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Abstract— This paper studies the tracking problem of an
uncertain LTI system where both the control input and system
state are quantized. The L1 adaptive controller is designed
for the quantized system. Two common types of quantization,
logarithmic and uniform, quantization are considered. In both
cases, the analysis of the closed-loop system provides a uniform
transient performance bound, which depends on the adaptation
rate and the quantization densities of the state and the input.
By increasing the adaptation rate and improving the state and
the input quantization, the closed-loop system response can
be rendered arbitrarily close to the reference system output.
Finally, the simulations illustrate the theoretical results.

I. INTRODUCTION

Real world systems are usually described by continuous-

value continuous-time models. The variables used in the

models take values in finite-dimensional Euclidean spaces.

However, the values can be obtained only with finite pre-

cision. Quantization is a mapping from a larger set (such

as a finite-dimensional Euclidean space) to a smaller set of

finite or countably many symbols. It describes both hardware

and software limitations. For instance, for hardware, it can

describe the imprecise measurement, where only finite digits

can be read from a meter, or the constrained control, where

only selected values of control are allowed. For software

limitation, such as in communication, it provides an approx-

imation to a continuous-value variable, and thus reduces the

transmission bits for a single value from infinite to finite.

Several papers studied quantization in LTI systems [1]–

[4]. In quantized systems, two quantizers are typical. In [2],

[5], the problem of stabilizing an unstable LTI system has

been studied. The logarithmic quantizer has been shown

to be the coarsest quantizer to stabilize the system. The

idea of logarithmic quantizer is to maintain a small relative

error. So it gets finer around the origin and coarser away

from the origin. In [4], the problem of state estimation has

been considered. Using information theoretic criteria, such as

monotonic boundedness of entropy of the estimation error,

it has been shown that the uniform quantization is the one

that achieved the minimum rate.

Consider the tracking problem of an uncertain quantized

system in the aforementioned two typical cases: logarithmic
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quantization and uniform quantization. To deal with the sys-

tem uncertainty, we use an adaptive controller to estimate the

uncertainty and adjust the control according to the estimate.

We refer to the L1 adaptive controller due to its ability of

fast adaptation with guaranteed robustness (bounded away

from zero time-delay margin) [6], [7]. With L1 adaptive

controller the closed-loop system has a predictable response,

i.e., uniform scaled response with all the changes in ini-

tial conditions, reference inputs and unknown parameters

[7]–[10]. In this paper we show that in the presence of

quantization, the L1 architecture leads to uniform perfor-

mance bounds, which can be decoupled into three terms,

highlighting the trade-off between adaptation, robustness and

quantization. Compared to the adaptive control of regular

(non-quantized) systems, quantization introduces nonlinear

and non-differentiable quantization errors.

We notice that event-triggering with L1 adaptation in

networked systems was reported in [11]. Input quantization

was considered in [12] for linear systems, and in [13]

for nonlinear multi-input multi-output systems. This paper

extends the results of [12] to accommodate also state quan-

tization. The focus of the paper is on the quantization effect

for system performance in the absence of an event detector.

The paper is organized as follows. The problem formula-

tion is introduced in Section II, and the controller is designed

in Section III. Sections IV and V introduce the two typical

quantization schemes: logarithmic and uniform quantization.

It is followed by the analysis of the closed-loop system in

Section VI. Finally, simulations in Section VII illustrate the

results.

Throughout the paper, ‖ · ‖1,‖ · ‖2 and ‖ · ‖∞ denote the

1-norm, 2-norm and infinity norm of a vector, respectively.

Notations ‖ξt‖L∞
and ‖ξ‖L∞

denote, respectively, the trun-

cated (to [0, t]) L∞-norm and the (untruncated) L∞-norm

of the time-varying signal ξ(t). For a stable proper transfer

matrix G(s), ‖G(s)‖L1 denotes its L1-norm.

II. PROBLEM FORMULATION

Consider a networked control system, where the plant and

the controller are connected by a communication network.

Specifically, we analyze the quantization effect of the system.

To communicate over the network, the state is quantized and

sent over the network to the controller. At the other end,

the generated control is preprocessed, quantized, and sent to

control the plant. The system diagram is shown in Figure 1.
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Fig. 1: Quantized System with L1 adaptive controller

The plant dynamics are given by

ẋ(t) =Amx(t) + b
(

−θ⊤x(t) + uq(t)
)

,

y(t) =c⊤x(t) , x(0) = x0 ,

xq(t) =Qx(x(t)) , uq(t) = Qu(uqin(t)) , (1)

where Am is a known n × n Hurwitz matrix, b, c ∈ R
n are

known constant vectors, θ ∈ R
n is an unknown constant

vector, x(t) ∈ R
n is the system state vector (measured),

y(t) ∈ R is the regulated output, uqin(t) is the designed

control signal, and Qx(·) and Qu(·) are the quantization

functions for state and input respectively.

Assumption 1: The unknown parameter θ belongs to a

given compact convex set ΘB, θ ∈ ΘB. Let θ1 max ,

maxθ∈ΘB
‖θ‖1.

The objective is to design an adaptive controller that would

compensate for the uncertainties in the system and ensure

analytically quantifiable uniform transient and steady-state

performance bounds in the presence of both input and state

quantization.

III. L1 ADAPTIVE CONTROLLER

In this section we present the L1 adaptive controller for

the system in (1). The L1 adaptive controller consists of a

state predictor, an adaptive law and a control law, Fig. 1.

We consider the following state predictor

˙̂x(t) =Amx̂(t) + b(−θ̂⊤(t)xq(t) + uq(t))

ŷ(t) =c⊤x̂(t) , x̂(0) = x0 , (2)

where x̂(t) ∈ R
n, ŷ(t) ∈ R are the state and the output of the

state predictor and θ̂(t) ∈ R
n is an estimate of the parameter

θ. The projection-type adaptive law for θ̂(t) is given by

˙̂
θ(t) = ΓProj(θ̂(t), xq(t)x̃

⊤
q (t)Pb), θ̂(0) = θ̂0, (3)

where x̃q(t) , x̂(t) − xq(t) is the error between prediction

and quantized state, Γ > 0 is the adaptation rate, Proj(·, ·)
denotes the projection operator [14], which ensures that

θ̂(t) ∈ ΘB for all t ≥ 0, and P = P⊤ > 0 solves the

algebraic Lyapunov equation A⊤
mP + PAm = −Q for some

symmetric Q > 0. The control signal is defined by

u(s) = C(s) (η̂q(s) + kgr(s)) , uqin(t) = f(u(t)), (4)

where kg , 1/(c⊤H(0)), H(s) , (sI − Am)−1b, η̂q(t) ,

θ̂⊤(t)xq(t), uqin(t) is a modified control signal, and the

function f is selected according to an appropriate quantiza-

tion method, while C(s) is a BIBO stable and strictly proper

transfer function with DC gain C(0) = 1, and its state-space

realization assumes zero initialization. Let

G(s) , H(s)(C(s) − 1) . (5)

The L1 adaptive controller consists of (2) - (4), with C(s)
verifying the following upper bound for the L1 norm of G(s)

λ , ‖G(s)‖L1θ1max < 1. (6)

IV. LOGARITHMIC QUANTIZATION

Let Qlog(·) be the quantization function of the logarithmic

quantizer. If the input signal is v(t), the quantization density

is ρ, and the parameters for the quantization intervals are α0

and v0, the quantization function is defined by [15]

vq(t) = Qlog(v(t)) =











vi, αi ≤ v(t) < αi+1,

0, v(t) = 0,

− vi, −αi+1 ≤ v(t) < −αi,

(7)

where α0 > 0, 0 < ρ < 1, α0 < v0 < α1, α0 ≤ v0 ≤
1
ρ
α0, αi+1 = 1

ρ
αi, vi+1 = 1

ρ
vi, i ∈ I. The logarithmic

quantization function Qlog is shown in Figure 2.
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Fig. 2: Logarithmic Quantization Function, ρ = 1
3 .

Let M1 , vi

αi
= v0

α0
and M2 , vi

αi+1
= ρ v0

α0
= ρM1. We

know from (7) that

M2|v| ≤ |vq| ≤ M1|v|. (8)

A. State Quantization Error

If the state quantization is logarithmic, then Qx(x(t)) =
Qlog(x(t)), x(t) ∈ R. For state quantization, let the quantiza-

tion density be ρqx, and the parameters for quantization inter-

vals be α0x and v0x. Let M1x = v0x

α0x
, and M2x = ρqxM1x.

The sector bounds become M2x|x| ≤ |xq| ≤ M1x|x|. If the

state quantization error is defined by xqe(t) = x(t) − xq(t),
as shown in the Figure 2, it is bounded by

|xqe(t)| ≤ δx|x(t)|, δx , max{(M1x − 1), (1 − M2x)}.
Remark 1: The constant δx represents the relative error

for the quantization. It is independent of the value x(t),
and depends only on M1x and M2x, and thus depends on

the quantization parameters α0x, v0x, and ρqx. When these

quantization parameters are fixed, δx is fixed.

When α0x and v0x are fixed, δx depends only on the

quantization density ρqx. When the quantization is finer, i.e.

ρqx is larger, δx is smaller. �
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The quantization error bound carries to the vector case

x(t) ∈ R
n. For each entry, assign a logarithmic quantizer

as described before. Let the constants be δxj , j = 1, . . . , n.

Then δx = maxj=1,...,n δxj .

B. Input Quantization Error

If the input quantization is logarithmic, then

Qu(uqin(t)) = Qlog(uqin(t)). For input quantization,

let the quantization density be ρqu, and the parameters for

quantization intervals be α0u and v0u. Let M1u = v0u

α0u
and

M2u = ρquM1u. By (8), the sector bounds of uq(t) are

given by M2u|uqin| ≤ |uq| ≤ M1u|uqin| .Thus,
∣

∣|uq| − M1u+M2u

2 |uqin|
∣

∣ ≤ M1u−M2u

2 |uqin| . (9)

Since uq and uqin always have the same sign, we have
∣

∣uq − M1u+M2u

2 uqin

∣

∣ ≤ M1u−M2u

2 |uqin|. Let flog be the

modification function as in (4) for the logarithmic quantizer.

Following [15], we choose

uqin = flog(u) = 2
M1u+M2u

u . (10)

Let the input quantization error be uqe(t) , uq(t) − u(t).
Since uq = u + uqe = M1u+M2u

2 uqin + uqe, (9) implies

|uqe(t)| ≤ M1u−M2u

2 |uqin(t)| = δu|u(t)| , (11)

where δu , M1u−M2u

M1u+M2u
. Since the inequality in (11) holds for

all t ∈ (0,∞), we have

‖uqe‖L∞
≤ δu‖u‖L∞

. (12)

Note that δu = M1u−M2u

M1u+M2u
=

1−ρqu

1+ρqu
is also a constant

representing the coarseness of the quantizer as ρqu in (7).

When the quantizer is finer, ρ increases, δu decreases.

V. UNIFORM QUANTIZATION

Let Qunif(·) be the quantization function of the uniform

quantization. If the input signal is v(t), the quantization

function vq(t) = Qunif(v(t)) is defined by

vq(t) =











vi, αi ≤ v(t) < αi+1,

0, α0 ≤ v(t) < α0,

− vi, −αi+1 ≤ v(t) < −αi,

where α0 = 1
2 l, α0 < v0 < α1, αi+1 = αi + l, i ∈

I, and l is the length of the quantization interval. The

uniform quantization function Qunif is shown in Fig. 3. The

quantization error in this case is bounded by |vq − v| ≤ 1
2 l.
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Fig. 3: Uniform Quantization Function, l = 3.

Similar to Section IV-A, the quantization error bound

carries to the vector case v(t) ∈ R
n. Likewise, assign a

uniform quantizer for each entry as described before. Let the

constants be lxj , j = 1, . . . , n. Then lx = maxj=1,...,n lxj .

VI. ANALYSIS OF L1 ADAPTIVE CONTROLLER

A. Stability of Reference System

Consider the reference system

ẋref(t) =Amxref(t) + b
(

−θ⊤xref(t) + uref(t)
)

yref(t) =c⊤xref(t) , xref(0) = x0 , (13)

uref(s) =C(s)
(

θ⊤xref(s) + kgr(s)
)

, (14)

which can be rewritten as

xref(s) = H(s)kgC(s)r(s)+G(s)θ⊤
xref(s)+(sI − Am)−1

x0,

xref(s)=(I− G(s)θ⊤)−1[H(s)C(s)kgr(s)+(sI − Am)−1
x0].(15)

Lemma 1 ([8]): If the condition in (6) holds, then (I −
G(s)θ⊤)−1 and (I−G(s)θ⊤)−1G(s) are BIBO stable. �

If the two transfer functions are BIBO stable, the relations

in (15) and (14) lead to the following bounds

‖xref‖L∞
≤ ρxr

, ‖uref‖L∞
≤ ρur

, (16)

ρxr
, kg‖(I − G(s)θ⊤)−1H(s)C(s)‖L1‖r‖L∞

,

+ ‖(I − G(s)θ⊤)−1‖L1‖(sI − Am)−1x0‖L∞

ρur
, ‖C(s)θ⊤‖L1ρxr

+ kg‖r‖L∞
.

B. Prediction Error

Let x̃(t) , x̂(t)−x(t), and θ̃(t) , θ̂(t)− θ. From (1) and

(2), we have the prediction error dynamics

˙̃x(t) = Amx̃(t) + b
(

θ⊤x(t) − θ̂⊤(t)xq(t)
)

, x̃(0) = 0 . (17)

Lemma 2: For the system in (1) and the controller defined

by (4), if ‖xt‖L∞
≤ ρx and the state quantization is the

logarithmic quantization as defined in Section IV-A, we have

the following bound

‖x̃t‖L∞
≤ max

{√

θ2max

λmin(P )Γ , cx̃ log(δx)ρx

}

, (18)

θ2max , 4 max
θa∈ΘB

‖θ‖2
2 , θ̃1max , max

θa∈ΘB

‖θa − θ‖1 , (19)

cx̃ log(δx) ,
‖Pb‖2θ1 maxδx +

√

c∆ log(δx)

λmin(Q)
, (20)

c∆log(δx), (‖Pb‖2θ1maxδx)2+2λmin(Q)δx‖Pb‖1θ̃1max,

where θ1 max is defined in Assumption 1 and λmin(·) is the

smallest eigenvalue of a matrix.

Proof. Consider the Lyapunov function V (t)=x̃⊤(t)P x̃(t)+
θ̃(t)⊤Γ−1θ̃(t), where P and Γ are defined in (3). Note that

x̃(t) = x̂(t)− x(t) = x̂(t)− xq(t) + xq(t)− x(t) = x̃q(t) +
xqe(t), where xqe(t) = xq(t)−x(t) is the quantization error

of the system state defined in Section IV-A and x̃q(t) is

defined in (3). Then the derivative of V (t) can be written as

V̇ (t)=x̃(t)⊤A⊤
mP x̃(t)+x̃(t)⊤PAmx̃(t)−2x̃q(t)

⊤Pbθ̃(t)⊤xq(t)

+ 2θ̃⊤Γ−1 ˙̃θ−2xqe(t)
⊤Pbθ̃(t)⊤xq(t)−2x̃(t)⊤Pbθ⊤xqe(t) .

The design of adaptive law in (3) ensures that
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V̇ (t) ≤− x̃(t)⊤Qx̃(t) − 2xqe(t)
⊤Pbθ̃(t)⊤xq(t)

− 2x̃(t)⊤Pbθ⊤xqe(t) , (21)

where θ1max is defined in Assumption 1, θ̃1 max is defined
in (19), and λmin(·) is defined in Lemma 2. If ‖xt‖L∞

< ρx,

the inequality becomes

V̇ (t) ≤− λmin(Q)‖x̃(t)‖2
2 + 2‖Pb‖2θ1maxδxρx‖x̃(t)‖2

+ 2δx‖Pb‖1θ̃1maxρ
2
x .

Then either the prediction error

‖x̃(t)‖2 ≤ ‖Pb‖2θ1maxδxρx+
√

c∆ log(δx)ρx

λmin(Q) ,

or the derivative V̇ (t) < 0. Hence, either ‖x̃(t)‖2 ≤
cx̃ log(δx)ρx, or ‖x̃(t)‖2 ≤

√

θ2max

λmin(P )Γ , where cx̃ log(δx) and

c∆ log(δx) are defined in (20).

Since ‖x̃(t)‖∞ ≤ ‖x̃(t)‖2, the inequality in (18) holds. �

Lemma 3: For the system in (1) and the controller defined

by (4), if ‖xt‖L∞
≤ ρx and the state quantization is the

uniform quantization with quantization interval length lx, we

have the following bound

‖x̃t‖L∞
≤ max

{
√

θ2 max

λmin(P )Γ
, cx̃unif(lx, ρx)

}

, (22)

cx̃unif(lx, ρx) ,
‖Pb‖2θ1maxlx +

√

c∆unif(lx, ρx)

2λmin(Q)
, (23)

c∆unif(lx, ρx) , (‖Pb‖2θ1 maxlx)2

+ 4λmin(Q)lx‖Pb‖1θ̃1 max

(

ρx + 1
2 lx

)

, (24)

where θ1max is defined in Assumption 1, θ2 max and θ̃1max

are defined in (19).

The proof is similar to the one of Lemma 2 and is thus

omitted. �

C. Performance Bounds for Logarithmic Quantized System

Let the error signals be defined by

ex(t) = x(t) − xref(t) , eu(t) = uq(t) − uref(t) . (25)

Let γ̄x log > 0 be an arbitrary positive number, and let

ρx log = ρxr
+ γ̄x log , γx log = γxo log + γxq log + ǫ , (26)

γxo log = ‖(I − G(s)θ⊤)−1[G(s)θ⊤+(C(s) − 1)I + I]‖L1

max
{√

θ2max

λmin(P )Γ , cx̃ log(δx)ρx log

}

,

γxq log = ‖(I − G(s)θ⊤)−1H(s)‖L1δuρu log ,

and ǫ > 0 is a small positive number. Let Γ be sufficiently

large, δx and δu be sufficiently small, such that γx log =
γxo log + γxq log + ǫ < γ̄x log. Let

ρu log = ρur
+ γu log , (27)

γu log=
∥

∥

∥
C(s)

1

c⊤o H(s)
c⊤o

∥

∥

∥

L1

cx̃log(δx)ρxlog+‖C(s)θ⊤‖L1γxlog.

Theorem 1: Consider the system in (1) and the controller

in (4). The tracking errors are upper bounded by

‖x − xref‖L∞
≤ γx log , ‖u − uref‖L∞

≤ γu log , (28)

‖x‖L∞
≤ ρx log, ‖u‖L∞

≤ ρu log .

Proof. (By contradiction)

Assume the bounds in (28) do not hold. Since ‖ex(0)‖∞ =
0 < γx log, ‖eu(0)‖∞ = 0 < γu log, and x(t), xref(t), u(t),
and uref(t) are continuous, there exists t′ such that ex(τ) and

eu(τ) are within the bounds before t′, ‖ex(τ)‖∞ < γx log,

‖eu(τ)‖∞ < γu log, ∀τ ∈ [0, t′), and hit the bound at t′, i.e.,

either ‖ex(t′)‖∞ = γx log, or ‖eu(t′)‖∞ = γu log. (29)

When t ≤ t′, ‖ex(t)‖∞ ≤ γx log, we have ‖ex
t′
‖L∞

≤ γx log,

‖xt′‖L∞
< ρx log, and the inequality (18) in Lemma 2 holds.

To use the upper bound on x̃(t), ex(t) can be written as

ex(t) = x(t) − xref(t) = x̂(t) − xref(t) − x̃(t).
On one hand, from (2), x̂(s) is given by

x̂(s)=−H(s)η̂q(s)+H(s)u(s)+H(s)uqe(s)+(sI−Am)−1x0,

where η̂q(t) = θ̂⊤(t)xq(t) is defined in (4). By the control

law in (4) and the definition of x̃(t), we further write

x̂(s)=G(s)θ⊤x̂(s) −G(s)θ⊤x̃(s) +H(s)(C(s) − 1)η̃q(s)

+ H(s)C(s)kgr(s) + H(s)uqe(s) + (sI − Am)−1x0, (30)

where η̃q(t) , η̂q(t) − θ⊤x(t) = θ̂⊤(t)xq(t) − θ⊤x(t). For

the third term, note that the prediction error dynamics, given

by (17), can be further written as

x̃(s) = H(s)(θ⊤x(s) − η̂q(s)) = −H(s)η̃q(s) . (31)

Substitute (31) into (30) to obtain

x̂(s) =(I − G(s)θ⊤)−1[−G(s)θ⊤ − (C(s) − 1)I]x̃(s)

+ (I − G(s)θ⊤)−1H(s)uqe(s)

+ (I − G(s)θ⊤)−1H(s)C(s)kgr(s)

+ (I − G(s)θ⊤)−1(sI − Am)−1x0.

On the other hand, note that xref(s) is given in (15).

Subtracting xref(s) from x(s) gives

ex(s) = (I − G(s)θ⊤)−1[−G(s)θ⊤ − (C(s) − 1)I]x̃(s)

− x̃(s) + (I − G(s)θ⊤)−1H(s)uqe(s) ,

‖ex
t′
‖L∞

≤ ‖(I − G(s)θ⊤)−1H(s)‖L1δu‖ut′‖L∞
(32)

+‖(I − G(s)θ⊤)−1[G(s)θ⊤+(C(s) − 1)I + I]‖L1‖x̃t′‖L∞
.

Now we examine the error between the control signal u(t)
and the desired reference control signal uref(t). By (4) and

(14), we have eu(s) = C(s)η̃q(s)+C(s)θ⊤(x(s)−xref(s)),
where η̃q(t) is defined in (30). Since (Am, b) is controllable,

and H(s) is strictly proper and stable, there exists co ∈ R
n

such that c⊤o H(s) is minimum phase with relative degree one

(by Lemma 4 in [8]). Then

eu(s) = C(s) 1
c⊤

o
H(s)

c⊤o x̃(s) + C(s)θ⊤ex(s) .

Since C(s) is BIBO stable and strictly proper, the system

C(s) 1
c⊤

o
H(s) is proper and BIBO stable, which implies that

its L1 norm is bounded. Hence,

‖eu
t′
‖L∞

≤‖C(s) 1
c⊤

o
H(s)

c⊤o ‖L1‖x̃τ‖L∞

+ ‖C(s)θ⊤‖L1‖ex
t′
‖L∞

. (33)
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If Γ is sufficiently large, δx and δu are sufficiently small,

such that γx log = γxo log + γxq log + ǫ < γ̄x log, the error

ex(t) in (32) is strictly upper bounded by

‖ex′
t
‖L∞

≤ γxo log + γxq log < γx log < γ̄x log , (34)

where γx log is defined in (26). Similarly, the error eu(t) in

(33) is strictly upper bounded by

‖eu′

t
‖L∞

< γu log , (35)

where γu log is defined in (27).

The strict inequalities (34) and (35) contradict the assump-

tion in (29). The proof is complete. �

Remark 2: In Theorem 1, the error bound γx log depends

on three terms:
√

θ2max

λmin(P )Γ , which is inverse proportional to√
Γ, cx̃ log(δx)ρx log, which is proportional to the state quan-

tization parameter δx, and δuρu log, which is proportional

to the input quantization parameter δu. By increasing the

adaptation rate Γ, the first term can be made arbitrarily small.

Note that after taking the maximum, only the larger one of

the first two terms affects γx log. When the first one is small

enough, γx log depends only on the second and third terms,

i.e., the bottleneck of improving the performance bounds

is the quantization. Besides, there is a trade-off between

the state and the input quantization. To maintain a certain

performance bound, if the state quantization is coarser (δx

is larger), the input quantization has to be finer (δu has to

be smaller), which agrees with the intuition. The second and

the third terms decrease as the quantization parameters δx

and δu decrease, i.e., as the quantization gets finer. As δx

goes to zero, the second term goes to zero, and the result

reduces to the case of input quantization as in [12]. Further,

if δx and δu both go to zero, the second and the third terms

go to zero, and the error bounds reduce to the case without

quantization [8]. �

Remark 3: In (33),

∥

∥

∥
C(s) 1

c⊤
o

H(s)
c⊤o

∥

∥

∥

L1

needs to be

bounded for eu(t) to be bounded. This is ensured by the

strictly proper and stable low-pass filter C(s). In the absence

of C(s) = 1, the term

∥

∥

∥
C(s) 1

c⊤
o

H(s)
c⊤o

∥

∥

∥

L1

is unbounded,

since c⊤o H(s) in the denominator is strictly proper. In this

case, γu log is unbounded, implying that one cannot obtain

a similar uniform bound for the control signal of MRAC.

Likewise, C(s) is crucial for the uniform quantization. �

D. Performance Bounds for Uniform Quantized System

Similar to the case of logarithmic quantization, use the

notations ex(t) and eu(t) defined in (25).

Let γ̄xunif > 0 be an arbitrary positive number, and let

ρxunif = ρxr
+ γ̄xunif , (36)

γxunif = γxounif + γxqunif + ǫ , (37)

γxounif = ‖(I − G(s)θ⊤)−1[G(s)θ⊤+(C(s) − 1)I + I]‖L1

max
{√

θ2max

λmin(P )Γ , cx̃unif(lx, ρxunif)
}

,

γxqunif =
1

2
‖(I − G(s)θ⊤)−1H(s)‖L1 lu ,

where ǫ > 0 is a small positive number, cx̃unif(lx, ρxunif) is

defined in (23), and lx and lu are the quantization interval

lengths of the uniform quantization on x and u, respectively.

If Γ is sufficiently large, and lx and lu are sufficiently small,

such that γxunif = γxounif + γxqunif + ǫ < γ̄xunif , the error

ex(t) is strictly upper bounded by

‖ex′

t
‖L∞

< γxunif < γ̄xunif .

Similarly, let

ρuunif = ρur
+ γuunif , (38)

where

γuunif = ‖C(s)θ⊤‖L1γxunif (39)

+
∥

∥C(s)
1

c⊤o H(s)
c⊤o

∥

∥

L1
max

{

√

θ2max
λmin(P )Γ , cx̃unif(lx, ρxunif)

}

.

Theorem 2: Consider the system in (1) and the controller

in (4). In the case of uniform quantization, if the quantization

interval lengths are lx and lu for the state and the input,

respectively, the tracking errors are upper bounded by

‖x − xref‖L∞
≤ γxunif , ‖u − uref‖L∞

≤ γuunif , (40)

‖x‖L∞
≤ ρxunif , ‖u‖L∞

≤ ρuunif ,

where ρxunif , γxunif , ρuunif , γuunif are given by (36), (37),

(38) and (39).

Proof. The proof is similar to the one of Theorem 1. First

assume that the bounds in (40) do not hold, and either ex(t)
or eu(t) hits the bound. The same derivations can be done up

to (32). In the case of uniform quantization, the quantization

error is bounded by the constant 1
2 l. Thus, ex(t) is bounded

by

‖ex
t′
‖L∞

≤ ‖(I − G(s)θ⊤)−1H(s)‖L1

1

2
lu

+‖(I − G(s)θ⊤)−1[G(s)θ⊤+(C(s) − 1)I + I]‖L1‖x̃t′‖L∞
.

By Lemma 3, the bound can be written as

‖ex
t′
‖L∞

≤ γxounif + γxqunif < γxunif .

Following (33) and Lemma 3, ‖eu
t′
‖L∞

< γuunif . These two

strict inequalities contradict the assumption that the bound

γxunif or γuunif is hit at time t. Thus, the assumption does

not hold, and the proof is complete. �

VII. SIMULATION

Consider the system in (1) with

Am =

[

0 1
−1 −1.4

]

, b =

[

0
1

]

, c =

[

1
0

]

,

x0 =

[

1
1

]

, θ =

[

4
−4.5

]

,

and let ΘB = {θ1 ∈ [−10, 10], θ2 ∈ [−10, 10]}, which gives

θ1max = 20. Let C(s) = ω
s+ω

, where ω = 50, and let the

adaptation rate be Γ = 106.

We now show the performance of L1 adaptive controller

for both types of quantizers under different reference signals

without any retuning of the controller.
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Fig. 4: System performance for logarithmic quantizer with

δx = 0.0102, δu = 0.0204 and sinusoidal references r(t) =
20 sin(0.2t + π

2 ).
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(b) lx = 0.01, lu = 0.02

Fig. 5: y(t) and u(t) for uniform quantizer with step refer-

ences r(t) = 2.

First, we see that for both quantizers the system output

y(t) tracks the reference signal r(t). Two instances are shown

in Figures 4a, 4b, and 5a. Among the three, Figures 4a and

4b show the output and the state of the quantized system with

logarithmic quantization of both state and input, tracking a

sinusoidal reference signal. Figure 5a shows the output of the

system with uniform quantization, tracking a step reference

signal. In both cases, the designed L1 controller leads to

desired performance in the whole time span, as guaranteed by

the uniform transient performance bounds derived in Section

VI.

Second, the comparison of Figures 5a and 5b shows the

effect of quantization density on the system performance. In

Figure 5a, a small tracking error is visible between y(t) and
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Fig. 6: y(t) and u(t) for uniform quantizer with lx = 0.01,

lu = 0.02 and step references r(t) = 2 , 5 , 10.

r(t). In the latter case in Figure 5b, where the quantization

interval lengths are reduced to 1
10 of the former values, the

quantization becomes finer. The output y(t) almost coincides

with r(t). This shows that the performance bound decreases

as the quantization density increases.

Next, we show the scaled response of the closed-loop

system to different reference signals. Figures 6a and 6b show

the performance of the system output y(t) and the input

u(t) in the case of uniform quantization with quantization

intervals lx = 0.01, lu = 0.02 and step references r =
2 , 5 , 10. We note that it leads to scaled control inputs and

system outputs for scaled reference inputs.

We finally notice that we do not redesign or retune the L1

controller in these simulations, from one reference input to

another, or from one quantizer to the other.
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systems with input quantization,” in American Control Conference,
(Baltimore, MD), 2010.

[13] H. Sun, N. Hovakimyan, and T. Başar, “L1 adaptive controller
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