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Abstract— This paper studies the opinion dynamics model
recently introduced by Hegselmann and Krause: each agent in
a group maintains a real number describing its opinion; and
each agent updates its opinion by averaging all other opinions
that are within some given confidence range. The confidence
ranges are distinct for each agent. This heterogeneity and state-
dependent topology leads to poorly-understood complex dy-
namic behavior. We classify the agents via their interconnection
topology and, accordingly, compute the equilibria of the system.
We conjecture that any trajectory of this model eventually
converges to a steady state under fixed topology. To establish
this conjecture, we derive two novel sufficient conditions: both
conditions guarantee convergence and constant topology for
infinite time, while one condition also guarantees monotonicity
of the convergence. In the evolution under fixed topology
for infinite time, we define leader groups that determine the
followers’ rate and direction of convergence.

I. INTRODUCTION

“Any social behavior can be viewed both as independent
and dependent, as cause and effect” [7]. In a society, the
impacts of individuals opinions on each other form a net-
work, and as the time progresses, the opinions change as
a function of such network’s structure. Much research is
done on how the topological properties of the interconnection
network can effect final decisions. The study of opinion
dynamics and social networks goes back to J.R.P. French
[6]. French’s Formal Theory of Social Power explores the
patterns of interpersonal relations and agreements that can
explain the influence process in groups of agents. Later
F. Harary provided a necessary and sufficient condition to
reach a consensus in French’s model of power networks [7].
Besides sociology, opinion dynamics is also of interest in
politics, as in voting prediction [1]; physics, as in spinning
particles [2]; cultural studies, as in language change [17];
and economics, as in price change [16].

An important step in modeling agents in economics has
been switching from perfectly rational agents approach to a
bounded rational, heterogeneous agents using rule of thumb
strategy under bounded confidence. There is no trade in a
world where all agents are perfectly rational, which is in
contrast with the high daily trading volume. Having bounded
confidence in a society, which accounts for homophily,
means that an agent only interacts with those whose opinion
is close to its own. Mathematical models of opinion dynamics
under bounded confidence have been presented indepen-
dently by: Hegselmann and Krause (HK model) [8], and by
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Deffuant and Weisbuch and others (DW model) [18]. Here,
we analyze HK models, where agents synchronously update
their opinions by averaging all opinions in their confidence
bound. HK models can be classified into heterogeneous and
homogeneous models, if the confidence bounds are uniform
or agent-dependent, respectively. For the homogeneous HK
system: its convergence in finite time is proved in [5],
the convergence properties are discussed in [3], the time
complexity of convergence is given by [13], and the rate
of convergence to a global consensus is studied in [15]. The
heterogeneous HK model is studied by Lorenz, who reformu-
lated the HK dynamics as an interactive Markov chain [10]
and analyzed the effects of heterogeneous confidence bounds
[12]. In this paper, we focus on discrete-time heterogeneous
HK (htHK) model of opinion dynamics, whose dynamics is
considerably more complex than the homogeneous case. The
convergence of this model is experimentally observed, but its
proof is still an open problem.

As a first contribution, based on extensive numerical
evidence, we conjecture that there exists a finite time along
any htHK trajectory, after which the topology of the in-
terconnection network remains unchanged, and hence the
trajectory converges to a steady state. We partly prove
our conjecture: (1) We design a classification of agents in
the htHK system, which is a function of state-dependent
interconnection topology; (2) We introduce the new notion of
final value at constant topology, characterize its properties,
including required condition for this value to be an equi-
librium vector; (3) For each equilibrium opinion vector, we
define its equi-topology neighborhood and invariant equi-
topology neighborhood. We show that if a trajectory enters
the invariant equi-topology neighborhood of an equilibrium,
then it remains confined to its equi-topology neighborhood
and sustains an interconnection topology equal to that of
the equilibrium. This fact establishes a novel and simple
sufficient condition under which the trajectory converges to a
steady state. (4) We define a rate of convergence as a function
of final value at constant topology. Based on the direction of
convergence and the defined rate, we derive a sufficient con-
dition under which the trajectory monotonically converges
to a steady state, and the topology of the interconnection
network remains unchanged. (5) We explore some interesting
behavior of classes of agents when they update their opinions
under fixed interconnection topology for infinite time, for
instance, the existence of a leader group for each agent that
determines the follower’s rate and direction of convergence.

This paper is organized as follows. The mathematical
model, agents classification, and equilibria are discussed in
Section II. The two sufficient conditions for convergence
and the analysis of the evolution under fixed topology are
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presented in Section III. Conclusion and future work are
given in Section IV. The Appendix contains some proofs.

II. HETEROGENEOUS HK MODEL

Given the confidence bounds r = {r1, . . . , rn} ∈ Rn>0, we
associate to each opinion vector x(t) = y ∈ Rn the proximity
digraph Gr(y) with nodes {1, . . . , n} and edge set defined
as follows: the set of out-neighbors of node i is Ni(y) =
{j ∈ {1, . . . , n} : |yi − yj | ≤ ri}. The heterogeneous HK
model of opinion dynamics updates x(t) according to

x(t+ 1) = A(x(t))x(t), (1)

where, denoting the cardinality of Ni(y) by |Ni(y)|, the i, j
entry of A(x(t) = y) is defined by

aij(y) =

{
1

|Ni(y)| , if j ∈ Ni(y),

0, if j /∈ Ni(y).

Conjecture II.1 (Constant-topology in finite time). It is con-
jectured that along every trajectory in an htHK system (1),
there exists a finite time τ after which the state-dependent
interconnection topology remains constant or, equivalently,
Gr(x(t)) = Gr(x(τ)) for all t ≥ τ .

This conjecture is supported by the extensive numerical
results presented in [14, Section 5]. Here, let us quote some
relevant definitions from the graph theory, e.g. see [4]. In a
digraph, if there exists a directed path from node i to node
j, then i is a predecessor of j, and j is a successor of i. A
node of a digraph is globally reachable if it can be reached
from any other node by traversing a directed path. A digraph
is strongly connected if every node is globally reachable. A
digraph is weakly connected if replacing all of its directed
edges with undirected edges produces a connected undirected
graph. A maximal subgraph which is strongly or weakly
connected forms a strongly connected component (SCC) or
a weakly connected component (WCC), respectively. Every
digraph G can be decomposed into either its SCC’s or
its WCC’s. Accordingly, the condensation digraph of G,
denoted C(G), can be defined as follows: the nodes of C(G)
are the SCC’s of G, and there exists a directed edge in
C(G) from node S1 to node S2 if and only if there exists
a directed edge in G from a node of S1 to a node of S2.
A node with out-degree zero is named a sink. Knowing that
the condensation digraphs are acyclic, each WCC in C(G)
is acyclic and thus has at least one sink.

1) Agents Classification: We classify the agents in an
htHK system (1) based on their interaction topology at each
time step. For any opinion vector y ∈ Rn, the components of
Gr(y) can be classified into three classes. A closed-minded
component is a complete subgraph and an SCC of Gr(y)
that is a sink in C(Gr(y)). A moderate-minded component
is a non-complete subgraph and an SCC of Gr(y) that is a
sink in C(Gr(y)). The rest of the SCC’s in Gr(y) are called
open-minded SCC’s. We define open-minded subgraph to be
the remaining subgraph of Gr(y) after removing its closed
and moderate-minded components and their edges. A WCC
of the open-minded subgraph is called an open-minded WCC,
which is composed of one or more open-minded SCC’s. The
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Fig. 1. An htHK system evolution in which the interconnection topology
of agents remains unchanged after t = 74, see Conjecture II.1.
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Fig. 2. : (a) shows the proximity digraph Gr(x(0)) with its closed (red),
moderate (green), and open-minded components (blue), and each thick gray
edge represents multiple edges to all agents in one component; (b) is the
condensation digraph C(Gr(x(0))); and (c) is the open-minded subgraph.

evolution and initial proximity digraph of an htHK system
are illustrated in Figures 1 and 2.

Since C(Gr(y)) is an acyclic digraph, in an appropriate
ordering, its adjacency matrix is lower-triangular [4]. Con-
sequently, the adjacency matrix of Gr(y) is lower block
triangular in such ordering. Following the classification of
SCC’s in Gr(y), we put A(y) into canonical form A(y), by
an appropriate canonical permutation matrix P (y),

A(y) = P (y)A(y)PT (y) =

 C(y) 0 0
0 M(y) 0

ΘC(y) ΘM (y) Θ(y)

 .
The submatrices C(y), M(y), and Θ(y) are the adjacency
matrices of the closed, moderate, and open-minded sub-
graphs, respectively.Each entry in ΘC(y) or ΘM (y) repre-
sents an edge from an open-minded node to a closed or
moderate-minded node, respectively. The adjacency matrix
A(y) is a non-negative row stochastic matrix, and its nonzero
diagonal establishes its aperiodicity.
Remark 1. Previously, (Lorenz, 2006) classified the agents
of the htHK systems into two classes named essential and
inessential. An agent is essential if any of its successors is
also a predecessor, and the rest of agents are inessential [11].
It is easy to see that closed and moderate-minded components
are essential, and open-minded components are inessential.

2) Final Value at Constant Topology: Based on Conjec-
ture II.1, for any opinion vector y ∈ Rn we define its
final value at constant topology fvct : Rn → Rn to be
fvct(y) = limt→∞A(y)ty. Hence, if the interconnection
topology of the system with initial opinion vector y remains
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unchanged for infinite time, the opinion vector converges to
fvct(y). Next, an opinion vector y0 ∈ Rn is an equilibrium
of the htHK system if and only if y0 is an eigenvector of the
adjacency matrix A(y0) for eigenvalue one or, equivalently,
y0 = A(y0)y0. The set of final values at constant topology is
a superset of the equilibria. Clearly, if y0 is an equilibrium,
then its final value at constant topology is equal to itself,
that is, fvct(y0) = y0. The condition under which a final
value at constant topology is an equilibrium of the system is
discussed in Proposition II.1, for a proof of which see [14].

Proposition II.1 (Properties of the final value at constant
topology). Consider opinion vector y ∈ Rn:

(i) fvct(y) is well defined, and is equal to

fvct(y) = PT (y)A∗(y)P (y)y,

A∗(y) =

 C 0 0
0 M∗ 0

Θ̂ΘCC Θ̂ΘMM
∗ 0

 (y),

where M∗(y) = limt→∞M(y)t is well defined, and
Θ̂(y) = (I −Θ(y))−1.

(ii) If the two networks of agents with opinion vectors y
and fvct(y) have the same interconnection topology, or
equivalently, Gr(y) = Gr(fvct(y)), then

a) fvct(y) is an equilibrium vector,
b) Gr(y) contains no moderate-minded component, and
c) in any WCC of Gr(fvct(y)), the maximum and the

minimum opinions fvcti(y) belong to that WCC’s
closed-minded components.

III. CONVERGENCE OF HTHK SYSTEMS

In this section, we present two sufficient conditions for
htHK trajectories that guarantee fixed interconnection topol-
ogy for infinite time and consequently convergence to a
steady state. The second sufficient condition is often more
restrictive than the first, since it also guarantees the mono-
tonicity of the convergence. We justify the second sufficient
condition by studying the behavior of htHK systems under
fixed topology in a long run.

1) Convergence and Constant Topology: The first suffi-
cient condition for convergence is based on agents confidence
bounds. According to this condition, if an htHK trajectory
enters a specific neighborhood of any equilibrium of the
system, then it stays in some larger neighborhood of that
equilibrium for all future iterations, and its topology remains
constant. Hence, the former neighborhood is a subset of the
basin of attraction for the final value at constant topology of
the entering opinion vector.

Definition III.1 (Equi-topology neighborhoods). Consider
an htHK system with opinion vector z ∈ Rn.
(i) Define the vector ε(z) ∈ Rn≥0 with entries set equal to

εi(z) = 0.5 min
j∈{1,...,n}\{i}

{||zi − zj | −R| : R ∈ {ri, rj}}.

The equi-topology neighborhood of z is a set of opinion
vectors y ∈ Rn such that for all i ∈ {1, . . . , n},

|yi − zi| < εi(z), if εi(z) > 0, and
|yi − zi| = εi(z), if εi(z) = 0.

(ii) Define the vector δ(z) ∈ Rn≥0 with entries set equal to

δi(z) = min{εj(z) : j is i’s predecessor in Gr(z)}.
The invariant equi-topology neighborhood of z is a set of
opinion vectors y ∈ Rn such that for all i ∈ {1, . . . , n},

|yi − zi| < δi(z), if δi(z) > 0, and
|yi − zi| = δi(z), if δi(z) = 0.

Theorem III.1 (Sufficient condition for constant topology
and convergence). Consider an htHK system with trajectory
x : R→ Rn. Assume that there exists an equilibrium opinion
vector z ∈ Rn such that x(0) belongs to the invariant equi-
topology neighborhood of z. Then, for all t ≥ 0:

(i) x(t) belongs to the equi-topology neighborhood of z,
(ii) Gr(z) = Gr(x(t)),

(iii) Gr(x(t)) contains no moderate-minded component, and
(iv) x(t) converges to fvct(x(0)) as time goes to infinity.

This theorem is proved in [14, Theorem 4.4].
2) Monotonic Convergence and Constant Topology: The

second sufficient condition for convergence is based on the
rate and direction of convergence of the htHK trajectory in
one time step. If a trajectory satisfies this condition, then
any two opinions will either monotonically converge to each
other or diverge from each other for all future iterations.

Definition III.2 (Agent’s per-step convergence factor). For
an htHK trajectory x(t), we define the per-step convergence
factor of an agent i for which xi(t)− fvcti(x(t)) 6= 0 to be

ki(x(t)) =
xi(t+ 1)− fvcti(x(t))
xi(t)− fvcti(x(t))

.

The per-step convergence factor of a network of agents
with distributed averaging was previously defined in [19] to
measure the overall rate of convergence toward consensus.
Remark 2 (Monotonic convergence). If the htHK trajectory
x(t) monotonically converges toward fvct(x(t)) in one time
step, that is, for any i ∈ {1, . . . , n},
xi(t) ≤ xi(t+ 1) ≤ fvcti(x(t)), if xi(t) < fvcti(x(t)),
xi(t) ≥ xi(t+ 1) ≥ fvcti(x(t)), if xi(t) > fvcti(x(t)),
xi(t) = xi(t+ 1) = fvcti(x(t)), if xi(t) = fvcti(x(t)),

then{
0 ≤ ki(x(t)) ≤ 1, if ki(x(t)) exists,
xi(t) = xi(t+ 1) = fvcti(x(t)), otherwise.

Before proceeding, let us define the distance to final
value of any y ∈ Rn to be ∆(y) = y − fvct(y). For
any open-minded agent i, let kmaxi(y) and kmini(y) denote
the maximum and minimum per-step convergence factors
over all i’s open-minded successors with nonzero distance
to final value. Also, for any open-minded agents i and j, let
kmaxi,j (y) = max{kmaxi(y), kmaxj (y)} and kmini,j (y) =
min{kmini

(y), kminj
(y)}.

Lemma III.2 (Bound on per-step convergence factor). If in
an htHK system with opinion vector y ∈ Rn

(i) Gr(y) contains no moderate-minded component, and
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(ii) for any open-minded agent i and any of its open-minded
children j, ∆i(y)∆j(y) ≥ 0,

then ki(A(y)y) is in the convex hull of kj(y)’s.

Theorem III.3 (Sufficient condition for constant topology
and monotonic convergence). Assume that in an htHK sys-
tem, the opinion vector y ∈ Rn satisfies the following:

(i) the networks of agents with opinion vectors y and
fvct(y) have the same interconnection topology, that is,
Gr(y) = Gr(fvct(y));

(ii) for any agents i, j, if yi ≥ yj , then fvcti(y) ≥ fvctj(y);
(iii) y monotonically converges to fvct(y) in one iteration;
(iv) for any open-minded neighbors i, j, ∆i(y)∆j(y) ≥ 0;
(v) any open-minded agents i and j that belong to the same

WCC of Gr(y) and that have nonzero ∆i(y) and ∆j(y),
have the following property:
a) if the sets of open-minded children of i and j are
identical, then ki(y) = kj(y), and
b) otherwise, assuming that ∆i(y) ≥ ∆j(y),

kmaxi,j
(y)−kmini,j

(y) ≤ min{1−kmaxi,j
(y), kmini,j

(y)}

×min{
∣∣∣1− αm∆j(y)

βm∆i(y)

∣∣∣ : α ∈ [kminj (y), kmaxj (y)],

β ∈ [kmini(y), kmaxi(y)],m ∈ Z≥0}

Then the solution x(t) from the initial condition x(0) = y
has the following properties: the proximity digraph Gr(x(t))
is equal to Gr(y) for all time t, and the solution x(t)
monotonically converges to fvct(y) as t goes to infinity.

Lemma III.2 is employed in the proof of Theorem III.3,
and the proofs to both are presented in the Appendix.

3) Evolution under Constant Topology: Motivated by
Conjecture II.1, we investigate the rate and direction of
convergence of an htHK trajectory whose interconnection
topology remains constant for infinite time.

Definition III.3 (Leader SCC). Consider an htHK system
with opinion vector y ∈ Rn. For any open-minded SCC of
Gr(y), Sk(y), denote the set of its open-minded successor
SCC’s by M(Sk(y)), which includes Sk(y). We define
Sk(y)’s leader SCC to be an SCC in M(Sk(y)) whose
adjacency matrix has the largest spectral radius among all
SCC’s of M(Sk(y)).

Theorem III.4 (Evolution under constant topology). Con-
sider an htHK trajectory x(t). Assume that there exists a
time τ after which Gr(x(t)) remains unchanged, that is,
Gr(x(t)) = Gr(x(τ)). Then, the following statements hold
for all t ≥ τ :

(i) fvct(x(t)) = fvct(x(τ)).
(ii) Gr(x(t)) contains no moderate-minded component.

(iii) Consider any open-minded SCC of Gr(x(t)), Sk(x(t)),
and its leader SCC Sm(x(t)), with adjacency matrices
denoted by Θk and Θm, respectively. Then,

a) for any i ∈ Sk(x(t)), either xi(t) − fvcti(x(t)) = 0
or its per-step convergence factor converges to the
spectral radius of Θm as time goes to infinity, and

b) if the spectral radius of Θk is strictly less than that
of Θm, then there exists t1 ≥ τ such that for all
i ∈ Sk(x(t)), j ∈ Sm(x(t)), and t ≥ t1,

xj(t1) < fvctj(x(t1)) =⇒ xi(t) ≤ fvcti(x(t)),
xj(t1) > fvctj(x(t1)) =⇒ xi(t) ≥ fvcti(x(t)).

In above theorem, parts (iii)a and (iii)b tell us, respectively,
that the rates and directions of convergence of opinions in an
open-minded SCC toward the final value at constant topology
are governed by the rate and direction of convergence of
its leader SCC. In our htHK model, the adjacency matrix
of a large SCC has a large spectral radius. Theorem III.4
demonstrates that the per-step convergence factor of such
SCC is also large. Owing to the inverse relation between
the per-step convergence factor of an agent and its rate of
convergence toward the final value, the rate of convergence
of a large open-minded SCC toward final opinion vector is
small. Therefore, Theorem III.4 tells us that in a society
with fixed interconnection topology, individuals converge to
a final decision as slow as the slowest group of agents to
whom they directly or indirectly listen. An example for
the importance of convergence direction is that individuals
follow their leaders in converging to a final price from low
to high or vice versa. However, the final prices might be
different, since they collect separate sets of information from
closed-minded agents. A proof to Theorem III.4 and some
numerical examples to facilitate the understanding of the
conditions and results of the theorem are provided in [14].
Remark 3 (Justification of the sufficient condition for mono-
tonic convergence). We justify the conditions of Theo-
rem III.3 employing Conjecture II.1 and Theorem III.4.
Note that these conditions are sufficient but not necessary
for monotonic convergence. Based on our conjecture, we
assume that the topology of an htHK trajectory x(t) remains
unchanged after time τ , thus condition (i) of Theorem III.3
is satisfied. Regarding conditions (ii) and (iii), by state-
ment (iii)a of Theorem III.4, there exist a time step t1 ≥ τ ,
after which the per-step convergence factor of all agents
belong to [0, 1]. Therefore, the opinion vector converges
toward its final value at constant topology monotonically in
one step. Moreover, since the opinion vector is discrete, this
monotonic convergence results in existence of a time step
t2 ≥ τ , after which condition (ii) of the Theorem III.3 holds.
Regarding condition (iv), statement (iii) of Theorem III.4
shows that there exists time step t3 ≥ τ , after which for any
open-minded i and j it is true that: if they both belong to
one SCC, then ∆i(x(t))∆j(x(t)) ≥ 0; and if they belong
to two separate SCC’s with adjacency matrices Θ1 and
Θ2, respectively, while j is a successor of i, then when
ρ(Θ1) < ρ(Θ2), often it is true that ∆i(x(t))∆j(x(t)) ≥ 0,
and when ρ(Θ1) > ρ(Θ2), ∆j(x(t)) converges to zero
faster than ∆i(x(t)) and hence ∆i(x(t))∆j(x(t)) ' 0.
Regarding condition (v) part (a), if i and j have the same
set of open-minded children at time t, then ki(x(t + 1)) =
kj(x(t + 1)), see proof of Theorem III.3. Finally, we ex-
plain why the upper bound in condition (v) part (b) is
less restrictive as time goes to infinity. Since, for such
agent i, the distance to final values of all successors with
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Fig. 3. Illustrates an htHK trajectory with x0 = [0 2.2 4 4 4 0.64 3∗
1T
200]T and r = [0.01 0.01 0.01 0.01 0.01 1.9254 2 ∗ 1T

200]T (left),
and the non-monotonic evolution of the value x7(t)−x6(t) if the proximity
digraph remains fixed and equal to Gr(x(0)) (right), which is due to the
large difference k6(x(t))−k7(x(t)). The trajectory satisfies all conditions
but (v) of Theorem III.3 at time steps t = 0, . . . , 5. The proximity digraph
Gr(x(0)) contains two open-minded SCC’s {x6} and {x7, . . . , x206},
who are two open-minded WCC’s and weakly connected in Gr(x(0)). The
per-step convergence factors of their agents, which is approximately equal
to the spectral radius of the adjacency matrices of their SCC’s (0.3333 and
0.9804), do not satisfy the boundary condition (v). Therefore, the monotonic
convergence of opinion vector, or equivalently equation (3), does not hold.

smaller per-step convergence factors converge to zero, the
interval [kmini

(x(t)), kmaxi
(x(t))] reduces to one value, that

is kmaxi(x(t)) to which ki(x(t)) converges. Consequently,
for large t, kmaxi,j

(x(t)) = max{ki(x(t)), kj(x(t))} , α =
kj(x(t)), and β = ki(x(t)). Also, if ∆i(x(t)) ≥ ∆j(x(t)),
then ki(x(t)) ≥ kj(x(t)), and hence

min
m,α,β

∣∣∣1− αm∆j(x(t))
βm∆i(x(t))

∣∣∣ ' 1− ∆j(x(t))
∆i(x(t))

.

A system may monotonically converge under fixed topology
while condition (v) of Theorem III.3 is not satisfied. How-
ever, Figure 3 illustrates the sufficiency of this condition.

IV. CONCLUSION

In this paper, we studied the heterogeneous HK (htHK)
model of opinion dynamics. We provided two novel sufficient
conditions that guarantee convergence and constant inter-
connection topology for infinite time, while one condition
also guarantees monotonicity of convergence. Furthermore,
we demonstrated that in the evolution under fixed topology,
individuals converge to a final decision as slow as the
slowest group to whom they directly or indirectly listen. One
future challenge is to prove the eventual convergence of all
htHK systems by verifying that any trajectory is ultimately
confined to the basin of attraction of an equilibrium.
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APPENDIX

Proof of Lemma III.2. From here on, we often drop y argu-
ment, and for any y ∈ Rn, we denote A(y)y by y+ and
fvct(y) by y∗. If there is no moderate-minded component
in Gr(y), then y+

Θ − y∗Θ = Θ(y)(yΘ − y∗Θ), where yΘ is the
opinion vector of the open-minded class whose adjacency
matrix is Θ(y), see [14, Theorem 6.4]. Consider an open-
minded agent i whose children belong to the set {1, . . . ,m},
and denote the entries of A(y) by aij , then

ki(y+) =
ai1(y+

1 − y∗1) + · · ·+ aim(y+
1 − y∗m)

ai1(y1 − y∗1) + · · ·+ aim(y1 − y∗m)

=
ai1k1(y)∆1(y) + · · ·+ aimkm(y)∆m(y)

ai1∆1(y) + · · ·+ aim∆m(y)
. (2)

Under condition (ii), all ∆j(y)’s have the same sign, and
hence all the terms in the right hand side are positive.
Therefore, ki(y+) is in the convex hull of kj(y)’s.

Proof of Theorem III.3. Here, we show that if x(0) = y
satisfies all the theorem’s conditions, then y+ also satisfies
them, and similarly they hold for all subsequent times.
Note that condition (iii) guarantees entrywise monotonic
convergence, and condition (i) guarantees constant topology.
Let us start by proving that Gr(y) = Gr(y+). On account
of Proposition II.1 part (ii) and under condition (i), there
are no moderate-minded component in Gr(y), thus, for any
i, j ∈ {1, . . . , n}, four cases are possible:

1. i, j are open-minded and weakly connected in Gr(y).
a) If ∆i∆j > 0, then without loss of generality we assume
that ∆i ≥ ∆j > 0, since otherwise we can multiply the
opinion vector by −1. Hence, the monotonic convergence of
the two opinions toward each other, or equivalently,

y∗i − y∗j ≤ y+
i − y+

j ≤ yi − yj , (3)

should be proved. Under condition (v), it is true that |ki −
kj | ≤ (1− ∆j

∆i
) min{1− kj , kj}. On the other hand,

(y+
i − y+

j )− (y∗i − y∗j ) = (ki − kj)∆i + kj(∆i −∆j)

≤ (1− kj)(∆i −∆j) + kj(∆i −∆j) = ∆i −∆j ,
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which implies that y+
i − y+

j ≤ yi − yj . Furthermore,

(y+
i − y+

j )− (y∗i − y∗j ) ≥ −|ki − kj |∆i + kj(∆i −∆j)

≥ −kj(∆i −∆j) + kj(∆i −∆j) = 0,

which implies that y+
i − y+

j ≥ y∗i − y∗j . Now, we can show
that the neighboring relation between i and j in the digraph
Gr(y+) is equal to that of Gr(y). We let r denote either
ri or rj . The sign of |yi − yj | − r, |y+

i − y+
j | − r, and

|y∗i −y∗j |−r govern the neighboring relations between i and
j in the digraphs Gr(y), Gr(y+), and Gr(y∗), respectively.
Using inequalities (3) and condition (ii){

0 < y∗i − y∗j ≤ y+
i − y+

j ≤ yi − yj if yi ≥ yj ,
y∗j − y∗i ≥ y+

j − y+
i ≥ yj − yi > 0 if yi ≤ yj ,

(4)

subtracting r from above inequalities gives{
|y∗i − y∗j | − r ≤ |y+

i − y+
j | − r ≤ |yi − yj | − r if yi ≥ yj ,

|y∗j − y∗i | − r ≥ |y+
j − y+

i | − r ≥ |yj − yi| − r if yi ≤ yj .

Hence, |y+
i − y+

j | − r is bounded between the two other
values, which have the same sign by condition (i). Therefore,
i and j’s neighboring relation is preserved in Gr(y+).
b) If ∆i∆j ≤ 0, then for instance assume that ∆i ≥ 0 ≥ ∆j .
By condition (iii), it is easy to see that

yi − y∗i ≥ y+
i − y∗i ≥ 0 ≥ y+

j − y∗j ≥ yj − y∗j .
Using above inequalities and under condition (ii), inequali-
ties (4) hold, which again proves that i and j’s neighboring
relation is preserved in Gr(y+).

2. i and j are open-minded and belong to two separate
WCC’s of Gr(y), whose agent sets are V1 and V2. Since
Gr(y) = Gr(y∗), by Proposition II.1 part (ii)c, the minimum
and maximum opinions of a separate WCC in both Gr(y)
and Gr(y∗) belong to closed-minded components. Define
the opinion range of any subgraph to be a real interval
between the minimum and maximum opinions of its agents
and its sensing range to be the union of closed intervals in
the confidence bounds of its agents around their opinions.
Therefore, the sensing range of V1 is separated from the
opinion range of V2 in both Gr(y) and Gr(y∗). Due to
monotonic convergence toward y∗ in one step, the sensing
range of V1 in Gr(y+) lies in the union of its sensing
ranges in Gr(y) and Gr(y∗). The boundary closed-minded
component of V1 in Gr(y) keeps the sensing range of
V1 away from the opinion range of V2 in Gr(y+), see
Figure 4 (a). Thus, two separate WCC’s in Gr(y) remain
separate in Gr(y+).

3. i and j are both closed-minded in Gr(y), hence, y+
i =

y∗i and y+
j = y∗j . The equality y+

i − y+
j = y∗i − y∗j tells us

that neighboring relation between i and j in Gr(y+) is same
as in Gr(y∗), and consequently in Gr(y).

4. i is open-minded and j is closed-minded in Gr(y).
Since agents in one closed-minded component reach con-
sensus in Gr(y∗), i’s neighboring relation with j in Gr(y)
is the same as its relation with other agents in j’s component.
Assume that yi − yj ≤ ri, see Figure 4 (b), then yi − yk ≤
ri for all k in j’s component. The average of the latter

y+y y∗

{
{V1

V2

(a)

y∗y+y

i

j{2ri

(b)

Fig. 4. For the proof of Theorem III.3: (a) illusterates the sets of agents in
two separate WCC’s of Gr(y), V1 and V2. If V1’s sensing range (dark gray)
is separated from V2’s opinion range (light gray) in Gr(y) and Gr(y∗),
owing to boundary closed minded components (red), these ranges can not
overlap in Gr(y+); and (b) shows that open-minded i under light gray
bound of confidence listens to closed-minded j and its component in Gr(y)
and Gr(y∗). Since Gr(y) = Gr(y∗), closed-minded components reach
consensus in Gr(y∗). Otherwise, i could listen to j under dark gray bound
of confidence, and get disconnected in Gr(y+).

inequalities gives yi − y+
j ≤ ri, and from Gr(y) = Gr(y∗)

we have y∗i − y∗j ≤ ri, where for closed-minded j, y∗j =
y+
j . Therefore, y+

i , which under monotonic convergence is
bounded between yi and y∗i , also satisfies y+

i − y+
j ≤ ri.

Similarly, one can show that the neighboring relation is
preserved in Gr(y+) for the case when yi − yj > ri.

So far, we have proved that Gr(y) = Gr(y+), hence
condition (i) holds for y+. Due to monotonic convergence
in one time step under opinion vector y, opinion order and
direction of convergence toward final value is preserved in
y+, that is conditions (ii) and (iv) are true for y+. To prove
the last two conditions for y+, we should find ki(y+)’s.
Regarding part (a), if the two open-mindeds i and j have
the same set of open-minded children, then equation (2) tells
us that ki(y+) = kj(y+). Regarding part (b), clearly, both
conditions of Lemma III.2 hold for Gr(y), hence for any
open-minded i, ki(y+) lies in the convex hull of kj(y)’s,
where j’s are its open minded children. This fact tells us that:
0 ≤ ki(y+) ≤ 1, kmaxi(y

+) ≤ kmaxi(y), and kmini(y
+) ≥

kmini
(y). Therefore, for any open-minded agents i and j

with different sets of open-minded children,

kmaxi,j
(y+)− kmini,j

(y+) ≤ min
m,α1,β1

∣∣∣1− αm1 ∆j(y)
βm1 ∆i(y)

∣∣∣
×min{1− kmaxi,j

(y+), kmini,j
(y+)},

where α1 ∈ [kminj
(y), kmaxj

(y)], m ∈ Z≥0, and
β1 ∈ [kmini

(y), kmaxi
(y)]. Knowing that ki(y) ∈

[kmini
(y), kmaxi

(y)],

min
m,α1,β1

∣∣∣1− αm1 ∆j(y)
βm1 ∆i(y)

∣∣∣ ≤ min
m,α1,β1

∣∣∣1− αm1 kj(y)∆j(y)
βm1 ki(y)∆i(y)

∣∣∣.
The right hand side of the above inequality is equal to

min
m,α1,β1

∣∣∣1− αm1 ∆j(y+)
βm1 ∆i(y+)

∣∣∣ ≤ min
m,α2,β2

∣∣∣1− αm2 ∆j(y+)
βm2 ∆i(y+)

∣∣∣,
where α2 and β2, respectively, belong to smaller intervals
of [kminj

(y+), kmaxj
(y+)] and [kmini

(y+), kmaxi
(y+)].

Hence, part (b) holds for y+, which completes the proof.
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