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Abstract— For the input-output representation of non-
uniformly multirate discrete-time systems, a coupled least
squares algorithm is derived to estimate the model parameters
with the advantage of avoiding the computation of matrix inver-
sion. Moreover, The proposed algorithm has good convergence
properties. The simulation test verifies the effectiveness of the
algorithm.
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I. INTRODUCTION

In process industries, several sampling rates often co-

exist in a control system so that a better tradeoff between

performance and implementation cost can be achieved [1].

For example, in a polymer reactor or a distillation tower,

composition, density or molecular weight distribution are

measured at much lower frequencies than flow rates, tem-

peratures and pressures. Such systems with more than one

sampling rate are called multirate systems.

Research on multirate systems is active in recent years and

many achievements have been reported in the control and

identification fields. In the area of process control, Li et al.

proposed an inferential control scheme for dual-rate systems

[1] and studied the application of dual-rate modeling in the

petroleum refinery [2]. Rossiter et al. discussed the dual-rate

predictive control scheme for dual-rate systems [3]. Sheng

et al. presented a scheme for designing filters to achieve fast

state estimation in the H2 and H∞ settings using the linear

matrix inequality solution [4]. Gao et al. investigated the

problem of robust H∞ control for sampled-data systems with

uncertain parameters and probabilistic sampling [5]. Yu et

al. studied the l2–l∞ filtering problems for multirate systems

[6]. In the literature of system identification, Li et al. used

a sub-space method to estimate the parameters of the lifted

state-space models for general dual-rate systems [7]. Ding

and Chen presented a hierarchical identification approach to

estimate the parameters and states of the lifted state-space

models for such general dual-rate systems [8]. Recently, the

polynomial transformation technique was used to obtain a

dual-rate model for dual-rate system identification [9], [10].

In multirate systems, it is generally assumed that all vari-

ables are uniformly sampled at constant intervals. However,

this is not always true in many practical cases. For the
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non-uniformly multirate sampled-data systems, the sampling

intervals for the input and/or output channels are non-

equidistant in time. Systems with missing measurements can

be seen as a kind of non-uniformly sampled systems. A

lot of work has been done in this field [11]–[14]. Another

non-uniform sampling pattern exists typically for the cases

when the manual sampling or laboratory analysis is required

[15]. In this area, Sheng et al. proposed a generalized

predictive control (GPC) design [16]; Li et al. gave a Kalman

filter-based method for state estimation, fault detection and

isolation for a class of periodically non-uniformly sampled

systems [15]. Ding et al. studied the reconstruction of

continuous-time systems, the controllability and observabil-

ity, the computation of single-rate models and the state-

space model identification for non-uniformly sampled sys-

tems [17], [18]; Xie et al. studied a stochastic gradient

method for the non-uniformly sampled systems and used the

multi-innovation technique to improve the convergence rate

[19].

In [19], the authors only considered the non-uniform

sampling scheme for the system output. In that case, an

equivalent multiple-input single-output system model can be

obtained by using the discretization technique. Different from

the work in [19], in this paper, we consider the non-uniform

sampling scheme for both the system input and output. In this

case, the converted model becomes an equivalent multi-input

multi-output one. To avoid computing the matrix inverse at

each recursion of the recursive least squares algorithm [20],

we propose a new algorithm to estimate the parameters of

the multi-input multi-output representation. It is important to

acknowledge that a number of previous work has been done

on this problem. For example, the hierarchical least squares

and hierarchical gradient methods for multivariable systems

[21], the multi-innovation stochastic gradient algorithms

[22], [23]. Recently, Ding et al. presented a partially coupled

stochastic gradient algorithm for the non-uniformly sampled

systems [24], which is similar to the proposed algorithm

in this paper; however, only one part of the parameters are

coupled in that algorithm.

The rest of the paper is organized as follows. Section II

derives the identification model of the non-uniformly sam-

pled systems. Section III gives the recursive least squares

algorithm for the non-uniformly sampled systems. Section IV

presents the coupled least squares algorithm. Section V

provides an illustration example. Finally, Section VI offers

some concluding remarks.
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II. THE IDENTIFICATION MODEL

Consider a non-uniformly sampled multirate system de-

picted in Fig. 1, where Pc is a continuous-time process with

-pppppppppppppp H - Pc
- S pppppppppppppp -

u(kT + ti) u(t) y(t) y(kT + ti)

Fig. 1. The non-uniformly sampling systems

the state-space representation:

Pc :

{

ẋ(t) = Ax(t)+ Bu(t),
y(t) = Cx(t)+ Du(t),

(1)

x(t) ∈ R
n is the state vector, u(t) ∈ R

1 and y(t) ∈ R
1 are

the input and output of Pc, respectively; A ∈ R
n×n, B ∈ R

n,

C ∈ R
1×n and D ∈ R

1 are constant or constant matrices;

H denotes a non-uniform zero-order hold (ZOH) with the

following description:

u(t) =



















u(kT ), kT 6 t < kT + t1,
u(kT + t1), kT + t1 6 t < kT + t2,

...

u(kT + tr), kT + tr−1 6 t < (k + 1)T.

(2)

S denotes a non-uniform sampler. The sampling intervals

are τ1,τ2, · · · ,τr, and then are repeated. Thus the sampling

scheme is periodical with a large period T = τ1 + τ2 + · · ·+
τr = tr, which can be termed as the frame period. t = kT +ti =
kT + ti−1 + τi are the updating and sampling intervals. So

the control input u is updated r times at the instants t =
kT +ti (i = 0,1, · · · ,r−1) over each framework period T , i.e.,

over the (k + 1)th period [kT,(k + 1)T ), and the output y is

sampled r times at the instants t = kT + ti (i = 0,1, · · · ,r−1)
within each framework period T .

Referring to [17], [18], discretizing Pc and using (2)

yield the following discrete-time state-space model for non-

uniformly sampled systems:

x(kT + T) = Grx(kT )+
r

∑
j=1

exp[A(T − t j)]Fτ j
u(kT + t j−1)

= Grx(kT )+
r

∑
j=1

F ju(kT + t j−1)

= Grx(kT )+ Fu(kT ), (3)

y(kT + ti−1) = CGi−1x(kT )+
i−1

∑
j=1

Di−1, ju j(kT + t j−1)

+Du(kT + ti−1)

= Ci−1x(kT )+ Di−1u(kT ), i = 1,2, · · · ,r, (4)

where u(kT ) := [u(kT ),u(kT + t1), · · · ,u(kT + tr−1)]
T is the

non-uniformly stacked input vector, and

Gi := exp(Ati) ∈ R
n×n, i = 1,2, · · · ,r,

F := [F1,F2, · · · ,F r] ∈ R
n×r,

F i := exp(A(T − ti))Fτi
= GrG−1

i Fτi
∈ R

n,

Fτi
:=

∫ τi

0
exp(At)dtB ∈ R

n,

Ci := CGi ∈ R
1×n, i = 0,1, · · · ,(r−1),

Di := [Di1,Di2, · · · ,Dii,D,0, · · · ,0] ∈ R
1×r,

Di j := CGiG
−1
j Fτ1

∈ R
1, j = 1,2, · · · , i.

Let z be a forward shift operator (z−1 be a backward shift

operator): zx(kT + ti) = x(kT + T + ti) and z−1x(kT + ti) =
x(kT −T + ti). From (3) and (4), we have

y(kT + ti−1) = [Ci−1(zIn −Gr)
−1F + Di−1]u(kT )

=

[

z−nCi−1 adj[zIn −Gr]F

z−n det[zIn −Gr]
+ Di−1

]

u(kT )

=
β i(z)

α(z)
u(kT ), i = 1,2, · · · ,r, (5)

where In is an n×n identity matrix, α(z) is the characteristic

polynomial of order n and β i(z) is a row vector polynomial

with

α(z) := z−n det[zIn −Gr]

= 1 + α1z−1 + α2z−2 + · · ·+ αnz−n, αi ∈ R
1,

β i(z) := z−nCi−1 adj[zIn −Gr]F + Di−1α(z)

= β i0 + β i1z−1 + β i2z−2 + · · ·+ β inz−n, β i j ∈ R
1×r.

Taking into account the disturbance noise ei(kT ) in (5),

the output at t = kT + ti−1 can be written as

y(kT + ti−1) =
β i(z)

α(z)
u(kT )+ ei(kT ), i = 1,2, · · · ,r. (6)

Here, the noise term ei(kT ) is considered to be a colored

noise in the following form

ei(kT ) =
1

α(z)
vi(kT ) i = 1,2, · · · ,r,

where v(kT ) := [v1(kT ),v2(kT ), · · · ,vr(kT )]T ∈ R
r is a white

noise vector.

Define the stacked output vector:

y(kT ) :=















y(kT )
y(kT + t1)
y(kT + t2)

...

y(kT + tr−1)















∈ R
r,

and the output information matrix ψ(kT ) and input informa-

tion vector ϕ(kT ) as

ψ(kT ) := [y(kT −T ),y(kT −2T), · · · ,y(kT −nT )] ∈ R
r×n,

ϕ(kT ) := [uT(kT ),uT(kT −T ), · · · ,uT(kT −nT)]T ∈ R
n0 ,

n0 := (n + 1)r.
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Define the parameter vector α ∈ R
n and parameter matrix

θ ∈ R
n0×r as

α := [α1,α2, · · · ,αn]
T ∈ R

n,

θ := [θ1,θ 2, · · · ,θ r] ∈ R
n0×r.

Then we can get a stacked identification model:

y(kT )+ ψ(kT )α = θ Tϕ(kT )+ v(kT ). (7)

The objective of this paper is to present a new coupled

least squares identification method to estimate the parameters

in α and θ of the input-output representation in (7) for

the non-uniformly sampled systems, based on the given

non-uniform input-output data {u(kT + ti),y(kT + ti): i =
0,1, · · · ,r−1, k = 0,1,2, · · ·}.

III. THE RECURSIVE LEAST SQUARES ALGORITHM

For the convenience of deriving the coupled least squares

algorithm, we first give the recursive least squares algorithm

for the non-uniformly sampled systems. Let us introduce

some notations here. The symbols λmax[X ] and λmin[X ] rep-

resent the maximum and minimum eigenvalues of the square

matrix X , respectively; The norm of the matrix X is defined

by ‖X‖2 := tr[XX T]; |X | = det[X ] denotes the determinant of

a square matrix X ; 1n represents an n-dimensional column

vector whose elements are all 1; p0 is a large positive

number, e.g., p0 = 106; ⊗ denotes the Kronecker product,

if A = [ai j] ∈ R
m×n, B = [bi j] ∈ R

p×q, then A⊗B = [ai jB] ∈
R

(mp)×(nq); col[X ] denotes the vector formed by the column

of the matrix X , that is, if X = [x1,x2, · · · ,xn] ∈ R
m×n, then

col[X ] = [xT

1,x
T

2, · · · ,xT

n]
T ∈ R

mn. f (k) = O(g(k)) means that

if there exist finite positive constants δ1 and k0 such that

| f (k)| 6 δ1g(k) for k > k0.

The identification model in (7) contains a parameter vector

α ∈R
n and a parameter matrix θ ∈R

n0×r. In order to identify

α and θ , the model in (7) needs to be transformed into a

new form. Let

ϑ :=

[

α
col[θ ]

]

∈ R
n+n0r,

Φ(kT ) := [−ψ(kT ), Ir ⊗ϕT(kT )] ∈ R
r×(n+n0r). (8)

Then we have

y(kT ) = Φ(kT )ϑ + v(kT ). (9)

Minimizing the following least squares criterion function:

J(ϑ) =
k

∑
i=1

‖y(iT )−Φ(iT )ϑ‖2

leads to the following recursive least squares (RLS) algo-

rithm for estimating the parameter vector ϑ :

ϑ̂(kT ) = ϑ̂(kT −T )+ P(kT )ΦT(kT )

×[y(kT )−Φ(kT )ϑ̂(kT −T )], (10)

P−1(kT ) = P−1(kT −T )

+ΦT(kT )Φ(kT ), P(0) = p0In+n0r. (11)

In order to avoid computing the matrix inverse P−1(kT ) in

(11), defining the gain matrix:

L(kT ) := P(kT )ΦT(kT ) ∈ R
(n+n0r)×r

and applying the matrix inversion lemma:

(A + BC)−1 = A−1 −A−1B(I +CA−1B)−1CA−1 (12)

to (11), we can obtain the equivalent expression of the RLS

algorithm in (10)–(11) as follows:

ϑ̂(kT ) = ϑ̂(kT −T )

+L(kT )[y(kT )−Φ(kT )ϑ̂(kT −T)], (13)

L(kT ) = P(kT −T)ΦT(kT )

×[Ir + Φ(kT )P(kT −T )ΦT(kT )]−1, (14)

P(kT ) = [In+n0r −L(kT )Φ(kT )]P(kT −T ). (15)

The drawback of the RLS algorithm in (13)–(15) is that it

requires computing the matrix inversion: [Ir +Φ(kT )P(kT −
T )ΦT(kT )]−1 ∈ R

r×r for each step. This causes a heavy

computational load, especially for a large r. In order to avoid

computing the matrix inversion, the coupled least squares

algorithm for estimating ϑ is derived and presented in next

section.

IV. THE COUPLED ESTIMATION ALGORITHM

Let y
i
(kT ) := y(kT + ti−1) and Φi(kT )∈R

1×(n+n0r) be the

ith row of Φ(kT ). From (9), we have

y
i
(kT ) = Φi(kT )ϑ + vi(kT ), i = 1,2, · · · ,r. (16)

Thus the stacked identification model in (7) is decomposed

into r subsystems. From (16), we can see that each sub-

system has the same parameter vector ϑ and the parameter

estimates ϑ̂(kT ) of the subsystems are different and mutually

independent. The least squares algorithm for the subsystems

is as follows

ϑ̂ i(kT ) = ϑ̂ i(kT −T )

+Li(kT )[y
i
(kT )−Φi(kT )ϑ̂ i(kT −T )], (17)

Li(kT ) = Pi(kT )ΦT

i (kT ), (18)

P−1
i (kT ) = P−1

i (kT −T )+ ΦT

i (kT )Φi(kT ), i = 1, · · · ,r,(19)

ϑ̂ i(kT ) is the parameter estimates for the ith subsystem.

The question arises: which ϑ̂ i(kT ) can be seen as the best

estimate of ϑ or how to get the estimate for ϑ from all of

the ϑ̂ i(kT )s? It is worth mentioning that one can not take

the average of all the estimates ϑ̂ i(kT )s as the estimate of

ϑ as mentioned in [24], because only a small part of the

parameters can be estimated from each subsystem identifi-

cation. Here, we propose a coupled least squares algorithm

to effectively estimate the parameters, without computing the

matrix inversion.

By means of the idea of the Jacobi and Gauss-Seidel

iterations [26], replacing ϑ̂ i(kT −T) in (17) with ϑ̂ i−1(kT )
for i = 2,3, · · · ,r, and replacing ϑ̂ 1(kT −T ) with ϑ̂ r(kT −T )
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for i = 1 in the recursive equations give the following coupled

least squares (C-LS) algorithm:

ϑ̂ i(kT ) = ϑ̂ i−1(kT )

+Li(kT )[y
i
(kT )−Φi(kT )ϑ̂ i−1(kT )], (20)

Li(kT ) = Pi(kT )ΦT

i (kT ), (21)

P−1
i (kT ) = P−1

i−1(kT )+ ΦT

i (kT )Φi(kT ), i = 2,3, · · · ,r(22)

and

ϑ̂1(kT ) = ϑ̂ r(kT −T)

+L1(kT )[y
1
(kT )−Φ1(kT )ϑ̂ r(kT −T )], (23)

L1(kT ) = P1(kT )ΦT

1(kT ), (24)

P−1
1 (kT ) = P−1

r (kT −T )+ ΦT

1(kT )Φ1(kT ). (25)

Applying the formula in (12) to (22) and (25), the C-LS

algorithm can be equivalently expressed as

ϑ̂ i(kT ) = ϑ̂ i−1(kT )

+Li(kT )[y
i
(kT )−Φi(kT )ϑ̂ i−1(kT )], (26)

Li(kT ) =
Pi−1(kT )ΦT

i (kT )

1 + Φi(kT )Pi−1(kT )ΦT

i (kT )
, (27)

Pi(kT ) = [I−Li(kT )Φi(kT )]Pi−1(kT ), i = 2,3, · · · ,r(28)

and

ϑ̂ 1(kT ) = ϑ̂ r(kT −T )

+L1(kT )[y
1
(kT )−Φ1(kT )ϑ̂ r(kT −T)], (29)

L1(kT ) =
Pr(kT −T )ΦT

1(kT )

1 + Φ1(kT )Pr(kT −T)ΦT

1(kT )
, (30)

P1(kT ) = [I −L1(kT )Φ1(kT )]Pr(kT −T ), (31)

where ϑ̂ i(kT ), Li(kT ) and Pi(kT ) are the parameter esti-

mation vector, gain matrix and covariance matrix of the

ith subsystem at time t = kT , respectively; ϑ̂ i−1(kT ) and

Pi−1(kT ) are the parameter estimation vector and covariance

matrix of the (i−1)th subsystem at time t = kT , respectively;

ϑ̂ r(kT − T ) and Pr(kT − T ) are the parameter estimation

vector and covariance matrix of the rth subsystem at time

t = kT −T , respectively.

The schematic diagram of the C-LS algorithm in (26)–(31)

is shown in Fig.2. In Fig. 2, the parameter estimate ϑ̂ 1(kT ) of

subsystem 1 is equal to the estimate ϑ̂ r(kT −T ) of subsystem

r at the preceding time t = kT −T plus the modified term

L1(kT )[y
1
(kT ) − Φ1(kT )ϑ̂ r(kT − T )] – see (29), and the

covariance matrix P1(kT ) of subsystem 1 at time t = kT

is computed through the covariance matrix Pr(kT − T ) of

subsystem r at the preceding time t = kT −T and the gain

vector L1(kT ) and information vector Φ1(kT ) of subsystem

1 – see (31). Similarly, the parameter estimate ϑ̂ 2(kT ) of

subsystem 2 is equal to the estimate ϑ̂ 1(kT ) of subsystem

1 plus the modified term L2(kT )[y
2
(kT )−Φ2(kT )ϑ̂ 1(kT )]

– see (26) with i = 2, and the covariance matrix P2(kT )
of subsystem 2 is computed through the covariance matrix

P1(kT ) of subsystem 1 and the gain vector L2(kT ) and

information vector Φ2(kT ) of subsystem 2 – see (28) with

i = 2. Similar procedure will be conducted as i increases.

The steps of computing the estimates ϑ̂ r(kT ) by the C-LS

algorithm in (26)–(31) are listed in the following:

1) Set the initial values: Let k = 1, ϑ̂ r(0) = 1n/p0,

Pr(0) = p0In+n0r, p0 = 106.

2) Collect the input-output data u(kT ) and y(kT ), and

form information vectors ψ(kT ) by (7), ϕ(kT ) by (7)

and Φ(kT ) by (8).

3) Compute the gain vector L1(kT ) by (30) and covari-

ance matrix P1(kT ) by (31) and update the estimate

ϑ̂ 1(kT ) by (29).

4) for i = 2 : r

Compute the gain vector Li(kT ) by (27) and co-

variance matrix Pi(kT ) by (28) and update the estimate

ϑ̂ r(kT ) by (26).

end

5) Increase k by 1 and go to Step 2.

About the parameter estimate ϑ̂ r(kT ) and covariance ma-

trix Pr(kT ) of subsystem r, we have the following remarks.

Remark 1 The parameter estimate ϑ̂ r(kT ) and covariance

matrix Pr(kT ) of subsystem r in (26)–(28) with i = r are

equivalent with the estimate ϑ̂(kT ) and covariance matrix

P(kT ) in (13)–(15), i.e.,

{

ϑ̂(kT ) = ϑ̂ r(kT ),
P(kT ) = Pr(kT ).

(32)

Remark 2 For the C-LS algorithm in (20)–(25), assume that

{vi(kT ),FkT } (i = 1,2, · · · ,r) is a martingale difference se-

quence defined on the a probability space {Ω,F ,P}, where

{FkT} is the σ algebra sequence generated by {vi(kT )},

i.e., FkT = σ(vi(kT ),vi(kT −T ),vi(kT −2T ), · · ·). The noise

sequence {vi(kT )} satisfies the following assumptions [25]:

(A1) E[vi(kT )|FkT−T ] = 0, a.s.,

(A2) E[v2
i (kT )|FkT−T ] 6 σ2 < ∞, a.s.

the following inequality holds:

∞

∑
k=1

r

∑
i=1

Φi(kT )Pi(kT )ΦT

i (kT )

[ln |P−1
i (kT )|]c

< ∞, a.s., c > 1.

V. EXAMPLES

Example Assume that the process model Pc has the follow-

ing transfer function:

Pc(s) =
2s+ 0.8

s2 + 0.8s+ 0.8
.

This is a second-order system and its corresponding state-

space realization is given by







ẋ(t) =

[

−0.8 −0.8
1 0

]

x(t)+

[

1

0

]

u(t),

y(t) = [2, 0.8]x(t).

87



-
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-
Pr−1(kT) Subsystem r

?

y
r
(kT)

?

Φr(kT)

ϑ̂ r(kT)

Pr(kT)

�

�

p p p p p p

p p p p p p

Subsystem 2

?

y
2
(kT)

?

Φ2(kT)

-
ϑ̂ 2(kT)

-
P2(kT)

-
ϑ̂ r(kT −T )

-
Pr(kT −T ) Subsystem 1

?

y
1
(kT)

?

Φ1(kT)

-
ϑ̂ 1(kT)

-
P1(kT)

Fig. 2. The schematic diagram of the coupled least squares algorithm

Let r = 2, t0 = 0, t1 =
√

2−1 s, t2 = T = 1 s, i.e., τ1 = t1 s,

τ2 = 2−
√

2 s. Discretizing this example system gets

x(kT + T) =

[

0.22659 −0.48086

0.60107 0.70745

]

x(kT )

+

[

0.15443 0.44665

0.22129 0.14440

][

u(kT )
u(kT + t1)

]

,

[

y(kT )
y(kT + t1)

]

=

[

2 0.80

1.60243 0.19991

]

x(kT )

+

[

0 0

0.75011 0

][

u(kT )
u(kT + t1)

]

.

Assume that the corresponding non-uniform discrete-time

system to be identified has the following form:

α(z)y(kT + ti−1) = β i(z)

[

u(kT )
u(kT + t1)

]

+ v(kT ), i = 1,2,

α(z) = 1 + α1z−1 + α2z−2 ∈ R
1,

β i(z) = β i0 + β i1z−1 + β i2z−2 ∈ R
1×2, i = 1,2.

In the simulation, the inputs {u(kT + ti), i = 0,1} are taken

as persistent excitation signal sequences with zero mean and

unit variance, and {v(kT )} as a white noise sequence with

zero mean and variance σ2. Consider two cases with the

noise variances σ = 0.102 and σ2 = 0.502, the corresponding

noise-to-signal ratios are δns = 11.59% and δns = 57.94%,

respectively. Applying the C-LS algorithm to estimate the

parameters of this non-uniform multirate system, the param-

eter estimates and their errors with different data lengths k

are shown in Tables I – II and the parameter estimation errors

δ versus t = kT are shown in Fig.3.

From Tables I – II and Fig. 3, we can see that the parameter

estimation error δ is becoming smaller (in general) with k

increasing and a lower noise level leads to more accurate

parameter estimates.

VI. CONCLUSIONS

This paper presents a C-LS algorithms for non-uniformly

sampled multirate systems. The proposed algorithm is simple

and easy to implement because it is not required to calculate

the matrix inversion at each step. The estimates given by the

C-LS algorithm are equivalent to those from the standard

recursive least squares algorithm, thus a good performance
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Fig. 3. The C-LS estimation errors δ versus t = kT with σ2 = 0.102 and
σ2 = 0.502

of the proposed algorithm can be guaranteed. Since the

converted model of the non-uniformly sampled system is in a

multi-input multi-output form, the gradient based algorithm

[27], [28] and the multi-innovation technique [29]–[33] can

be further extended to the coupled parameter estimation

algorithm.
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