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Abstract— It is well known that the power conserving in-
terconnection of finite dimensional port-Hamiltonian systems
is also a port-Hamiltonian system. Given a linear port-
Hamiltonian system, this paper proposes conditions under
which the control system can be expressed as a composition
of two linear port-Hamiltonian systems. This decomposition
of linear port-Hamiltonian systems is based on the inherent
interconnection structure and can be applied without knowledge
of the physical interconnection structure.

I. INTRODUCTION

One of the important properties of port-Hamiltonian sys-
tems is that, by interconnection of simple system, complex
networks of port-Hamiltonian systems can be constructed
with properties that can be inferred by the properties of the
elementary systems. The reversal of this construction is sub-
ject of this paper. That is, we consider the decomposition of a
complex systems into an interconnection of port-Hamiltonian
systems.

One motivation for this research is to establish a frame-
work such that the matching problem, known from the
interconnection damping assignment passivity-based control
methodology, can be effectively divided into smaller sub-
problems. The concept of decomposition of port-Hamiltonian
systems has received limited attention in the literature, no-
table exceptions are [7] and [2]. In the latter reference, it is
noted that an explicit algorithm for the minimal represen-
tation of a complex composed Dirac structure is profitable
in the context of modelling interconnected systems. The
decomposition results presented in [7] are based on the La-
grangian formulation, but are also applicable to control-affine
systems. One limitation is that it requires the knowledge of
two distinct Lagrangians a priori.

We denote by Σ the linear control system ẋ = Ax+ Bu
with x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and X, U are open in
Rn and Rm, respectively. We are interested in linear port-
Hamiltonian system of the form ẋ = JQx+Bu, where J =
−J> is called the interconnection structure and Q = Q>

is the constant Hessian matrix of the Hamiltonian function
H = 1/2x>Qx. We assume throughout this paper that the
matrix B has full column rank m < n. Denote by B⊥ a full
rank n×(n−m) matrix such that Im B⊥ is a complement of
Im B, i.e., Im B ⊕ Im B⊥ = Rn and we define B⊥ = B>⊥
as a full row rank (n−m)×n matrix that annihilates B, i.e.,
B⊥B = 0. The main thrust of this research comes from the
concept of linear abstractions and C-related control systems
(see [8]).
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The remainder of this paper is structured as follows; In
Section II, we review the concept of Dirac structures and
abstractions. In Section III, we show that abstractions of port-
Hamiltonian systems can be realized by interconnection of
the abstraction with a “virtual controller”-port-Hamiltonian
system, where we study two types of interconnection. In the
final section we discuss implications and extensions of the
proposed framework.

II. DIRAC STRUCTURES AND LINEAR ABSTRACTIONS

It is well known that power conserving interconnection
of port-Hamiltonian system are again port-Hamiltonian sys-
tems, see for example [5]. Hence, under this general type of
interconnection, the port-Hamiltonian structure of the control
system is preserved. Furthermore, the interconnection enjoys
several desirable properties. Its Hamiltonian function is the
sum of the individual Hamiltonians and it is passive if the
individual systems are passive. It would be interesting to
understand if this process of interconnection can be reversed.
More precisely, we would like to know if, given a port-
Hamiltonian system, one can we write this system as an
interconnection of “smaller” port-Hamiltonian systems. We
first define what a smaller port-Hamiltonian system is with
respect to a given one. For this we consider the notation of
abstraction of a linear control system. Then, we develop a
framework that allows us to determine when an abstraction of
a port-Hamiltonian system is also a port-Hamiltonian system.
This allows us to determine when the interconnection of
an abstraction with a “virtual controller” yields the original
system. The objective of the following section is to develop
conditions under which a port-Hamiltonian system can be
written as an interconnection of its abstraction with an
additional “virtual controller” port-Hamiltonian system. It is
conceptually preferable, for our purpose, to work with Dirac
structures to represent linear port-Hamiltonian systems.

A. Dirac Structures

Dirac structures are generalizations of symplectic and
Poisson structures, which are models for the interconnection
structure of Hamiltonian systems [6]. They are algebraic
structures that can be extended naturally to differentiable
structures on manifolds (see [4] for further details). We
are interested in Dirac structures that are induced by port-
Hamiltonian systems. For this class of systems, the Dirac
structure is interconnected via a set of internal ports to an
energy storage element and a resistive element, that repre-
sent the storage or Hamiltonian function and the damping
structure, respectively.
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Definition 2.1: Let F be a finite dimensional real vector
space and F∗ its dual. A Dirac structure is a subspace D ⊂
F × F∗ such that dim D = dim F and 〈e, f〉 = 0 ∀(f, e) ∈
D × D∗, where 〈e, f〉 denotes the duality product, that is,
the linear functional e ∈ F∗ acting on f ∈ F.
The variables f = [f1, . . . , fn]> are called flow variables
of D and their duals e = [e1, . . . , en]> are called effort
variables. For port-Hamiltonian systems, the state space X

is the space of energy-variables denoted by x. The space of
flow variables for the Dirac structure D is then the product
X× F with fx ∈ X. By duality the space of effort variables
is the product X∗×F∗, with ex ∈ X∗. The flow variables of
the energy storage element are given by ẋ and the effort
variables are given by ∂H

∂x such that the energy storage
element satisfies the total energy balance Ḣ = 〈∂H∂x , ẋ〉 = 0.
The Dirac structure is interconnected via the internal ports
to the energy storage element through the interconnection:

fx = −ẋ and ex =
∂H

∂x
.

This yields the dynamical system(
−ẋ, ∂H

∂x
, f, e

)
∈ D.

Dirac structures admit different representations, see [1],
[3], [10], [2] for further details.

We require the following representation of a Dirac struc-
ture. Let D ⊂ F × F∗ be a Dirac structure, then

D = {(e, f) ∈ F × F∗ | Ff + Ee = 0}

for n× n matrices F and E satisfying

EF> + FE> = 0
rank [F |E] = n.

The pair (E,F ) is called the matrix kernel representation of
D. If the image of F and E has dimension larger than the
dimension of F then (E,F ) is called relaxed matrix kernel
representation.

Example 2.2: Port-Hamiltonian systems define Dirac
structures. In matrix kernel representation, the Dirac structure
associated to a linear port-Hamiltonian system is[

In
0

]
fx +

[
J
B>

]
ex +

[
B
0

]
u+

[
0
−Im

]
y = 0.

Hence, we have the matrix kernel representation (E,F ) with

F =
[
In B
0 0

]
, E =

[
J 0
B> −Im

]
.

We use the following notation for the matrices involved
in the matrix kernel representation of port-Hamiltonian sys-
tems:

Fx =
[
In
0

]
, Fp =

[
B
0

]
, Ex =

[
J
B>

]
, Ep =

[
0
−Im

]
.

1) Interconnection of port-Hamiltonian systems and Dirac
structures: The following discussion can be found in [2].
We consider two types of composition of Dirac structures,
composition and gyrative composition. We study the compo-
sition of two Dirac structures with partially shared variables.
Consider the Dirac structure DA on a product space F1×F2

of two linear spaces F1 and F2, and another Dirac structure
DB on F2 × F3, with F3 being an additional linear space.
The space F2 is the space of shared flow variables, and F∗2
the space of shared effort variables. We make the following
definitions:

Definition 2.3: Let DA and DB be two Dirac structures
on F1×F∗1 ×F2×F∗2 and F2×F∗2 ×F3×F∗3 , respectively.
The composition (or canonical interconnection) of DA and
DB is defined as

DA||DB ={(f1, e1, f3, e3) ∈ F1 × F∗1 × F3 × F∗3 |
∃(f2, e2) ∈ F2 × F∗2 s.t.
(f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB}.

Definition 2.4: Let DA and DB be two Dirac structures
on F1×F∗1 ×F2×F∗2 and F2×F∗2 ×F3×F∗3 , respectively.
The gyrative composition of DA and DB is defined as

DA ∧DB ={(f1, e1, f3, e3) ∈ F1 × F∗1 × F3 × F∗3 |
∃(f2, e2) ∈ F2 × F∗2 s.t.
(f1, e1, f2, e2) ∈ DA and (e2,−f2, f3, e3) ∈ DB}.

Remark 2.5: Note that DA ∧DB can also be constructed
via the composition with the symplectic Dirac structure

DI = {(fIA, eIA, fIB , eIB) | fIA = −eIB , fIB = eIA},

such that DA||DI ||DB = DA ∧DB .
It can be shown that, if DA and DB are two Dirac
structures with ports as defined above, then DA||DB and
DA ∧ DB are Dirac structures with respect to the bilinear
on F1 × F∗1 × F3 × F∗3 . Furthermore, if Σ1 and Σ2 are two
port-Hamiltonian systems and D1 and D2 are their Dirac
structures, constructed as in Example 2.2, then D1 ∧ D2

is again a port-Hamiltonian system and is the feedback
interconnection of Σ1 and Σ2.

We have the following proposition, due to [2], that pro-
proses a matrix kernel representation of the composition of
two Dirac structures in terms of the matrix kernel represen-
tation of the individual Dirac structures.

Proposition 2.6: Let Fi, i = 1, 2, 3 be a finite-dimensional
linear space with dim Fi = ni. Consider the Dirac structures

DA ⊂ F1 × F∗1 × F2 × F∗2 , nA = dim F1 × F2 = n1 + n2

DB ⊂ F2 × F∗2 × F3 × F∗3 , nB = dim F2 × F3 = n2 + n3

given by the relaxed matrix kernel representation

(FA, EA) = ([F1|F2A], [E1|E2A]),
(FB , EB) = ([F2B |F3], [E2B |E3])

n′A × nA matrices and n′B × nB matrices, respectively with
n′A ≥ nA and n′B ≥ nB . Define the (n′A+n′B)×2n2 matrix

M =
[

F2A E2A

−F2B E2B

]
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and let LA, LB be m × n′A, respectively m × n′B , matrices
with L = [LA|LB ] and kerL = imM. Then

F = [LAF1|LBF3], E = [LAE1|LBE3],

is a relaxed matrix kernel representation of DA||DB .
Similar, we have for the gyrative composition DA ∧DB .

Proposition 2.7: Let Fi, i = 1, 2, 3 and DA,DB be de-
fined as in Proposition 2.6. Define the (n′A + n′B) × 2n2

matrix

M =
[

E2A F2A

−F2B E2B

]
and let LA, LB be m × n′A, respectively m × n′B , matrices
with L = [LA|LB ] and kerL = imM . Then

F = [LAF1|LBF3], E = [LAE1|LBE3],

is a relaxed matrix kernel representation of DA ∧DB .
Proof: Let DA ∧DB = DA||DI ||DB the gyrative compo-
sition of DA and DB . Then the proof follows the proof of
Theorem 4 in [2] with matrix representation of the shared
flow and effort variables

M =
[

E2A F2A

−F2B E2B

]
.

Next, we define regularity of a composition.
Definition 2.8: Given two Dirac structures DA and DB

defined as above. Their composition is said to be regular if
the values of the power variables in F2 × F∗2 are uniquely
determined by the values in the power variables in F1×F∗1×
F3 × F∗3 ; that is, the following implication holds:

(f1, e1, f2, e2) ∈ DA and (−f2, e2, f3, e3) ∈ DB

(f1, e1, f̃2, ẽ2) ∈ DA and (−f̃2, e2, f̃3, e3) ∈ DB

⇒f2 = f̃2, e2 = ẽ2.

B. Linear Abstraction

Next, we introduce the concepts of linear abstractions as
presented in [8]. Linear abstractions have been introduced
for hierarchical control where the high level control system
is modelled by aggregating the details of the lower, more
complex, control systems. Furthermore, under some assump-
tions, controllability of the abstraction is equivalent to the
controllability of the full system.

Definition 2.9: Let C : X→ Y be a surjective linear map.
Consider the linear control systems

Σ1 : ẋ = A1x+B1u

Σ2 : ẏ = A2y +B2v

on X and Y, respectively. They are said to be C-related if
for all x ∈ X and u ∈ U there exists v ∈ Rl such that

C(A1x+B1u) = A2Cx+B2v. (1)
This definition is equivalent to the ability to find a control v
such that the trajectory generated by it is identical to the
projection of any trajectory of Σ1 under C. For a given
control system Σ and surjective map C, we can always

construct a control system which is C-related to Σ1 via the
following proposition.

Proposition 2.10 ([8]): Consider the linear system

Σ1 : ẋ = A1x+B2u

and a surjective map y = Cx. Let

Σ2 : ẏ = A2y +B2v

be a linear control system on Y where

A2 = CA1C
+

B2 =
[
CB1 CA1v1 · · · CA1vr

]
with C+ the pseudoinverse of C (i.e., C+ = (C>C)−1C>)
and v1, . . . , vr such that span{v1, . . . , vr} = kerC. Then Σ1

and Σ2 are C-related.
We refer to the system Σ2 as a linear abstraction of Σ1. For
the linear port-Hamiltonian systems we make the following
definition: Given a linear port-Hamiltonian system and a
surjective map C : X → XA, C induces an interconnection
and damping structure on XA given by

JA = C>J(C+)>.

Furthermore, C is structure preserving with respect to this
structure. Let ΣA be an abstraction of the linear port-
Hamiltonian system Σ. If ΣA is a port-Hamiltonian system
such that C is structure preserving then ΣA is called a linear
port-Hamiltonian abstraction of Σ.

Proposition 2.11: Let Σ be a linear port-Hamiltonian sys-
tem and ΣA a linear abstraction of Σ with respect to a
surjective map C, then HA = H ◦ C if ΣA is a linear port-
Hamiltonian abstraction.
Proof: If ΣA is a linear port-Hamiltonian abstraction then C
is structure preserving and AA = CAC+ which implies that
we can write QA = (C+)>QC+ such that AA = JAQA
with JA = CJ(C+)>. Hence, HA = H ◦ C up to addition
of a constant.
An existence condition for a C-relation between Σ and ΣA
is given by the following lemma.

Lemma 2.12: Let Σ and ΣA be linear port-Hamiltonian
systems with dim U < dim UA. There exists a surjective
map C : X → XA such that Σ and ΣA are C-related if
there exists a linear port-Hamiltonian system ΣB such that
Σ = ΣA ∧ ΣB .
Proof: Let us write

ΣA : ẋA = JAQAxA +BAuA

ΣB : ẋB = JBQBxB +BBuB

then their feedback interconnection Σ = ΣA ∧ΣB takes the
form[

ẋA
ẋB

]
=
[

JA BAB
>
B

−BBB>A JB

] [
QA 0
0 QB

] [
xA
xB

]
+
[
BA 0
0 BB

] [
uA
uB

]
.
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Hence, the control systems Σ and ΣA are C-related with
C = [Ina

, 0] since

C(JQx+Bu) = JAQACx+BA(−B>BQBxB + uA).

III. MAIN RESULT

In this section, we combine abstractions of linear port-
Hamiltonian systems and composition of Dirac structures to
give conditions under which a given linear port-Hamiltonian
system can be written as an interconnection of two lower di-
mensional systems. We motivate this with a simple example
of an LC circuit (see [9]).

Example 3.1: Consider a controlled LC-circuit (see
Fig. 1) consisting of two inductors with magnetic energies
H1(φ1), H2(φ2), where φ1 and φ2 are the magnetic flux
linkages, and a capacitor with electrical energy H3(q), where
q is the charge. Assuming that the elements are linear, then
their total energy is

H1(φ1) =
1

2L1
φ2

1, H2(φ2) =
1

2L2
φ2

2 and H3(q) =
1

2C
q2,

respectively. Furthermore, let V = u denote the volt-
age source, then Kirchhoff’s laws yield the linear port-
Hamiltonian system24 φ̇1

φ̇2

q̇

35 =

24 0 0 −1
0 0 1
1 −1 0

3524 1
L1

0

0 1
L2

0

0 0 1
C

3524 φ1

φ2

q

35
+

24 1
0
0

35u, (2)

y =
ˆ

1 0 0
˜ 24 1

L1
0

0 1
L2

0

0 0 1
C

3524 φ1

φ2

q

35 (3)

with Hamiltonian function H = H1+H2+H3. An alternative

L1 L2C
q

V

φ1

φ2

Fig. 1. LC circuit

way to establish this representation is to consider each
element as a linear port-Hamiltonian system. Let us define

Σ1 :
φ̇1 = u1

y1 = ∂H1
∂φ1

= φ1
L1

Σ2 :
φ̇2 = u2

y2 = ∂H2
∂φ2

= φ2
L2

Σ3 :
q̇ = u3

y3 = ∂H3
∂q = q

C ,

where ui and yi, i = 1, . . . , 3 are the voltages and currents
of each element, respectively. The systems Σ2 and Σ3 are

then interconnected via the following rule

u2 = y3 + v2
u3 = −y2 + v3,

which can also be expressed by a symplectic Dirac structure.
This yields the intermediate linear port-Hamiltonian system

Σ′ :
[
φ̇2

q̇

]
=
[
u2

u3

]
=
[

0 1
−1 0

] [
y2
y3

]
+
[
v2
v3

]
[
y2
y3

]
=

[
∂H2
∂φ2
∂H3
∂q

]
=
[

φ2
L2
q
C

]
,

where we define a new input v′ = [v2, v3]> and new output
y′ = [y2, y3]>. Furthermore, the Hamiltonian function of Σ′

is the sum of H1 and H2. Next, we interconnect Σ′ to Σ1

via the feedback interconnection

u1 =
[

0 1
]
y′ + u

v′ = −
[

0
1

]
y1,

that can also be expressed by a symplectic Dirac structure.
The resulting interconnection constitutes the final system (2).

Next, we want to check whether one can deduce the
intrinsic interconnection structure given only the overall
system, assuming only that the final system was constructed
using a lossless feedback (symplectic) interconnection. We
begin with the state that is directly influenced by the control
input, we assume that this subsystem consisting of the φ1

dynamics is lossless with quadratic storage function H1(φ1),
which is given by H1 = 1

2B
>QBφ2

1. If the system is not
lossless, it is clear that we can find a preliminary feedback
that cancels damping in this state. Next, we need to construct
the subsystem consisting of the remaining states and the
interconnection with the φ1-dynamics.

First, let us define the subsystem consisting of the remain-
ing states. Motivated by the idea of linear abstractions, we
quotient the states space by Im (B), using the identification
of the state space with the tangent space at each point, to
get the reduced state space. We denote the projection by C,
then the reduced dynamics take the form[

φ̇2

q̇

]
=
[

0 1
C

− 1
L2

0

] [
φ2

q

]
+
[

0
1
L1
φ1

]
,

where the last term is the “virtual port” for the reduced
dynamics. Note that this only specifies a virtual port, not
a virtual control input which is used, for example, in back-
stepping. The remaining states must have a scalar input ū (to
be determined) and a scalar output ȳ dual to ū. Moreover,
the input ū must be a function of φ1.

We are therefore left with the determination of ū and ȳ.
By the assumption of symplectic interconnection we have
that ū = y1. If one further assumes that B′ = [0, 1]>

and F ′ = CFC> then there exists a Q′ such that Σ′

is a linear port-Hamiltonian abstraction. Consequently, the
reduced dynamics can be written in a linear port-Hamiltonian
form.
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We are interested in formalizing this approach using the idea
of achievable Dirac structures and linear abstraction. We need
the following proposition, due to [2], in the proof of the main
proposition of this section.

Proposition 3.2: Consider a (given) plant Dirac structure
DP with port variables (f1, e1, f2, e2), and a desired Dirac
structure D with port variables (f1, e1, f3, e3). Then, there
exists a controller Dirac structure DC such that D =
DP ||DC if and only if the following two equivalent con-
ditions are satisfied

D0
P ⊂ D0

Dπ ⊂ Dπ
P

where

D0
P = {(f1, e1) | (f1, e1, 0, 0) ∈ DP }

Dπ
P = {(f1, e1) | ∃(f, e) s.t. (f1, e1, f, e) ∈ DP }

D0 = {(f1, e1) | (f1, e1, 0, 0) ∈ D}
Dπ = {(f1, e1) | ∃(f, e) s.t. (f1, e1, f, e) ∈ D}.

The proof of this proposition is based on the definition of
a “copy” D∗P of the plant Dirac structure DP . We define a
copy of a Dirac structure D by

D∗ = {(f1, e1, f, e) | (−f1, e1,−f, e) ∈ D}.

One possible controller Dirac structure is then constructed
as DC = D∗P ||D.

Proposition 3.3: Let Σ linear port-Hamiltonian system
and ΣA a linear port-Hamiltonian abstraction. Then there
exists a Dirac structure DB such that D = DA||DB , with D

and DA two Dirac structures canonically associated to each
control system.
Proof: Let x ∈ X, xA ∈ XA and u ∈ U, uA ∈ UA, respec-
tively. We define the following vector spaces accordingly

F1 = XA × U, F2 = Rk, F3 = X/XA,

where UA = U × Rk. To show that there exists a Dirac
structure DB such that D = DA||DB , we verify that
Dπ ⊂ Dπ

A, which is necessary and sufficient for the existence
of DB by Proposition 3.2. Assume (f1, e1) ∈ Dπ , then
there exists (f3, e3) such that (f1, e1, f3, e3) = (fx, ex, u, y)
satisfies

Fxfx + Fpu+ Exex + Epy = 0. (4)

Here f3 is defined by f = [f3, f2]> = Λ[fx, u]> with the
non-singular matrix

Λ =

 C⊥ 0
C 0
0 Im

 .
Premultiplying equation (4) by Λ implies that C(fx +Bu+
Jex) = 0. Since Σ and ΣA are C-related, there exists a
uA ∈ UA such that

fAx +BAuA + JAe
A
x = 0.

Let yA = [y, ȳA]> and BA = [CB, B̄A] then ex = C>eAx
by Proposition 2.11. Choose ȳA = B̄>Ae

A
x then

FAx f
A
x + FAp uA + EAx e

A
x + EAp yA = 0,

and therefore there exists a pair (f2, e2) such that
(f1, e1, f2, e2) = (fAx , uA, e

A
x , yA) ∈ DA.

Remark 3.4: One possible implementation for the Dirac
structure DB is D∗A||D.
We establish a similar result for the gyrative composition
under additional assumptions.

Proposition 3.5: Let Σ linear port-Hamiltonian system
and ΣA its linear port-Hamiltonian abstraction. There exists
a Dirac structure DB such that D = DA∧DB , where D and
DA are Dirac structures associated to Σ and ΣA, respectively
if and only if

(C⊥F + B̄>AC)ex ∈ Im C⊥B

and CF − FAC − B̄AC⊥ = 0

where BA = [CB, B̄A].
Proof: Necessity can be shown by straight forward computa-
tion. Sufficiency is shown as follows. Assume that Σ and ΣA
are C-related linear port-Hamiltonian systems. Let x ∈ X,
xA ∈ XA and u ∈ U, uA ∈ UA, respectively. Let us also
define two Dirac structures canonically associated to each
control system, denoted by D and DA. We define the vector
spaces F1,F2 and F3 as in Proposition 3.3. Define further-
more D̄A = DA||DI , where DI is a full rank symplectic
Dirac structure. Then we have to check that Dπ ⊂ D̄π

A to
establish the existence of DB . Assume (f1, e1) ∈ Dπ , then
there exists (f3, e3) such that (f1, e1, f3, e3) = (fx, ex, u, y)
satisfies

Fxfx + Fpu+ Exex + Epy = 0.

By definition (f1, e1, e2, e2) ∈ D̄A if there exists a pair
(f̄2, ē2) such that

(f1, e1, f̄2, ē2) ∈ DA (5)
and (−f̄2, ē2, f2, e2) ∈ DI , (6)

where (6) is equivalent to f̄2 = e3 and ē2 = f3. Hence, using
the same notation to define f3 as in the proof of Proposition
3.3 we have

f̄2 = C⊥ex

ē3 = −C⊥ẋ,

and it remains to show that (5) holds. We have

ẋA = JAe
A
x +BAuA

yA = BAe
A
x .

Let us define ūA by uA = [u, ūA]> and similar yA =
[y, ȳA]>, then

ẋA = JAe
A
x + CBu+ B̄AC⊥ex

−C⊥(Jex +Bu) = B̄>Ae
A
x .

By definition of C-relation we have that

CFex − JAeAx = B̄AC⊥ex,
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furthermore eAx = Cex (if x ∈ (kerC)⊥) then,

(CJ − JAC − B̄AC⊥)ex = 0

which is true by assumption. Hence, equation (5) can be
satisfied since we have that if (C⊥J + B̄>AC)ex ∈ Im C⊥B
then we can find a preliminary linear feedback α(x) such
that

ē2 = B̄>Ae
A
x = −C⊥(Jex +Bα(x))

which implies that (f1, e1, f2, e2) ∈ D̄A.

Next, a possible candidate for the virtual controller Dirac
structure DB is presented. Note that a Dirac structure em-
bodies generalized port-Hamiltonian systems [4] that may
include algebraic constraints on the dynamical system. Be-
fore proceeding, the following technical lemma is needed.

Lemma 3.6: Let DA and DB be two Dirac structures, then
(DA||DB)∗ = D∗B ||D∗A.
Proof: We show D∗B ||D∗A ⊂ (DA||DB)∗ and
(DA||DB)∗ ⊂ D∗B ||D∗A. If (f1, e1, f3, e3) ∈ (DA||DB)∗

then (−f1, e2,−f3, e3) ∈ DA||DB which implies that there
exists (−f2, e2) such that (−f1, e1,−f2, e2) ∈ DA and
(f2, e2,−f3, e3) ∈ DB . Hence, (f1, e1, f3, e3) ∈ D∗B ||D∗A.
Now, assume (f1, e1, f3, e3) ∈ D∗B ||D∗A then there
exists (f2, e2) such that (−f1, e1,−f2, e2) ∈ DA and
(f2, e2,−f3, e3) ∈ DB . It follows that (−f1, e1,−f3, e3) ∈
DA||DB and hence (f1, e1, f3, e3) ∈ (DA||DB)∗.
We define DB = D∗I ||D∗A||D as the virtual controller
Dirac structure, whose matrix kernel representation can be
computed using the results in Section II.

Let us revisit Example 3.1 to illustrate our findings. The
abstraction of the LC circuit is generate by the projection C
such that C⊥ = B>, hence C⊥B = a 6= 0. Hence, the first
condition in 3.3 is satisfied. The second condition yields the
matrix equation[

0 1 0
0 0 1

] 0 0 1
0 0 −1
−1 1 0

− [ 0 1
−1 0

] [
0 1 0
0 0 1

]

=
[

0 0 0
v1
L1

0 0

]
where v1 = R/{0} parameterizes the kernel of C. Hence, for
v1 = L1 this condition is also satisfied and the abstraction
is a linear port-Hamiltonian system.

IV. CONCLUSIONS

We established a methodology to decompose linear port-
Hamiltonian systems based on the concept of linear abstrac-
tions and achievable Dirac structures. We showed how the
decomposition can be constructed based on the composi-
tion of Dirac structures. A second type of decomposition,
motivated by power conserving feedback interconnections
of port-Hamiltonian systems, has also been considered. The
conditions for the existence in this case are stronger than in
the first case. We have not considered any damping structure
in this paper. The extension to linear port-Hamiltonian with
damping structures requires one to replace the conditions in

Proposition 3.2 with similar conditions for Dirac structures
with resistive elements given in [2].

An intended application of this result is the introduction of
an inductive approach to solving the linear matching problem
arising in IDA-PBC for linear systems. This approach is com-
putationally less efficient than other solutions proposed in the
literature, but it has the advantage that the procedure gives
clear insight to the interplay between the energy variables of
the system (in some sense extracts the energy representation
inherent in the system, rather than imposing it). A future
direction of research, following ideas in [2], is to analyze
the (achievable) Casimir function of the interconnection. The
development presented applies exclusively to linear control
systems. The largest obstacle to extend decomposition of
port-Hamiltonian systems to nonlinear control-affine systems
is that the extension of abstractions cannot guarantee that
the abstractions are in control-affine form even though the
concept of port-Hamiltonian systems relies on this control-
affine form.
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