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Abstract— This paper studies the structural controllability of
a leader-follower multi-agent system. A controllability condition
is first provided based on the topology of the information
flow graph. Conditions for controllability preservation in a
multiple-leader system subject to failure in the agents and
communication links are then investigated. The problem of
optimal leader selection is introduced, which is concerned with
finding the minimum number of agents whose selection as
leaders increase the reliability of the network in terms of
controllability. A polynomial-time algorithm is subsequently
presented to solve the problem for undirected information flow
graphs.

I. INTRODUCTION

There has been a surge of interest in the use of multi-agent
systems in a wide variety of engineering applications over the
past several years. Important features of multi-agent systems
and their superiority to traditional monolithic systems in
terms of reliability, flexibility, and adaptability to unknown
dynamic environments have been extensively investigated
[1], [2], [3]. In particular, control and coordination of this
type of system have received a great deal of interest in
recent years [4], [5], [6], [7]. Cooperative control of multi-
agent systems has a broad range of applications including
formation flying of multiple unmanned aerial, ground, and
underwater vehicles. Due to the importance of information
sharing in the coordination of a group of agents, the in-
formation flow structure of the system must be taken into
consideration in any control design algorithm [8], [9], [10].

Graph-theoretic techniques, on the other hand, are effec-
tive tools for the analysis of multi-agent systems. Such tools
are often employed to analyze a number of related problems
such as consensus, rendezvous, flocking, containment and
leader-follower formation control, to name only a few [11],
[12], [13], [14], [15]. The controllability problem in leader-
follower multi-agent systems was first introduced in [16],
where the classical notion of controllability was studied for
a leader-based multi-agent system. Necessary and sufficient
conditions were subsequently derived for controllability of
the system in terms of the eigenvalues and eigenvectors of a
sub-matrix of the graph’s Laplacian. It was also substantiated
in [16] that increasing the size of the information flow
graph would not necessarily improve the controllability of
the system. In [17], it was shown that a leader-symmetric
interconnection network is uncontrollable.

Network equitable partitions were introduced in [18] to
present a new necessary condition for the controllability of
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a multi-agent system. Using this notion, the controllability
characterization methods were extended to the multiple-
leader case [19]. More recently, the notion of relaxed eq-
uitable partitions was introduced in [20] to provide a graph-
theoretic interpretation for the controllability subspace when
the network is not completely controllable. The controlla-
bility of a single-leader multi-agent system under fixed and
switching topologies for both continuous-time and discrete-
time cases was studied in [21], [22]. It was shown in these
papers that the controllability of the overall system does not
require that the network be controllable for a fixed topology.
A graphical characterization of the structural controllability
for high-order multi-agent systems was given in [23].

In [24], the structural controllability, as opposed to the
controllability of a fixed model, is studied for a single-
leader multi-agent system. Then, the notions of p-link and q-
agent controllability are introduced as quantitative measures
for the structural controllability of a system subject to
failure in the communication links and agents. Topology-
based necessary and sufficient conditions are also given
in [24] for controllability preservation under such failures.
Polynomial-time algorithms are subsequently provided to
find the maximum number of such failures for which the
system remains structurally controllable. The results of [24]
are very useful in the controllability analysis of a single-
leader configuration; however, many real-world multi-agent
system applications require more than one leader to ensure
controllability (the reader is referred to [25], [26], [27] for
some relevant problems).

In this paper, the structural controllability of a leader-
follower multi-agent system with multiple leaders is inves-
tigated. A necessary and sufficient condition is provided,
which extends the results of [24] to the multiple leader
case. A necessary and sufficient condition is also provided
in this case, to ensure the controllability of the system when
the communication links between the agents are subject to
failure. This gives a quantitative measure for the reliability
of the multi-agent system with respect to its communication
links, and can analogously be extended to the case of the
agent loss. The problem of leader selection is subsequently
introduced, where it is desired to determine the minimum
number of leaders (to be selected from agents) for which
the system maintains a certain degree of controllability. This
helps the designer to improve the reliability and efficiency
of a multi-agent system by properly assigning the leaders in
the system.

This paper is organized as follows: Section II provides
some preliminaries from graph theory, and introduces the
notation used throughout the paper. The problem is defined
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in detail and is subsequently formulated in Section III.
Sections IV and V contain the main results of the paper, and
finally the concluding remarks are summarized in Section VI.

II. PRELIMINARIES

This section provides a background to the problem under
study in this paper. First, some useful concepts of graph
theory are introduced, and then the notions of structured
systems and structural controllability are presented.

A. Basic Concepts from Graph Theory

Throughout this paper, the set of integers {1, 2, . . . , k} is
denoted by Nk. The difference of the set X and Y which is
the set containing those elements of X that do not belong to
Y is denoted by X\Y . The size of a set X is the number
of its elements, and is represented by |X|. The ith member
of an ordered set X is denoted by X(i). Two sets X and
Y are intersecting if the sets X\Y , Y \X , and X ∩ Y are
all nonempty. A directed graph or digraph G is defined by
a set of vertices V = {1, . . . , n} and a set of edges E ⊆
V × V , and is represented by G = (V,E). An edge of G
is denoted by eij := (i, j) ∈ E, which is a directed arc
from vertex i to vertex j. In such an ordered pair, the first
vertex i is called a tail and the second vertex j is called a
head. A self-loop eii = (i, i) is an edge connecting vertex
i to itself. Two edges are anti-parallel if the head/tail of
one is the tail/head of the other. The set of all neighbors
of vertex i is defined as Ni := {j | eji ∈ E}. The size
of the vertex set and the edge set of a graph are called the
order and size of the graph, respectively. A sequence of edges
(i1, i2), (i2, i3), . . . , (ik−1, ik) is referred to as an i1ik-path
(ij ∈ V , j ∈ Nk), and the parent function of this path is
defined as ζ(ij) = ij−1, for any j ∈ Nk\{1}. The vertex
i1 in the above path is called the origin or root, and the
vertex ik is called the end of this path. Two paths are called
disjoint if they consist of disjoint sets of vertices. An R-
rooted path is a path whose origin is in the set R ⊂ V ; the
set R associated with such a path is called the root set. A
vertex i is called reachable from the set R if there exists an
R-rooted path whose end is the vertex i. A group of mutually
disjoint R-rooted paths is called an R-rooted path family. A
closed path consisting of distinct vertices is called a cycle. A
set of disjoint cycles is called a cycle family. The length of a
path or a cycle is the number of its edges (excluding self-loop
edges). The set of all edges of G entering X ⊆ V is denoted
by ∂−G(X), and is called the incut of X . The set of all edges
of G leaving X , on the other hand, is denoted by ∂+

G(X), and
is referred to as the outcut of X . The size of the incut and
outcut associated with X are denoted by d−G(X) and d+

G(X),
and are called the indegree and outdegree of X , respectively.
For two disjoint sets X,Y ⊂ V , let ∂−GY

(X) ⊆ ∂−G(X) be
the set of all edges of G whose tails lie in Y and whose
heads lie in X; denote the size of this set with d−GY

(X).
An undirected graph is a graph whose edges are all undi-

rected (represented by plain lines). Throughout this paper, an
undirected graph (and its edge set) will be distinguished by a
bar over the symbol. Furthermore, given an undirected graph

Ḡ, its directed counterpart will be represented by ~G, which is
a digraph obtained by replacing every edges of Ḡ = (V, Ē)
with a pair of anti-parallel directed edges.

B. Structured Systems and Structural Controllability

A matrix is called structured if its entries are either fixed
zeros or independent free parameters [28]. Let A ∈ Rn×n

and B ∈ Rn×m be two structured matrices. A linear time-
invariant (LTI) system whose state-space equation in the
standard form is described by the structured pair (A,B)
is called a structured system. The m-input, n-dimensional
structured system S defined by the pair (A,B) can be
represented by a digraph GS with n + m vertices, where
the ijth entry of matrix [A | B] corresponding to a nonzero
parameter is associated with a directed edge from vertex
j to vertex i. A structured system (A,B) is said to be
structurally controllable if its free parameters can be set to
some particular values such that the system is controllable.

III. PROBLEM STATEMENT

Consider a team of n agents, and let xi(t) and ui(t)
represent the state and control input of agent i, respectively.
Assume that the dynamics of each agent is given by a single
integrator, i.e. ẋi(t) = ui(t), for each i ∈ Nn. The interaction
structure between the agents is specified by a given static
information flow graph G = (V,E) of order n, in which
each vertex corresponds to an agent. There is a directed edge
from vertex i to vertex j, if agent i transmits its state to agent
j. Assume that some of the agents, say the last m agents, act
as the leaders and are influenced by external control inputs
denoted by ui(t) = ui

ext(t), i ∈ Nn\Nn−m, enabling them
to move without any constraint. The set of vertices of G
corresponding to the leaders is called the root set, and is
denoted by R. The rest of the agents, called followers, are
governed by the following control law

ui(t) =
∑

j∈Ni∪{i}

αijxj(t), i ∈ Nn−m (1)

where the coefficients αij ∈ R are fixed. The state of each
agent is defined to be its absolute position. Throughout the
paper, it is assumed that the agent dynamics is decoupled
along each dimension, allowing for one-dimensional state
representation for each agent.

Definition 1: [24] The information flow graph G is called
controllable if one can choose αij’s in (1) in such a way that
by moving the leaders properly, the followers can take any
desired configuration.

Under the control law (1), the dynamics of the followers
can be described as

ẋ(t) = Ax(t) +Bu(t) (2)

where x(t) = [x1(t) ... xn−m(t)]T ∈ Rn−m, u(t) =
[xn−m+1(t) ... xn(t)]T ∈ Rm are the state and control input,
respectively, and A, B are structured matrices of proper di-
mensions. Thus, the state equation (2) describes a structured
system whose structural controllability is equivalent to the
controllability of the underlying information flow graph G.
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It is to be noted that although only the dynamics of the
followers are considered in (2), the controllability of the
corresponding information flow graph implies that all agents
(including the leaders) can reach any desired position by a
proper choice of the external input for the leaders.

In this paper, it is aimed to determine a minimum number
of leaders required to achieve structural controllability. This
problem, which is hereafter referred to as the leader selection
problem, is addressed in the general case of a multi-agent
system subject to failure in some communication links or
loss of some agents.

IV. STRUCTURAL CONTROLLABILITY OF MULTI-AGENT
SYSTEMS

In [24], the controllability of the information flow graph
of a single-leader multi-agent system is studied. This section
aims to extend the results of [24] to a multiple leader setting,
that is when more than one agent can act as leaders. Consider
a structured system with the state-space representation of
the form (2). The following theorem is borrowed from [29],
and provides necessary and sufficient conditions for the
structural controllability of the system in terms of its digraph.

Theorem 1: [29] A structured system S of the form (2)
with the digraph GS = (VS, ES) is structurally controllable
if and only if both of the following conditions hold:

i) Every vertex in GS is the end vertex of an R-rooted
path.

ii) There exists a disjoint union of an R-rooted path
family and a cycle family that covers all vertices.

where R ⊂ VS is the set of vertices corresponding to the
columns of the matrix B.

The following theorem provides a necessary and sufficient
condition for the controllability of an information flow graph.

Theorem 2: The information flow graph G is controllable
if and only if each vertex in V \R is reachable from the root
set R.

Proof : The reachability of each vertex of the set V \R from
the root set R is equivalent to each member of the above set
being the end vertex of an R-rooted path in GS. The vertices
in R can be considered as R-rooted paths of length zero,
and a self-loop on each vertex x ∈ V \R constructs a cycle
family whose union with these zero-length R-rooted paths
span the vertex set V = VS. The proof follows now from
Theorem 1. �

Definition 2: [24] The information flow graph G is said to
be p-link controllable if p is the largest number for which the
controllability of G is preserved after removing any group
of at most p− 1 edges.

In a p-link controllable digraph, p is the minimum
number of edges whose removal makes the digraph
uncontrollable. For a digraph G with the root set R, this
number will hereafter be denoted by lc(G;R), and will be
referred to as the link-controllability degree of G. Define
lc(G; ∅) = 0 and lc(G;V ) = ∞, and let lc(G, x;R) be
the minimum number of edges whose removal makes the

vertex x ∈ V \R unreachable from the root set R. Clearly,
lc(G;R) = minx∈V \R lc(G, x;R). It is important to note
that lc(G;R) is, in fact, a quantitative measure for the
reliability of the multi-agent system w.r.t. communication
failure. The following theorem gives a necessary and
sufficient condition for p-link controllability based on the
information flow graph G.

Theorem 3: The information flow graph G = (V,E) with
the root set R is p-link controllable if and only if

min
R⊆X⊂V

d+
G(X) = p.

Proof : It is clear from the definition of outcut that
removing the set ∂+

G(X) from the edge set E for every
X ⊂ V with R ⊆ X makes the set V \X unreachable from
R. On the other hand, suppose that F is the minimal set
of edges whose removal makes at least one of the vertices
unreachable from R. Let XF be the set of reachable vertices
from R after removing those edges which belong to F . The
proof follows now on noting that F includes all members
of the outcut of XF , i.e., ∂+

G(XF ) ⊆ F . �

One can use Theorem 3 to find the value of lc(G;R) in a
given digraph G. However, calculating the outdegree of all
possible subsets of the vertex set V takes exponential time,
and hence is intractable for high-order digraphs. Therefore,
it is desired to develop a polynomial-time algorithm to find
this value for any digraph.

To find the value of lc(G, x;R) for an arbitrary vertex x ∈
V , let a new digraph G′ = (V ′, E′) be constructed from G by
extending the sets V and E as follows: Consider a new vertex
r, and define V ′ = V ∪ {r} and E′ = E ∪ {(r, i), ∀i ∈ R}.
The digraph G′ will be referred to as the expanded digraph
of G w.r.t. R. As an illustrative example, Fig. 1(a) shows
a digraph G with the root set R = {4, 5}, and Fig. 1(b)
demonstrates how the digraph G′ is constructed from G.

Fig. 1. (a) An information flow graph G, and (b) the corresponding
expanded digraph G′ w.r.t. R = {4, 5}.

Consider the expanded digraph G′ = (V ′, E′)
corresponding to a given digraph G and the root set R, and
let x ∈ V ′\{R∪{r}} be a specified vertex of G′. Construct
a new digraph G′new by reversing the direction of all edges
of any rx-path, except for those edges which belong to
{r} × R, if any. Repeat the same procedure for G′new and
continue until a digraph G′final is obtained in which x is
unreachable from the root r. Denote with Xr,G′ the set of
all reachable vertices from r in G′final (note that Xr,G′ ⊂ V ′).

Theorem 4: The outcut of Xr,G′ in G′ is a minimal set
whose removal makes the vertex x ∈ V ′\{R∪{r}} (defined
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above) unreachable from R; in particular, d+
G′(Xr,G′) =

lc(G, x;R).

Proof : The proof is similar to that of Theorem 4 in [24],
and is omitted here. �

One can use Theorem 4 to develop a polynomial-time
procedure for finding the value of lc(G, x;R). The following
algorithm is presented for this purpose.

Algorithm 1:
H = G′.
Main: X = {r} and ζ(j) = ∅ (∀j ∈ V ′).

while ∃ ezy ∈ ∂+
H(X),

X = X ∪ {y} and ζ(y) = z.
end while
if x ∈ X ,

In H , reverse the direction of all edges in the
rx-path obtained by using the parent function ζ,
except the paths of the form (r, i), i ∈ R, and
then go to Main.

end if
lc(G, x;R) = d+

G′(X).
return lc(G, x;R).

As an example, applying the above algorithm to
the digraph shown in Fig. 1 yields lc(G, 1;R) = 4,
lc(G, 2;R) = 2, and lc(G, 3;R) = 2; hence, for that
digraph lc(G;R) = 2.

Remark 1: Analogously to the problem of p-link control-
lability, one can define the problem of q-agent controllability,
which is concerned with the controllability preservation after
the failure of at most q−1 agents [24]. This problem can be
converted to the problem of q-link controllability by using
the node-duplication technique as discussed in [24].

V. LEADER SELECTION

In general, any problem concerned with finding an optimal
set of sources in a network to achieve certain requirements
is called the source location problem [25]. Various types of
this problem with different objectives are investigated in the
literature [30], [31], [26], [27]. In [32], a source location
problem with edge-connectivity requirement is studied. This
section investigates a special case of the source location
problem for multi-agent systems, which will be referred to
as the leader selection problem. To this end, some important
ideas are borrowed from [32].

Leader selection in a multi-agent system deals with
the problem of finding a minimum number of agents,
which if selected as leaders, the overall system becomes
structurally controllable. It is desired in the sequel to find
a vertex set R ⊆ V of the smallest size such that the
information flow graph G is at least p-link controllable,
for a given p. This can be formulated in the framework
of the q-agent controllability problem discussed in Remark 1.

Definition 3: Given a digraph G = (V,E), a set X ⊂ V is
called p-deficient if d−G(X) < p. A p-deficient set is minimal
if none of its proper subsets is p-deficient. As an example,

Fig. 2 shows a digraph with two minimal 2-deficient sets
X1 = {1, 2, 3} and X2 = {5}.

Fig. 2. A digraph with two minimal 2-deficient sets.

Definition 4: The set R ⊆ V is called a p-link root set if
lc(G;R) ≥ p.

Theorem 5: Given a digraph G = (V,E), a set R ⊆ V is
a p-link root set if and only if any p-deficient set X in G
intersects R.

Proof : Assume X is a p-deficient set disjoint from R.
Since d−G(X) < p, hence for every vertex x ∈ X ,
lc(G, x;R) < p. This contradicts the initial assumption that
R is a p-link root set. Consider now a set R (R ⊆ V )
for which lc(G;R) < p, and assume R intersects any p-
deficient set of G. According to Theorem 3, there exists a set
X ⊂ V with R ⊆ X , such that d+

G(X) < p, or equivalently
d−G(V \X) < p. This means that V \X is a p-deficient
set disjoint from R, which contradicts the assumption that
R intersects any p-deficient set of G. This contradiction
completes the proof. �

One can deduce from Theorem 5 that a set R is a p-link
root set if and only if any minimal p-deficient set intersects
R. Using this result, it is desired to present a polynomial-
time procedure to solve the leader selection problem in a
network with bidirectional communication links, represented
by the information flow graph Ḡ = (V, Ē). To this end,
certain properties of undirected graphs (which do not apply
to directed graphs, in general) will be discussed in the sequel.

Lemma 1: Let X and Y be two intersecting subsets of V
and define Z = V \{X ∪ Y }; then
d−~G(X) +d−~G(Y ) = d−~G(X\Y ) +d−~G(Y \X) + 2d−~GZ

(X ∩Y ).

Proof : It is straightforward to show that

d−~G(X) = d−~GZ
(X\Y ) + d−~GY \X

(X\Y )

+ d−~GZ
(X ∩ Y ) + d−~GY \X

(X ∩ Y ),

d−~G(Y ) = d−~GZ
(Y \X) + d−~GX\Y

(Y \X)

+ d−~GZ
(X ∩ Y ) + d−~GX\Y

(X ∩ Y ),

d−~G(X\Y )=d−~GZ
(X\Y )+d−~GY \X

(X\Y )+d−~GX∩Y
(X\Y ),

d−~G(Y \X)=d−~GZ
(Y \X)+d−~GX\Y

(Y \X)+d−~GX∩Y
(Y \X).

(3)

It can also be easily shown that d−~GY \X

(X ∩ Y ) =

d−~GX∩Y
(Y \X), and that d−~GX\Y

(X ∩ Y ) = d−~GX∩Y
(X\Y ).

Now, the proof follows directly from (3). �
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Theorem 6: Given a graph Ḡ = (V, Ē), all minimal p-
deficient sets of its directed counterpart ~G are pairwise
disjoint.

Proof : Let X1, X2 ⊂ V , X1 6= X2 be two minimal p-
deficient sets, and assume X1 ∩ X2 6= ∅. It follows from
the definition of a minimal p-deficient set that X1 and X2

are intersecting. On the other hand, since X1\X2 ⊂ X1 and
X2\X1 ⊂ X2, hence the sets X1\X2 and X2\X1 are not
p-deficient. From Lemma 1

d−~G(X1) + d−~G(X2) = d−~G(X1\X2) + d−~G(X2\X1)

+ 2d−~GZ
(X1 ∩X2)

where Z := V \{X1 ∪ X2}. The facts that d−~G(X1) < p,
d−~G(X2) < p, d−~G(X1\X2) ≥ p, and d−~G(X2\X1) ≥ p imply
d−~GZ

(X1 ∩ X2) < 0. This result is not true because the
indegree of a set cannot be negative. This contradiction
completes the proof. �

The result of the above theorem is not valid for a general
digraph. In other words, the minimal p-deficient sets of a
digraph are not mutually disjoint in general. For example,
the digraph shown in Fig. 3 has two intersecting minimal
2-deficient sets X1 = {1, 2, 3} and X2 = {1, 4, 5}.

Fig. 3. An information flow graph with two intersecting minimal 2-deficient
sets.

Theorems 5 and 6 imply that in an undirected information
flow graph Ḡ, a minimal p-link root set contains one vertex
from each minimal p-deficient set of ~G. One can use the
result of Theorem 6 to find a minimal p-link root set in
any undirected information flow graph without explicitly
identifying the minimal p-deficient sets. This is spelled out
in the next theorem. Note first that it is straightforward to
show that lc(Ḡ, x;R) = lc(~G, x;R), for any R ⊆ V and
x ∈ V \R.

Theorem 7: Given an undirected graph Ḡ, let R be a p-
link root set of its directed counterpart ~G. For a vertex x ∈ R,
if lc(~G, x;R\{x}) ≥ p, then R\{x} is a p-link root set as
well. Moreover, if lc(~G;R\{x}) < p, then there exists a
minimal p-deficient set X whose only common element with
R is x.

Proof :
Case i) Assume that lc(~G, x;R\{x}) ≥ p. Since R is
a p-link root set, it intersects any p-deficient set. It can
be shown that either R\{x} intersects any p-deficient
set too, or there exists a p-deficient set X with x ∈ X ,
such that X is disjoint from R\{x}. This implies that
lc(~G, x;R\{x}) ≤ d−~G(X) < p which is a contradiction.
The proof in this case follows from Theorem 5.

Case ii) Assume now that lc(~G;R\{x}) < p. This implies
that R\{x} is not a p-link root set. Since R is a p-link root
set, x should belong to a minimal p-deficient set in order for
R\{x} not to intersect any minimal p-deficient set. Clearly,
R ∩ X 6= ∅ and (R\{x}) ∩ X = ∅, which completes the
proof. �

Theorem 7 is used next to develop a polynomial-time
procedure for finding a minimal p-link root set. It is to be
noted that the minimal p-link root set is not necessarily
unique.

Algorithm 2:
R = V.
for i = 1 to n,

if lc(~G, i;R\{i}) ≥ p,
R = R\{i}.

end if
end for
return R.

Consider the graph depicted in Fig. 4. Applying the above
algorithm to this example, one arrives at the set R = {1, 4}
as the minimal 3-link root set.

Fig. 4. An undirected information flow graph.

VI. CONCLUSIONS AND FUTURE WORK

The structural controllability of a team of single integrator
agents is investigated in this work. A leader-follower for-
mation configuration is considered, where multiple agents
can simultaneously act as leaders. Necessary and sufficient
conditions for the system to remain structurally controllable
in the case of failure of some of the communication links
are derived in terms of the topology of the information flow
graph. Then the problem of leader selection in undirected
information flow graphs is investigated, where it is aimed
to find a minimal set of agents that if selected as leaders,
the resultant information flow graph is p-link controllable.
Analogous results can also be developed for the case of
agents loss. Future research is planned to extend the results
obtained here to directed information flow graphs.
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