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Abstract— This paper presents sufficient conditions for the
convergence for a group of single integrator agents with a
directed and static information flow graph, under a special
class of control inputs. Using a novel approach based on the
smallest order of the nonzero derivative, it is shown that under
some mild conditions the convex hull of the agents will be
contracting. The finite intersection property is then used to
prove the convergence of the agents to a common fixed point.
The results obtained in this work are more general than the ones
reported in the literature. An illustrative example is provided
to verify the proposed convergence conditions.

I. INTRODUCTION

Cooperative control of multi-agent systems has received

considerable attention in the past decade as an effective

means of motion coordination [1], [2], [3]. Some recent

developments in this area of research are surveyed in [4], and

its important applications in mobile robots, sensor networks,

air traffic control, etc. are discussed in [5], [3], [6]. In

this type of control strategy, a group of local controllers

are employed to achieve prescribed objectives cooperatively

with minimum information exchange. Typical objectives in

cooperative formation control problem include consensus,

rendezvous, containment, and formation [7], [8], [9], [10].

In the classical consensus problem, it is desired to find a

state update rule for the agents such that some quantity of

interest in every agent converges to a common fixed value

in the steady state. Various design objectives and constraints

are investigated in the literatures in the past few years [11],

[7], [12]. Linear time-invariant (LTI) consensus algorithms

for multi-agent systems subject to switching communication

topologies and time-delay are proposed in [7]. The work

[12] presents both discrete and continuous-time consensus

protocols for a group of agents which exchange information

over limited and unreliable communication links and switch-

ing topology. Preserving the connectivity of the underlying

network of agents is another important related problem which

has been studied in some detail recently [13], [14], [5],

[15]. As for design constraints, collision avoidance is one

of the most important problems in real-world applications of

autonomous vehicles [16], [17], [5].

The convergence of the system state under the control

strategies discussed above is typically determined by finding

an appropriate Lyapunov function. Constructing a proper

Lyapunov function, however, is a complicated task in gen-

eral. To overcome this problem, in some recent papers
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the stability of general distributed consensus algorithms

(instead of specific ones) is investigated [18], [19], [20],

[21]. Graphical conditions are introduced in [18] for the

exponential stability of a class of continuous linear time-

varying (LTV) systems whose A-matrix in the state-space

representation is Metzler with zero row sums. Nonlinear

consensus algorithms prove effective when certain criteria

such as connectivity preservation and collision avoidance

are to be regarded [14], [5], [15]. In [19], the convergence

of a class of discrete-time nonlinear consensus algorithms

with time-dependent communication links is shown under a

convexity assumption and some conditions on the communi-

cation graph. As the continuous-time counterpart of [19], the

work [20] studies the state agreement problem for coupled

nonlinear differential equations with switching vector fields.

It is shown that under a strict sub-tangentiality condition

and uniformly quasi-strongly connectedness assumption for

the interaction digraph, the system has the asymptotic state-

agreement property. The case of static interaction digraphs

with somewhat relaxed conditions are investigated in [21].

Sufficient conditions for the convergence of a class of

nonlinear distributed consensus algorithms for the case of

undirected and static information flow graphs are provided

in [22]. These conditions require the nonlinear weights

appearing in the corresponding control law to be positive

unless the agent coincides with all its neighbors.

The present paper deals with the same class of continuous-

time nonlinear consensus algorithms considered in [22] for

single integrator agents, and provides more relaxed con-

vergence conditions. Similar to the formulation given in

[22], the control input of each agent is considered as a

state-dependent combination of the relative positions of its

neighbors in the information flow graph, which is assumed

to be static and directed. Using a novel approach, the convex

hull of the agents under the proposed relaxed conditions

is shown to have the same nestedness property as [22]. A

result from general topology on finite intersection property

is then used to prove the convergence of the agents to a

common fixed point. The proposed convergence conditions

are also more general than the ones in [21], [20], under the

additional (mild) assumption that the weights are analytic for

the static interaction graph. This generality is discussed in

details, and is illustrated by a consensus example for which

the convergence cannot be deduced from existing results.

The remainder of this paper is organized as follows. The

problem is formulated in Section II, where some useful

notations and definitions are also introduced. The conver-

gence conditions for the consensus algorithms introduced
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in Section II are presented in Section III. Simulations are

provided in Section IV to demonstrate the convergence under

the proposed conditions. Finally, concluding remarks are

drawn in Section V.

II. PROBLEM FORMULATION

In this section, some standard definitions and a formulation

similar to [22] are presented.

Definition 1: The function f : R → R
m is said to be

of class Ck if the derivatives f (1), . . . , f (k) exist and are

continuous ( f (k) is the kth derivative of f ). In particular, a

function f of class C∞ is called a smooth function.

Definition 2: For a smooth function f : R→R, the small-

est natural number n for which f (n)(t) 6= 0 is called the index

of f at time t, and is denoted by ρ( f (t)).
Definition 3: For a smooth function f : R → R, the ex-

tended index of f at time t, denoted by ρ̃( f (t)), is defined

as the smallest nonnegative integer n for which f (n)(t) 6= 0.

Note that by definition f (0)(t) is the same as f (t).
Definition 4: A function f : Rm → R, is called analytic

on R
m, written f ∈Cω(Rm), if for any α ∈ R

m the function

f may be expressed as a convergent power series in some

neighborhood of α (see [23]). Note that the set of analytic

functions and smooth functions are not equivalent.

Definition 5: A set-valued function S(·) is said to be

nested if for every t1, t2 ∈R, 0 ≤ t1 ≤ t2, the relation S(t2)⊆
S(t1) holds.

Definition 6: In a digraph G, a vertex v is said to be

reachable from a vertex u, if there is a directed path from u

to v. The set of all reachable vertices from the vertex u in G

is denoted by Ru(G).
Definition 7: A digraph G is said to be quasi-strongly

connected if for every pair of distinct vertices u and v of

G, there is a vertex from which both u and v are reachable

(see [24]).

Definition 8: A group of agents 1, ...,n is said to converge

to a consensus if qi(t) → q̄ as t → ∞, for any i ∈ Nn :=
{1, . . . ,n}, where qi(t) ∈ R

m denotes the state of agent i at

time t, and q̄ is a constant.

Definition 9: For a function q : R→R
m, the point p̄ ∈R

m

is said to be a positive limit point of q(·) if there exists a

sequence {tn} with tn → ∞ as n → ∞, such that q(tn)→ p̄ as

n → ∞. The set of all positive limit points of q(·) is called

the positive limit set of q(·).
Definition 10: A family A = {Aα}α∈I of subsets of a set

X is said to have the finite intersection property if every finite

sub-family {A1,A2, . . . ,An} of A satisfies
⋂n

i=1 Ai 6= /0 (see

[25]).

Consider a set of n single-integrator agents in the 2D

plane, each represented by

q̇i(t) = ui(t), i ∈ Nn (1)

where qi(t) ∈ R
2 is the position of agent i at time t, and

ui is the corresponding control signal. Note that for brevity,

the time argument is omitted hereafter in some of the time-

dependent functions. Let the information flow graph for the

network be denoted by G = (V,E), with V = {1, . . . ,n}

representing the set of n vertices (associated with the n

agents), and E ⊆V ×V representing the corresponding edges.

The information flow graph G is assumed to be static and

directed. There is a directed edge from vertex j to vertex

i in G if and only if ( j, i) ∈ E. The set of the neighbors

of vertex i in G is defined as Ni = { j|( j, i) ∈ E}, and its

indegree is di = |Ni|. Each agent can only incorporate its

own position and the position of its neighbors in its control

law. In this paper, distributed control laws of the following

form are considered

ui =− ∑
j∈Ni

βi j(qi −q j) , i ∈ Nn (2)

where the coefficients βi j : R2(di+1) → R, i ∈ Nn, j ∈ Ni, are

state-dependent. More specifically, each coefficient βi j is a

function of the position of agent i and the positions of the

neighbors of agent i in G.

Problem Statement: It is desired to obtain sufficient con-

ditions (less conservative than the existing results) on the

coefficients βi j in (2), which guarantee the convergence of

the agents to a consensus.

III. MAIN RESULTS

Consider again a set of n agents in the 2D plane with the

differential equations of the form (1), and let them evolve

according to the control laws given by (2). The aim of this

section is to show that under the following assumptions on

the coefficients βi j in (2), the agents converge to a consensus.

Assumption 1: The state-dependent coefficients βi j in (2)

are analytic, real and nonnegative for all i ∈ Nn and j ∈ Ni.

Assumption 2: The system (1) with the control law of the

form (2) has no solution in which the convex hull of the

agents:

1) is not a singleton,

2) is fixed with at least one fixed agent at each vertex.

Denote with S(t) the convex hull of the agents at time t,

i.e. S(t) = Conv({qi(t)|i ∈ Nn}). Four lemmas are presented

in the sequel, which will later be used to prove the nestedness

property for S(t).

Lemma 1: Consider a function f : R→R, with the prop-

erty that f ρ( f (t))(t)> 0, for some t. Then, there exists δ > 0

such that f (t)< f (t + τ), ∀τ ∈ (0,δ ].

Proof. The proof is straightforward, and is omitted here. �

Remark 1: if f ρ( f (t))(t)< 0, then one can show that there

exists δ > 0 for which f (t)> f (t + τ), ∀τ ∈ (0,δ ].

In order to show the nestedness property for the convex

hull S(t), it is required to investigate the behavior of the

agents on the boundary of the convex hull. Consider a line l

passing through the boundary of S(t) at some time t ≥ 0.

Denote with el the unit vector perpendicular to l, in the

direction of the half-plane containing S(t). Note that the

intersection of S(t) with l is either an edge or a vertex (Fig. 1

shows the case when the intersection is an edge). Define

fl : R2 →R as the projection of x on el , i.e. fl(x) =< x,el >.

Let agent i be on l at time t. Denote with Nl
i (t) the set of

those neighbors of i which lie on l, and with N̄l
i (t) the set
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Fig. 1: S(t) is the convex hull of the agents at time t, qi is the position of
an agent on l, and el is the unit vector perpendicular to l in the direction

of the half-plane containing S(t).

of those neighbors do not lie on l. Now, define η l
i1(t) and

η l
i2(t) as follows

η l
i1(t) =

{

min
j∈Nl

i (t)
{ρ̃(βi j)+ρ( fl(q j))}, Nl

i (t) 6= /0

∞, Nl
i (t) = /0

(3)

and

η l
i2(t) =

{

min
j∈N̄l

i (t)
{ρ̃(βi j)}, N̄l

i (t) 6= /0

∞, N̄l
i (t) = /0

(4)

where in calculating ρ̃(βi j), the coefficient βi j is regarded as

an implicit function of time; clearly η l
i1(t)≥ 1 and η l

i2(t)≥ 0.

Define also

η l
i (t) = min{η l

i1(t),η
l
i2(t)} (5)

Using Lemmas 2-4 and the definitions given above, the

behavior of the agents on the boundary of S(t) is described

in the sequel.

Lemma 2: Consider a line l passing through the boundary

of S(t) at some time t ≥ 0, and assume that qi(t) belongs to

l, for some i ∈ Nn. Then, the following statements are true:

i) If η l
i = 0, then fl(q̇i)> 0.

ii) If η l
i ≥ 1, then fl(q

(k)
i ) = 0, for k = 1, . . . ,η l

i .

Proof.

Part (i): First, note that for any j ∈Nl
i , the function fl(q j−qi)

is equal to zero, and for any j ∈ N̄l
i , it is strictly positive.

Also, βi j ≥ 0 for any j ∈ Ni, according to Assumption 1.

The relation η l
i = 0 implies that η l

i2 = 0, which yields that

N̄l
i 6= /0, and that there exists an agent v∈ N̄l

i for which βiv > 0.

Therefore, using (1) and (2) one can write

fl(q̇i) = ∑
j∈N̄l

i

βi j fl(q j −qi)

≥ βiv fl(qv −qi)

> 0 (6)

Part (ii): It is straightforward to show that

fl(q
(k+1)
i ) = ∑

j∈Ni

k

∑
r=0

β
(k−r)
i j ( fl(q

(r)
j )− fl(q

(r)
i ))

(

k

r

)

(7)

where β
(k−r)
i j is the (k− r)th derivative of βi j with respect to

time (note that βi j is an implicit function of time). Assume

now that k < η l
i ; this means that k− r < η l

i ≤ η l
i2, and hence

β
(k−r)
i j = 0 for j ∈ N̄l

i . On the other hand, since k < η l
i ≤

η l
i1, one can easily show that β

(k−r)
i j fl(q

(r)
j ) = 0, for j ∈ Nl

i

and 1 ≤ r ≤ k. Using these results along with the fact that

fl(q j − qi) = 0 for j ∈ Nl
i , equation (7) reduces to

fl(q
(k+1)
i ) =− ∑

j∈Nl
i

k

∑
r=1

β
(k−r)
i j fl(q

(r)
i )

(

k

r

)

(8)

The rest of the proof follows by a simple induction. �

Lemma 3: Consider a line l passing through the boundary

of S(t) at some time t ≥ 0, and assume that qi(t)∈ l, for some

i ∈ Nn. If ρ( fl(qi))< ∞, then fl(q
(ρ( fl(qi)))
i )> 0.

Proof. Since ρ( fl(qi)) < ∞, thus η l
i < ∞ according to

Lemma 2. Before getting to the proof, let some useful results

on fl(q
(η l

i +1)
i ) be obtained, assuming 1 ≤ η l

i < ∞. Using

Lemma 2 and taking an approach similar to the one used

to derive (8) from (7), one can show that

fl(q
(η l

i +1)
i ) = ∑

j∈Nl
i

η l
i

∑
r=1

β
(η l

i −r)
i j fl(q

(r)
j )

(

η l
i

r

)

+ ∑
j∈N̄l

i

β
(η l

i )
i j fl(q j −qi) (9)

There are three possible cases for η l
i , η l

i1, and η l
i2:

Case (i): η l
i = η l

i2 < η l
i1. In this case, (9) reduces to

fl(q
(η l

i +1)
i ) = ∑

j∈N̄l
i

ρ̃(βi j)=η l
i

β
(η l

i )
i j fl(q j −qi) (10)

On the other hand, the relation ρ̃(βi j) = η l
i ≥ 1 implies

that βi j = 0. If β
(ρ̃(βi j))
i j < 0, then it is straightforward to

show using Remark 1 that βi j is negative in a right-sided

vicinity of t (again, βi j is regarded here as an implicit

function of time). However, this is in contradiction with

Assumption 1; therefore β
(ρ̃(βi j))
i j > 0, and it results from

(10) that fl(q
(η l

i +1)
i )> 0.

Case (ii): η l
i = η l

i1 < η l
i2. In this case, (9) reduces to

fl(q
(η l

i +1)
i ) = ∑

j∈Ni(l)

ρ̃(βi j)+ρ( fl (q j))=η l
i

β
(ρ̃(βi j))
i j fl(q

(ρ( fl(q j)))
j )

(

η l
i

ρ̃(βi j)

)

(11)

If βi j 6= 0, then ρ̃(βi j) = 0 and β
(ρ̃(βi j))
i j = βi j > 0. If on the

other hand βi j = 0, then the inequality β
(ρ̃(βi j))
i j > 0 still holds

as shown in case (i).

Case (iii): η l
i = η l

i1 = η l
i2. In this case, (9) yields

fl(q
(η l

i +1)
i ) = ∑ j∈Ni(l)

ρ̃(βi j)+ρ( fl (q j))=η l
i

β
(ρ̃(βi j))
i j fl(q

(ρ( fl(q j)))
j )

(

η l
i

ρ̃(βi j)

)

+∑ j∈N̄l
i

ρ̃(βi j)=η l
i

β
(η l

i )
i j fl(q j −qi)

> ∑ j∈Ni(l)

ρ̃(βi j)+ρ( fl (q j))=η l
i

β
(ρ̃(βi j))
i j fl(q

(ρ( fl(q j)))
j )

(

η l
i

ρ̃(βi j)

)

(12)
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(note that the inequalities β
(ρ̃(βi j))
i j > 0 and fl(q j − qi) > 0,

∀ j ∈ N̄l
i , are used in deriving (12)).

From the results presented in cases (ii) and (iii), one can

easily conclude that if η l
i = η l

i1, then

fl(q
(η l

i +1)
i )≥ ∑

j∈Ni(l)

ρ̃(βi j)+ρ( fl (q j))=η l
i

αi j fl(q
(ρ( fl(q j)))
j ) (13)

for some positive coefficients αi j’s.

It is desired now to use induction on ρ( fl(qi)) together

with the results developed so far in the paper to prove the

lemma. For ρ( fl(qi)) = 1, if η l
i ≥ 1 then it results from

Lemma 2 that fl(q̇i) = 0, which is a contradiction; therefore,

η l
i = 0, and hence fl(q̇i)> 0, according to Lemma 2. Assume

now that the statement of the lemma holds for ρ( fl(qi))≤ k,

for some k ≥ 1; it is desired to prove that it holds for

ρ( fl(qi)) = k+ 1 as well. Lemma 2 implies that 1 ≤ η l
i <

k + 1. If η l
i2 < η l

i1, then it results from case (i) as well

as Lemma 2 that ρ( fl(qi)) = η l
i + 1 and fl(q

(η l
i +1)

i ) > 0.

If on the other hand η l
i2 ≥ η l

i1 (i.e. η l
i = η l

i1), then (13)

holds. Moreover, for any j in the summation domain of

(13) the relation ρ( fl(q j)) ≤ η l
i < k + 1 holds, and hence

due to the assumption of induction fl(q
(ρ( fl(q j)))
j ) > 0. This

along with (13) yields fl(q
(η l

i +1)
i )> 0, and then it is implies

from Lemma 2 that ρ( fl(qi)) = η l
i + 1. This completes the

proof. �

Corollary 1: Consider a line l passing through the bound-

ary of S(t) at some time t ≥ 0, and assume that qi(t) ∈ l, for

some i ∈ Nn. Then, ρ( fl(qi)) = η l
i + 1 = min{η l

i1,η
l
i2}+ 1,

where η l
i1 and η l

i2 are defined in (3) and (4).

Proof. The proof follows directly from Lemma 3 (as its by-

product). �

Lemma 4: Consider a line l passing through the boundary

of S(t) at some time t ≥ 0. Given qi(t) ∈ l, if fl(qi(t))
has a finite index, then there exists δi > 0 such that for

any τ ∈ (0,δi] the inequality fl(qi(t)) < fl(qi(t + τ)) holds;

otherwise, fl(q̇i)≡ 0.

Proof. If ρ( fl(qi)) < ∞, then according to Lemma 3,

fl(q
(ρ( fl(qi)))
i ) > 0. Therefore, it results from Lemma 1 that

there exists δi > 0 such that for any τ ∈ (0,δi] the inequality

fl(qi(t)) < fl(qi(t + τ)) holds. This means that agent i will

move towards the interior of the half plane (defined by l)

containing S(t).
Now, consider the case where ρ( fl(qi)) = ∞. Since βi j’s

are analytic, according to Theorem 39.12 in [26], qi is also

analytic, implying that fl(qi) is analytic as well. Therefore, it

is resulted from ρ( fl(qi)) = ∞ that fl(qi)≡ fl(qi(t)), which

means that qi has been on l from the beginning and will stay

on it at all times. �

Theorem 1: Under Assumption 1, the convex hull of the

agents is nested.

Proof. Consider the agents at any arbitrary time t ≥ 0. By

applying Lemma 4 to all the edges on the boundary of S(t),
one can easily show that there exists δ (t)> 0 for which

qi(t + τ) ∈ S(t), ∀i ∈ Nn, ∀τ ∈ [0,δ (t)] (14)

implying that S(t + τ) ⊆ S(t), for any τ ∈ [0,δ (t)]. Using

this and an approach similar to the one used in the proof of

nestedness in Theorem 1 in [22], the nestedness property of

S(t) can be deduced. �

The following result from [25] will be used in the proof

of the main theorem.

Theorem 2: A topological space is compact if and only if

each family of closed sets which has the finite intersection

property has a non-void intersection.

In the sequel, sufficient conditions are provided for con-

vergence to consensus, as the most important contribution of

the paper.

Theorem 3: Consider a set of n agents in the 2D plane

with dynamics of the form (1), evolved under the control

laws given by (2). Under Assumptions 1-2, the agents

converge to a consensus.

Proof. Define µ1(q(t)) and µ2(q(t)) as the area and the

diameter of S(t), respectively, where q(t)= (q1(t), . . . ,qn(t)).
Using the nestedness property of S(t), it is straightforward

to show that there exists nonnegative real numbers a1 and

a2 for which limt→∞ µ1(q(t)) = a1 and limt→∞ µ2(q(t)) = a2.

Moreover, for any p∈ L+, µ1(p) = a1 and µ2(p) = a2, where

L+ denotes the positive limit set of q(t) (see the proof of

Theorem 1 in [22]). It is desired now to show that a1 = 0. If

a1 > 0, then the invariant property of L+ (see Lemma 4 in

[22]) along with the nestedness property of the convex hull of

the agents, and the fact that µ1(p)= a1 for any p∈ L+, yields

that starting from any p(0) = (p1(0), . . . , pn(0)) ∈ L+, the

convex hull S(t) will remain fixed, i.e. S(t)≡ S(0). Consider

an agent, say agent i, at a vertex of S(0) and let l1 and l2 be

the two lines passing through the two edges connected to this

vertex on the boundary of S(0). Using Lemma 4 (once with

l = l1 and then with l = l2) it can be concluded that either

agent i moves away from this vertex or fl1(ṗi)≡ fl2(ṗi)≡ 0,

the latter case implying that agent i stays fixed at that vertex.

Therefore, in order for S(t) to remain fixed, there should

be at least one fixed agent at each vertex of S(0), which

contradicts Assumption 2. This contradiction yields a1 = 0,

i.e. if p = (p1, . . . , pn) is a positive limit point, then pi’s

are collinear. Using this property and following a similar

argument, it is concluded that a2 ia also 0, i.e. p1 = . . .= pn

for any p = (p1, . . . , pn) ∈ L+.

To complete the proof, note that since S(t) is nested, it

satisfies the finite intersection property (see Definition 10),

and hence according to Theorem 2,
⋂

t≥0 S(t) = Q 6= /0. On

the other hand, a2 = 0 implies that the diameter of S(t)
approaches 0 as t → ∞, meaning that Q is a single point. On

the other hand, since Q ∈ S(t), hence ‖qi(t)−Q‖ ≤ µ2(q(t)),
which in turn implies that qi(t) → Q as t → ∞ because

µ2(q(t))→ 0 as t → ∞. In other words, the agents converge

to a fixed single point, and this completes the proof. �

Assumption 2 is essential in the above theorem, but it is

not straightforward to verify it, in general. The following

proposition will prove useful in verifying the condition of

this assumption.

Proposition 1: Let the condition of Assumption 1 hold,

and assume the convex hull of the agents is fixed. Then for
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a fixed agent, say agent i, at a vertex of this convex hull, and

for every j ∈ Ni, either q j ≡ qi or βi j ≡ 0.

Proof. First note that under Assumption 1, Lemmas 2-4 and

Theorem 1 still hold. Consider the agents at some t ≥ 0,

and let l1 and l2 be the two lines passing through the two

edges on the boundary of the convex hull connected to the

vertex at which qi is fixed. Using Corollary 1 for both l1 and

l2, one can conclude that ρ̃(βi j) = ∞ for j ∈ N̄i(l1)∪ N̄i(l2),
implying that βi j is identically zero because it is analytic.

The only remaining neighbors that are not in N̄i(l1)∪ N̄i(l2)
are those for which q j(t) = qi(t). For such a neighbor, if

ρ̃(βi j) = ∞ then βi j ≡ 0 similarly; if on the other hand

ρ̃(βi j) is finite, then ρ( fl1(q j(t))) = ρ( fl2(q j(t))) = ∞, and

consequently fl1(q̇ j)≡ fl2(q̇ j)≡ 0. This implies that q̇ j ≡ 0,

and hence q j ≡ qi. �

The next proposition characterizes the main advantage of

this work over [21], [20], [22].

Proposition 2: Consider a set of n agents in the 2D

plane with dynamics of the form (1), and a quasi-strongly

connected information flow graph. Let the control law be of

the form (2), where the corresponding coefficients satisfy the

conditions of Assumption 1. Define Qi = {q j| j ∈ Ni ∪{i}},

and assume that if agent i is at a vertex of Conv(Qi) and Qi

is not a singleton, then q̇i 6≡ 0. Then the agents converge to

a consensus.

Proof. It suffices to show that the conditions of the proposi-

tion imply that Assumption 2 holds. Suppose that there is a

solution for which Assumption 2 does not hold, and let agent

i be a fixed agent at a vertex of the convex hull associated

with such a solution. Clearly, qi is also a vertex of Conv(Qi)
at all times. This, along with the fact that q̇i ≡ 0, results that

Qi should be a singleton at all times, and hence q j ≡ qi for all

j ∈ Ni. Repeating the same argument, one can conclude that

q j ≡ qi for all agents j from which i is reachable in G. Now,

consider two fixed agents i1 and i2 at two distinct vertices of

the convex hull. Since G is quasi-strongly connected, there

is an agent j from which both i1 and i2 are reachable in G,

implying that qi1 ≡ qi2 . This contradicts the initial assumption

that agents i1 and i2 are located at two distinct vertices of

the convex hull, and completes the proof. �

Remark 2: It is important to note that [21], [20] do not

guarantee convergence to a consensus under the setting of

Proposition 2. More precisely, [21], [20] require that when

an agent takes a certain position with respect to some of its

neighbors, its velocity must be nonzero. However, the present

work only requires that in such configurations the velocity

of the above-mentioned agent is not identically zero in order

to deduce convergence to a consensus. On the other hand,

it is to be noted that [21], [20] do not require the control

coefficients βi j’s to be analytic. They only require that the

control signals ui’s are continuous functions of the state.

Remark 3: The results obtained in this work are more gen-

eral than the ones in [22] in the sense that it is concerned with

directed information flow graphs (as opposed to undirected

information flow graphs considered in [22]). Moreover, [22]

requires all the control coefficients βi j’s to be positive if Qi is

not a singleton (which also requires the velocity of agent i to

G
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Fig. 2: The information flow graph G in Example 1 for the case of n = 6

be nonzero). According to Proposition 2, however, some or

all of these coefficients can be zero at some time instants, as

long as the velocity of corresponding agent is not identically

zero, i.e. q̇i 6≡ 0.

IV. SIMULATION RESULTS

Example 1: Consider a swarm of n agents in a plane with

the dynamics of the form (1) and the control inputs given by

ui = −‖qi −qi+1‖
2(qi −qi+1)

−(1−‖qi −qi+2‖
2)2(qi −qi+2) (15)

where i ∈ Nn, qn+1 = q1, and qn+2 = q2. It can be easily

verified that Assumption 1 holds for the above control law.

Therefore, to show the convergence of the agents to a

consensus, it suffices to show that Assumption 2 also holds.

Suppose that there exists a solution to (1) under the control

inputs given by (15), for which Assumption 2 does not

hold. Assume also that agent i is fixed at a vertex of the

fixed convex hull corresponding to this solution, for some

i ∈ Nn. Proposition 1 implies that either ‖qi −qi+1‖
2 ≡ 0 or

qi+1 ≡ qi, either case resulting in qi+1 ≡ qi. Similarly, one

can show that qi+2 ≡ qi+1. Repeating the same argument,

it can be concluded that all agents should coincide with

agent i, which is a contradiction because a solution which

does not satisfy Assumption 2 should not be a singleton.

Therefore, Assumptions 1 and 2 both hold, and convergence

to a consensus is consequently deduced from Theorem 3.

The information flow graph G and the trajectories of the

agents under the given control law for this example for the

case of n = 6 are depicted in Figs. 2 and 3, respectively. The

convex hull of the agents at three time instants t0 = 0 sec,

t1 = 0.3 sec, and t2 = 1.25 sec are also drawn in Fig. 3. It can

be observed from this figure that S(t2)⊆ S(t1)⊆ S(t0). This

is in accordance with the nestedness property of S(t) which

results from Theorem 1. The norms of the control inputs ui,

i ∈ N6 are also plotted in Fig. 4.

Remark 4: It is important to note that convergence to a

consensus for the above example cannot be deduced from

[21], [20], [22].

V. CONCLUSIONS

This paper presents conditions for the convergence of a

class of continuous-time nonlinear consensus algorithms for

single integrator agents. The main contribution of this work

is to develop less restictive convergence conditions, as an

extension to the authors’ recent work in [22]. The control
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input of each agent is assumed to have the same form as

in [22], while the information flow graph is assumed to

be directed. It is shown that the convex hull of the agents

preserves the nestedness property under the proposed mild

conditions. The convergence to a fixed point is subsequently

proved using a Lasalle-like approach as well as the finite

intersection property of convex hulls. The results are shown

to be more general than the ones reported in the literature,

and simulations for a consensus problem confirm the validity

of the results.
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