theorem

1, this is equivalent to saying that for the purpose of the

network discovery problem, the network can be assumed

to be made of only the agents that either interact with the

target agent or are visible to the estimating agent. Hence,

this change in notation does not affect the structure of the

problem, except that we now have ǫ(t) = ν(t) − y(t) =
ŴT (t)x(t)−WTx(t) = W̃x, which is simpler to deal with.

In this case, the Laplacian vector of the target agent W will

contain zero elements corresponding to agents that the target

agent is not connected to.

Through the above discussion ,we have essentially shown

that subject to assumption 1 and 2 the network discovery

problem can be cast as the following simpler parameter

estimation problem:

Problem 2 Let an estimation model for the network dis-

covery problem be given by (2), and the estimation error be

given by (3). Design an update law
˙̂
W such that Ŵ (t) → W

as t → ∞.

Various approaches have been proposed for online param-

eter estimation, in the following we will highlight three such

approaches.

A. Instantaneous Gradient Descent Based Approach

In this simplest and most widely studied approach for

parameter estimation Ŵ is updated in the direction of maxi-

mum reduction of the instantaneous quadratic cost V (ǫ(t)) =
1

2
ǫ2(t). That is, letting Γ be a positive learning rate we have

Ẇ = −Γ ∂V

∂Ŵ
. This results in the following update law:

˙̂
W (t) = −Γx(t)ǫ(t). (7)

The convergence properties of the gradient descent based

approach have been widely studied, it is well known that for

this case a necessary and sufficient condition for ensuring

Ŵ → W as t → ∞ exponentially is a condition on

Persistency of Excitation (PE) in x(t) [1],[13],[16]. Various

equivalent definitions of excitation and the persistence of

excitation of a bounded signals exist in the literature [1],[13];

we will use the definitions proposed by Tao in [16]:

Definition 1 A bounded vector signal x(t) is persistently

exciting if for all t > t0 there exists T > 0 and γ > 0 such

that ∫ t+T

t

x(τ)xT (τ)dτ ≥ γI. (8)

Note that definition 1 requires that the matrix∫ t+T

t
x(τ)xT (τ)dτ be positive definite over all predefined

finite time intervals. If a signal satisfies this condition

over only one such interval, it is called as exciting, but

not persistently exciting. As an example, consider that

in the two dimensional case, vector signals containing a

step in every component are exciting, but not persistently

exciting; whereas the vector signal x(t) = [sin(t), cos(t)] is

persistently exciting. Hence, in order to ensure that W̃ → 0,

we must ensure that the system states x(t) are persistently

exciting. However, there is no guarantee that the network

state vector x(t) would be exciting if the network is only

running the consensus protocol of (1). For example, the

following fact shows that if the initial state of the network

happens to be an eigenvector of the graph Laplacian, then

the system states are not persistently exciting.

Fact 1 The solution x(t) to the differential (ẋ(t) =
−Lx(t)), where L is the graph Laplacian, need not be

persistently exciting for all choices of x(0).

Proof:

Let x(0) and λ ∈ ℜ be such that Lx(0) = λx(0), that is let

x(0) be an eigenvector of L. Then we have x(t) = e−λtx(0),
hence ∫ t+T

t

x(τ)xT (τ)dτ =

∫ t+T

t

e−2λtx(0)xT (0), (9)

which is at-most rank 1, and hence not positive definite over

any interval.

Therefore, an external forcing term will be needed to

enforce PE in the system. The consensus protocol can then

be written as:

ẋi(t) =
∑
j∈Ni

[xi(t)− xj(t) + f(xi(t), t)] , (10)
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where f(xi(t), t) is a known bounded mapping ℜ2 → ℜ used

to insert excitation into the system. In its most simplest form

f(xi(t), t) can simply be a random sequence of numbers, or

it could be an elaborate periodic pattern (such as in [7])

which is known over the network.

We evaluate the performance of this algorithm through

simulation on a network containing 9 nodes with each of

the nodes updated by (10), for solving the network dis-

covery problem. It is assumed that f(xi(t), t) is a known

Gaussian random sequence with an intensity of 0.01 and

that yi(t) = ẋi(t) − f(xi(t), t) can be measured. Note that

the chosen f(xi(t), t) does introduce persistent excitation.

The agents are arbitrarily labeled, and the third agent is

picked as the estimating agent, and it estimates the consensus

protocol for the second agent (which is the target agent).

The Laplacian vector for the target agent is given by W =
[0,−3, 1, 0, 0, 1, 1, 0, 0], and its consensus protocol will have

the form yi = WTx. The target agent has 3 neighbors

(i.e. degree of i is 3), they are agent 3, 6, and 7. Figure

2 shows the performance of the gradient descent algorithm

for the network under consideration with Γ = 10. It can

be seen that the algorithm is unsuccessful in estimating the

Laplacian vector for W by the end of the simulation, even

when persistent excitation is present. Increasing the learning

rate Γ may slightly speed up the convergence, however the

key condition required is that the x(t) remain persistently

exciting such that the scalar γ in definition 1 is large. That

is, the convergence is dependent not only on the existence

of excitation, but also on its magnitude.
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Fig. 2. Evolution of the estimate of the Laplacian vector (Ŵ ) for network
discovery using gradient descent. Note that the estimates do not converge
to the actual values depicted by dotted lines. The results go to show that
the convergence of the gradient descent method is dependent not only on
the presence of persistence excitation but also on its magnitude.

B. Concurrent Gradient Descent Based Approach

The gradient descent algorithm of Section III-A is sus-

ceptible to being stuck at local minima, and requires PE to

guarantee convergence. For many networked control appli-

cations the condition on PE is infeasible to monitor online,

particularly since the trajectories of individual agents are not

known a-priori. On examining (7) we see that the update law

uses only instantaneously available information (x(t), ǫ(t))

for estimation. Chowdhary and Johnson have noted that

if the update law uses specifically selected and recorded

data concurrently with current data for adaptation, and if

the recorded data were sufficiently rich, then intuitively it

should be possible to guarantee Ŵ → W as t → ∞
without requiring persistently exciting x(t). This results in

a Concurrent Learning gradient descent algorithm [4], [3].

Let j ∈ {1, 2, ...p} denote the index of a stored data point

xj , let ǫj = W̃Txj , let Γ > 0 denote a positive definite

learning rate matrix, then the concurrent learning gradient

descent algorithm is given as:

˙̂
W (t) = −Γx(t)ǫ(t)−

p∑
i=1

Γxjǫj . (11)

The parameter error dynamics W̃ (t) = Ŵ (t)−W for this

case can be expressed as follows:

˙̃
W (t) = −Γx(t)ǫ(t)− Γ

p∑
j=1

xjǫj

= −Γx(t)xT (t)W̃ (t)− Γ

p∑
j=1

xjx
T
j W̃ (t)

= −Γ[x(t)xT (t) +

p∑
j=1

xjx
T
j ]W̃ (t).

(12)

The concurrent use of current and recorded data has

interesting implications, as the exciting term f(xi, t) will

not need to be persistently exciting, but only exciting over a

finite period over which rich data can be recorded. In fact,

Chowdhary and Johnson have also shown that the recorded

data need only be linearly independent in order to guarantee

weight convergence [4]. This condition on sufficient richness

of the recorded data is captured in the following statement:

Condition 1 The recorded data has as many linearly

independent elements as the dimension of x. That is, if

Z = [x1, ...., xp], then rank(Z) = N .

This condition is easier to monitor online and essentially

requires that the recorded data contain sufficiently different

elements to form the basis of the state space. The following

theorem is proven in [4]:

Theorem 2 If the recorded data points satisfy condition

1, then the zero solution of parameter error dynamics W̃ ≡
0 of (12) is globally exponentially stable when using the

concurrent learning gradient descent weight adaptation law

of (11).

We now evaluate the performance of the concurrent learn-

ing gradient descent algorithm on the networked system

simulation described in section III-A. Figure 3 shows the

performance of the concurrent gradient descent algorithm

for the network with Γ = 10. The simulation began with

no recorded points, at each time step, the state vector x(t)
was scanned online, and points satisfying the condition

‖ZTx(t)‖ < 0.5 or y(t) − ν(t) > 0.3 were selected for
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storage. Condition 1 was found to be satisfied within 0.1
seconds into the simulation. It can be seen that the algorithm

is successful in estimating the Laplacian vector for W , and

thus in estimating the degree of the third agent and the

identity of its neighbors. Hence, the algorithm outperforms

the traditional gradient descent based method (section III-A)

with the same level of enforced excitation. In general, the

speed of convergence will be dependent on the minimum

eigenvalue of the matrix ZZT and to a lesser extent, the

learning rate Γ. That is, ideally we would like the stored data

to not only be linearly independent, but also be sufficiently

different in order to maximize the minimum singular value

of Z. At the end of the simulation the minimum singular

value was found to be 1.58.
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Fig. 3. Evolution of the estimate of the Laplacian vector (Ŵ ) for
network discovery using concurrent gradient descent. Note that the estimates
converge to the actual values (shown using dotted lines) within 2 seconds
of the simulation. The converged estimates of the Laplacian vector directly
yield the degree and the neighbors the target agent.

C. Least Squares based Approaches

Recursive least squares, or equivalently a Kalman filter

based implementation, can be used to solve the estimation

problem. In this approach a recursive law is developed such

that a quadratic cost of the integral of the estimation error is

minimized [8], [1], [10]. To achieve this using assumption 1

an update model for the estimate of the Laplacian vector Ŵ

as
˙̂
W = 0, and a Kalman filter is designed to estimate Ŵ

using a measurement model ν = ŴTx and the estimation

error y − ŴTx. The benefit of this approach is that the

solution can be shown to be optimal in the least squares

sense, and noise in measurements can be handled. The

downside is that the method is computationally expensive as

the covariance matrix must also be propagated. Furthermore,

PE is required to guarantee convergence [1], [16].

IV. CONCLUSION

In this paper we considered the problem of network dis-

covery, in which, an agent uses locally available information

to estimate the global topology of a networked system

attempting to reach consensus. We showed that subject to

two key assumptions, the network discovery problem can be

cast as a parameter estimation problem and the elements of

the graph Laplacian can be estimated in real-time. The graph

Laplacian contains the adjacency and degree information

for a given agent, and is sufficient to form an estimate of

the network topology. The first assumption requires that the

network is slowly varying, that is, it requires the network

topology to remain static over a predefined time interval.

The second assumption requires that the estimating agent

can measure (or otherwise know) the states of all of target

agent’s neighbors. In fact, we showed that if not satisfied,

this assumption forms a major obstruction to solving the

network discovery problem using only one estimating agent.

We discussed three methods for solving the network dis-

covery problem in the parameter estimation framework, and

compared the performance of two in simulation. We noted

that the concurrent gradient descent method requires far

less excitation than the traditional gradient descent method,

and has improved convergence. In conclusion, we note that

regardless of what parameter estimation method is used

to solve the network discovery problem, some amount of

excitation must be inserted into the networked system for

converging to a solution.
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