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Abstract— Networks of mobile autonomous vehicles rely
heavily on wireless communications as well as sensing devices
for distributed path planning and decision making. Designing
energy efficient distributed decision making algorithms in these
systems is challenging and requires that different task-oriented
information becomes available to the corresponding agents in a
timely and reliable manner. We develop a systems engineering
oriented approach to the design of networks of mobile au-
tonomous systems, in which a cross-layer design methodology
determines what structures are to be used to satisfy different
task requirements. We identify a three-tier organization of these
networks consisting of connectivity, communication, and action
graphs and study the interaction between them. It is expected
that in each functionality of a network, there are certain
topologies that facilitate better achievement of the agents’
objectives. Inspired from biological complex networks, we
propose a bottom-up approach in network formation, in which
small efficient subgraphs (motifs) for different functionalities of
the network are determined. The overall network is then formed
as a combination of these sub-graphs. We show that the bottom-
up approach to network formation is capable of generating
efficient topologies for multi-tasking complex environments.

I. INTRODUCTION

Design of energy efficient distributed path planning and

data dissemination algorithms in networks of autonomous

vehicles requires understanding of the system and communi-

cation complexity, identifying tasks and their requirements,

and trade off analysis of the performance metrics. Perfor-

mance of a network of vehicles, from the perspective of

achieving goals and objectives in a timely and reliable man-

ner is constrained by their collaboration and communication

structures and their interplay with the vehicles’ dynamics.

The safety and efficiency considerations require that these

networks are endowed with structures that facilitate efficient

information transmission. The objective of this paper is to

develop a framework for the design of efficient information

transmission structures for collaborative mobile agents.

In the field of collaborative control the flow of information

between a group of entities requires different apparatus and is

performed for different goals. Therefore the term ‘network’

is used to describe various structures that cover different

aspects of information transmission. In the high level design,

networks are often modeled as graphs and graph theoretic
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analysis is performed to analyze the performance. Several

works have considered the effects of graph topology on

the convergence of the distributed consensus/gossip based

algorithms for collaborative control applications (e.g., see

[21], [11], [24], [13] and the references therein). In [2] and

[13], we provided a rigorous evaluation of network topology

effects on the performance of these algorithms and showed

the efficiency of certain small world topologies. The design

philosophy behind these works is that of a top-down design,

i.e. the graphs that optimize a single performance metric or

satisfy a favorable trade-off are selected as the candidates for

the system structure. The results of such analysis are often

asymptotic and valid for large number of agents [9]. There

have also been many works that consider the analysis of

network formation, starting from the local level. The focus

of this bottom-up approach has been to discover how local

preferences and decisions will result in the emergence of real

world networks with properties such as heavy tailed degree

distributions and small world effect [9]. Using any design

philosophy, the intended links are to be realized via low

power wireless media. The lower level design addresses chal-

lenges emanating from realizing the ideal graph topologies

and consists of physical layer, MAC layer and network layer

constraints. Some recent works have addressed cross layer

design for optimizing energy efficiency in wireless sensor

networks for control applications [22], [18]. A crucial point

is that the behavior of low power communication links cannot

be adequately captured via simple on-off binary models

due to asymmetric and unreliable characteristics of wireless

communications [25].

We consider the interdependence of these two levels of de-

sign and develop a systems engineering framework to capture

the design requirements effectively. Our main contribution

is two-fold. First, we introduce a three-tier organization of

collaborative control networks consisting of connectivity,

communication, and action graphs and study the interaction

between these graphs. We then design a bottom-up archi-

tecture to enhance the performance of such networks and

analyze the networks that result in a hierarchical manner by

merging efficient sub-networks.

The structural implication of the results of our earlier work

on the design of efficient and robust networks as a link

augmentation process [3] indicates that efficient topologies

emerge as the result of two competing processes: minimizing

a notion of distance between the nodes (a global effect)

and making the communication requirements of neighboring

nodes as symmetric as possible (a local effect), i.e. the

local neighborhood of the nodes should be reasonably well-
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connected, whereas long range links should provide global

connectivity. To design efficient local connectivity patterns,

in this paper we use the idea of network motifs which

was first proposed in the context of biological networks

[19]. Network motifs are task specific local connectivity

patterns, which exist with much higher frequency in real

biological networks compared to those in random networks.

These are sub-networks of low number of nodes (usually 3-

4) whose persistence in networks, imply their efficiency in

the sense that they optimize certain performance metric in a

local scale. Recently, certain algorithms for determining such

sub-networks using convex optimization methods have been

proposed, which essentially treat the problem as a system

identification problem from equilibrium information [26],

[14]. Such approaches can not be taken in the context of

collaborative vehicles, since the system can not be treated

in equilibrium. Instead, we use a simulation testbed to find

network motifs for local communication structures. Here, the

group mission consists of several tasks such as search op-

eration, data gathering/processing, target finding and leader

follower explorations. Each task gives rise to certain motifs

that are specific to that task and the partial knowledge of

the environment specifications that the agents operate in.

In this way, the most efficient task-specific local topologies

are extracted. Switching suitable graphs when the mode

of operation is changing can be handled by solving the

resulting reachability problem using methods for symbolic

planning such as graph grammars [15], [23]. Based on

such switchings, we also address the effects of split/merge

operations on the spectral characteristics of the resulting

connectivity graphs.

The paper is organized into the following sections. The

basic set up of the problem, the taxonomy of collaborative

control networks and the motif generation algorithm are

presented in Section 2. Section 3 addresses the hierarchical

network formation design and the effects of merging the

motifs on network performance and structure. Simulations

and discussion are provided in Section 4. Section 5 concludes

the paper.

II. TASK-ORIENTED MOTIF SELECTION IN THE

COLLABORATIVE VEHICLES FRAMEWORK

In this section, we describe our systems engineering

based approach to the design of efficient network topologies

for collaborative vehicles. The idea is to capture the task

requirements in action graphs, form efficient sensing and

communication subgraphs based on trade-offs between the

tasks’ importance, and integrate the topologies in a hierar-

chical manner. The design procedure is depicted in Figure 1.

We consider a group of n autonomous ground vehicles

over an area A ⊂ R2, with unknown obstacles and threats.

There is very limited knowledge available regarding the

internal structure or the topology of A . The vehicles explore

the area A under little or no direct human supervision,

perform collaborative activities, cover a target area T ⊂ A ,

while avoiding any obstacles and threats and exchanging

information.

Fig. 1. A systems engineering approach to task oriented topology design

A vehicle detects a moving threat if it is within its Rd

distance, and can be destroyed by the threat if their distance

is less than Re (< Rd). The vehicles can sense each other and

obtain information about each others’ positions and velocities

if they are within the neighboring distance Rs =Rd . There is a

desired inter-vehicle distance R0 (less than Rs). The vehicles

are provided with wireless communication radios and can

communicate. The wireless channels are vulnerable to fading

and interference [20]. In this paper, we consider: (a) Physical

layer losses and attenuation (b) Media access layer losses and

contention, which occur as the result of interference, when

multiple nodes are transmitting data simultaneously.

A. Three essential graphs

There are three graphs that describe the network of moving

vehicles: a connectivity graph, a communication graph, and

an action graph. The first two graphs describe the infor-

mation exchange in the network whereas the action graph

captures the collaborative task specific requirements.

We order the vehicles and identify each one with its

index. The connectivity graph is modeled as a dynamic graph

topology Gc = (V ,E (t)). The vertices represent the vehicles

and there is a bi-directional link between two nodes i and j

with corresponding position vectors pi and p j at time t if

||pi(t)− p j(t)|| ≤ Rs.

By Ni(t), we denote the set of the (connectivity) neighbors

of vehicle i, defined by Ni(t)
△
= { j ∈ V (t) : j 6= i,‖pi(t)−

p j(t)‖ ≤ Rs}. We also use the notation j ∼ i, if j ∈ Ni.

The communication graph is also a dynamic graph Gcom =
(V ,Ecom(t)) in which the links are uni-directional and exist

whenever the communication between the corresponding

nodes is successful. In simulation studies, it is usually

assumed that based on the allocated energy, the transmission

power is set so that in the case where there is no obstacle,

a communication radius Rc is covered. This model has been

shown to be misleading due to unreliability and asymmetry

of real links and models. More realistic models incorporate

sending and receiving radio parameters as well as the en-

vironmental parameters [25], [16]. It is important to note

that the existence of a communication link is meaningful in

a statistical sense. Furthermore, any time a node’s attempt

to transmit data fails, it starts a re-transmission procedure

until a time-out happens. We assume that a link between

two nodes exists at time t, if and only if the transmission
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is successful within the specified time limit [t, t +TTimeout ],
where TTimeout denotes the time-out interval.

The action graph determines which node requires access

to which node’s information for a given purpose at a given

time. Action graphs are used to capture the specific require-

ments of each task. In this work, we impose a minimal

constraint of action graphs with strong connectivity for

assuring safe operation of the vehicles.

B. Tasks, motifs, and an algorithm for motif generation

We now determine a framework for extracting connectivity

and communication network motifs for collaborative control

of vehicles. Network motifs were first introduced as building

blocks of complex networks in the context of gene tran-

scription networks [19], [1]. A network motif is a subgraph

that recurs in complex networks with much higher frequency

than in random networks. It is shown that certain subgraphs

of 3 and 4 nodes persist in gene transcription networks by

an algorithm that compared their occurrence versus random

networks. The application of the algorithm to other types of

networks (food webs, neuron connectivity, electronic circuits,

and World Wide Web) suggested that persistent motifs are

task dependent and represent the underlying functionality

of the network. For example, similar motifs can occur in

electronic circuits and food webs, when the underlying

functionality is to provide efficient flow of energy. Also,

biological networks are evolved to address multiple tasks in

a robust manner, i.e. the topologies in biological networks

provide satisfactory performance for conducting multiple

tasks rather than optimizing the conduction of a single task.

The motif selection algorithm can be adopted for the

collaborative control framework, using a (potential) energy

minimization method. The idea is to find small persistent

connectivity and communication topologies that evolve in

the course of missions using the partial knowledge of the

terrain. The algorithm uses the following principles:

1) Task specifications: The tasks to be performed should

be selected. Typical tasks include search and target

finding, tracking, obstacle and threat avoidance, data

gathering, exchange and processing information and

leader follower explorations. In this step task require-

ments are translated into constraints on action graphs.

2) Energy assignment: Energy functions {J j(i)}
(n,M)
(i, j)=(1,1)

are attributed to each of the M tasks {Tj}
M
j=1 for

each vehicle. These functions are selected so that

minimizing them would result in task achievement.

3) Task combination: To account for multiple tasks that

each agent should perform, we combine them linearly.

Agent i is assigned with an energy function

Ji,t(pi(t)) =
M

∑
j=1

λ jJ
j
i,t(pi(t))

The weights determine the importance of the tasks and

are used as trade-off parameters in studying the effect

of different tasks on the emerging topology.

4) Randomizing the environment: The exact specifications

of the terrain are often unknown prior to the mission.

Using partial knowledge about the environment, (e.g.

the number of obstacles and threats and their expected

position) expected mission environments are generated.

5) Running simulations: The simulations involve each

node minimizing its corresponding energy function via

gradient descent method,

ṗi(t) =−
∂Ji,t(pi)

∂ pi

. (1)

using only information local in time and space to the

node [6]. Independent simulations are run to average

out the effects of terrain uncertainties.

6) Analysis: The resulting connectivity and communica-

tion subgraphs are analyzed to determine the most

persistent subgraphs in successful missions with valid

action graphs.

We will apply this algorithm to a collaborative control

problem in Section IV.

C. Relays and hierarchical network formation

Our previous work [13], [3] shows that efficient network

structures are locally well-connected and also supplied with

long range links that provide reasonable global connectivity.

Such long range links are implementable using a hierarchical

structure. After designing efficient clusters of small number

of nodes (motifs), each cluster elects a head-node equipped

with multi-mode communication capabilities as well as

longer range sensing devices. These cluster-heads maintain

the cluster’s connectivity with the rest of the network through

communicating with aerial platforms (APs) that act as relays

in the network (See [4] and [5]).

III. SPECTRAL PROPERTIES OF THE HIERARCHICAL

DESIGN

A graph theoretic approach is used to study the connectiv-

ity of the composite graphs determined by the hierarchical

design. The set of n vehicles and their connectivity (or

communication) network are modeled by a graph G=(V,E).
The nodes of the graph, V = {1,2, ...,n} represent the

vehicles and the edges E = {l1, l2, ..., le} represent the links.

The connectivity properties of a graph are captured by its

Adjacency and Laplacian matrices and their spectra. The

adjacency matrix, A is a symmetric n by n matrix with 1

(resp. 0) in the (i, j)th position, if there is (resp. is not) a

link between nodes i and j. We denote the characteristic

polynomial for the adjacency matrix by Φ(G) = det(µI−A)
and its eigenvalues by µ1 ≤ µ2 ≤ ...≤ µn. The degree of node

i, di is the total number of edges incident to it. Let D be a

diagonal matrix with the ith diagonal entry equal to di. The

Laplacian of a graph is defined as L = D−A. The Laplacian

is a positive semidefinite matrix. We denote its characteristic

polynomial by Ψ and its eigenvalues by λ1 = 0 ≤ λ2 ≤ ...λn.

Many structural properties of graphs can be deduced based

on the Adjacency and Laplacian spectra [8], e.g. the lower

the number of distinct eigenvalues of A, the better the

structural properties of the graph [10]. The distance of the
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Fiedler eigenvalue λ2 > 0 from zero determines how well-

connected a connected graph is. For k−regular graphs λ2 =
k− µn−1 and therefore small µn−1 is desired. We calculate

the characteristic polynomial of the adjacency matrix of the

hierarchical graph based on those of the starting subgraphs

(ground clusters or motifs) as a generalization of a method

of Gutman [12].

Consider a group of vehicles divided into N clusters (mo-

tifs) {G1,G2, ...,GN}. Each cluster consists of a few vehicles

and their interconnections. The cluster Gi is connected to one

and only one Aerial Platform (AP) in the higher level through

one of its members, a designated cluster-head r(Gi). APs and

their descendent vehicles can form clusters connected to a

higher level AP. The process of going from the k−1st level

to the kth level consists of joining each of the APs in the kth

level to their descendants by a link with the constraint that

each AP in the k−1st level is connected to one and only one

kth level AP. This process is continued till the highest level of

the hierarchy with only one node is reached. Examples of 2

and 3 hierarchies are depicted in Figure 2. The characteristic

function for the adjacency matrix of the hierarchical graph,

Φ(G), is calculated using the following lemma.

(a) A two-level hierarchy (b) A three-level hierarchy

Fig. 2. The hierarchical graph formation process

Lemma 3.1: 1) If two graphs G1(V1,E1) and

G2(V2,E2) are disjoint, and their direct sum is

given by G = G1 ⊕G2 = (V1 ∪V2,E1 ∪E2), then

Φ(G) = Φ(G1).Φ(G2) (2)

2) If the link (i, j) is a bridge in a graph, i.e. its deletion

will add a disjoint component to the graph, then:

Φ(G) = Φ(G−{(i, j)})−Φ(G−{i}−{ j}), (3)

where, G−{(i, j)} is the graph resulting from deletion

of the edge (i, j) and G − {i} − { j} is the graph

resulting from deletion of vertices i and j and the links

incident to them.

Proof: The proof is standard and can be found in [8].

In the case of a 2-level hierarchy (Figure 2(a)), there is one

AP and the ground clusters {G1,G2, ...,GN}, are connected

to the AP by N links. The spectrum of the composite graph

can be obtained using the following theorem.

Theorem 3.1: For a 2-level hierarchical topology, with

N clusters {G1,G2, ...,GN}, the characteristic polynomial is

determined by:

Φ(G) = λ
N

∏
k=1

Φ(Gk)−
N

∑
i=1

∏
k 6=i

Φ(Gk).Φ(Gi −{r(Gi)}). (4)

Proof: The proof follows by induction on N. If there

is only one cluster G1 and one AP, using Lemma 3.1, results

in: Φ(G) = λ Φ(G0)−Φ(G0 −{r(Gi)}),
If we add a second cluster G2, using Lemma 3.1

yields, Φ(G) = λ Φ(G1)φ(G2)−Φ(G1)Φ(G2 −{r(G2)})−
Φ(G2)Φ(G1 −{r(G2)}). Therefore the result holds for N =
2. Now, if the result holds for m = N −1, using Lemma 3.1,

Φ(G) = [λ
N−1

∏
k=1

Φ(Gk)−
N−1

∑
i=1

∏
k 6=i

Φ(Gk).Φ(Gi −{r(Gi)})]

.Φ(GN)− ∏
k 6=N

Φ(Gk)Φ(GN − rN) =

λ
N

∏
k=1

Φ(Gk)−
N

∑
i=1

∏
k 6=i

Φ(Gk).Φ(Gi −{r(Gi)}).

Extension to higher levels of hierarchy is immediate at the

cost of more indexing. Consider the case of the 3-level

connectivity hierarchy in Figure 2(b). Each of the gray

shaded clusters G∗
i consists of a first Level AP (cluster-head

in the new setting) and its descendants. Theorem 3.1 can be

invoked again to find the characteristic polynomial for the

composite graph:

Φ(G) = λ
N

∏
k=1

Φ(G∗
k)−

N

∑
i=1

∏
k 6=i

Φ(G∗
k).Φ(G∗

i −{r(G∗
i )}),

in which the ith cluster, G∗
i , consists of the AP denoted

by r(G∗
i ) and first level motifs are G0,G1, ...,GN1

, so that

Φ(G∗
i ) = λ ∏

N1
k=1 Φ(Gk)−∑

N1
i=1 ∏k 6=i Φ(Gk).Φ(Gi−{r(Gi)}),

and Φ(Gi −{r(Gi)}) = ∏
N1
k=1 Φ(Gk).

IV. SIMULATIONS

We illustrate our proposed algorithm by simulating a

scenario consisting of 4 collaborating vehicles, and study

the connectivity and communication networks emerging in

the process for N = 100 independent runs over a randomized

terrain. The tasks that each vehicle should perform, consist

of: reaching a fixed target, obstacle avoidance, collision

avoidance, and moving threat avoidance. We assume that the

vehicles gather and communicate data for a joint estimation

effort. We assume that the action graph needed for this effort

contains bi-directional links {(v0,v3),(v0,v2),(v1,v2)}. The

communication attempts are made when vehicles can sense

each other or a beacon signal indicating the existence of the

others in the range.

The terrain is a 700m×700m area A with the target area

being the neighborhood of the point (670,670). Only the

number and the approximate size of the obstacles are known

before hand. In the simulations 10 obstacles are generated

uniformly inside the area A . The vehicles start from around

point (100,100). Six moving threats rotate around the target

on two concentric circles. The detection range is Rd = 50m,

and Re = 12.5m. Each vehicle senses other vehicles in a

radius of Rs = 50m. A mission is declared ‘successful’ if

the majority of the vehicles safely reach the target.

Each vehicle maintains a potential function Ji,t(pi) =
λgJ

g
t (pi(t)) + λnJn

i,t(pi(t)) + λoJo
t (pi(t)) + λmJm

t (pi(t)),
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Fig. 3. Sample mission terrain: Communication graphs for snapshots =
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where, J
g
t , Jn

i,t , Jo
t and Jm

t are the component potential

functions relating to the target, neighboring vehicles,

obstacles and moving threats respectively, and λg, λn, λo

and λm are the corresponding weighting factors. Each

vehicle moves in the gradient descent direction according to

Equation (1). The potentials are chosen so that they encode

the intended behavior of the vehicles regarding obstacle

avoidance, keeping distance from neighbors and target

finding correctly. The details for the choice of potential

functions can be found in our previous work [6]. The

parameters λg = 200,λn = 500,λo = 1000, and λm = 1000

are used in this paper.

On the communication side, we model the physical layer

path loss by considering the obstructions occurring in the first

Fresnel zone [7]. We use the IEEE 802.11 based medium

access control (MAC) protocol. The wireless medium is

shared between vehicles using the CSMA/CA mechanism.

We use the UDP protocol at the transport layer, since smaller

delays are desirable for timely decision making, where cer-

tain level of packet transmission errors can be overcome by

aggregating data traffic from all vehicles. In our simulations,

the trajectory determination gradient algorithm (Equation

(1)) is implemented in MATLAB, and the simulation of

the wireless communication network is carried out in the

network simulator software, NS-2.

Figure 3 shows a sample run of the simulation. The

resulting communication graphs at 3 snapshots t = 10,21,

and 35 are magnified in the figure, where only at t = 35 the

communication graph is connected. After running N = 100

simulation runs, 72 successful runs were identified, in which

3 or 4 vehicles reached the target. We identified a list of

the most persistent connectivity and communication motifs.

Figure 4 displays the motif “dictionary” list. Figures 5 and

6 respectively show the percentage of occurrence among the

most persistent motifs in connectivity and communication

graphs in successful missions. We now consider a three level

hierarchical network with 4 APs in which all the vehicle

motifs are in the form of m1 constructed by the method

m1

m2

m3

m4

m5

m6

m7

Fig. 4. A dictionary of all the connectivity and communication motifs

of section III. Therefore the graph consists of 69 nodes.

Figure 7 shows the eigenvalues of the composite graph. Some

observations follow:

1- The emerging connectivity motifs are well-connected,

i.e. in the successful runs of simulations, the vehicles main-

tain a well-connected topology. This confirms our previ-

ous assertion [3] that efficient networks are locally well-

connected. These locally well-connected graphs should be

interconnected using the hierarchical approach of section III

to minimize a notion of graph distance between geographi-

cally distant nodes as indicated in [3].

2- The emerging communication motifs are mostly dis-

connected. This primarily points out a major shortcoming

of contention-based communication networks for estimation

and control purposes in cluttered environments. Unless the

number of vehicles and the communication demand are

small, IEEE 802.11 based MAC protocols are unable to

address the specifications demanded by the action graph.

Apparently, the terrain obstructions are fatal in scenarios

where the group of energy constrained vehicles need to have

reliable communications. This problem can be addressed by

the hierarchical design of Section III, where aerial vehi-

cles assist in providing connection between distant parts of

the terrain. Another avenue is to consider Stigmergy-based

communication, where vehicles moving on the terrain leave

“traces” that can be used by other vehicles. This approach

has been recently addressed using RFID cards [17].

3-The Fiedler eigenvalue of the composite hierarchical

graph is λ2 = 0.0464. This is an order of magnitude larger

than that of a ring topology over the same number of nodes.

For n = 69, such a graph has Fiedler eigenvalue of 0.0083.

Order of magnitude improvement in Fiedler eigenvalue cor-

responds to better connectivity [2].

V. CONCLUSIONS

In this paper, we provided a three-tier organization of

collaborative control networks consisting of connectivity,

communication and action graphs. We proposed a bottom-up

network formation design methodology based on finding ef-

ficient small subgraphs optimized for effective performance.

We studied the structural properties of the composite graphs
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based on the spectral analysis of the emerging networks. We

also studied the interconnection of the action, connectivity,

and communication graphs in a network of collaborative

vehicles and showed that in complex and cluttered envi-

ronments, these graphs affect each other significantly. An

interesting observation is that conventional communication

schemes are not efficient for collaborative control applica-

tions, where unconventional and implicit communications,

use of stationary and mobile relays and hierarchical design

are to be implemented for satisfactory operation.
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