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Abstract— This paper presents a family of continuous-time
distributed algorithms called Zero-Gradient-Sum (ZGS) algo-
rithms, which solve unconstrained, separable, convex optimiza-
tion problems over undirected networks with fixed topologies.
The ZGS algorithms are derived using a Lyapunov function
candidate that exploits convexity, and get their name from the
fact that they yield nonlinear networked dynamical systems
whose states slide along an invariant, zero-gradient-sum man-
ifold and converge asymptotically to the unknown minimizer.
We also present a systematic way to construct ZGS algorithms,
show that a subset of them converge exponentially, and obtain
lower bounds on their convergence rates in terms of the
convexity characteristics of the problem and the network topol-
ogy, including its algebraic connectivity. Finally, we show that
some of the well-studied continuous-time distributed consensus
algorithms are special cases of ZGS algorithms and discuss the
ramifications.

I. INTRODUCTION

This paper addresses the problem of solving an uncon-
strained, separable, convex optimization problem over an
N -node multi-hop network, where each node i observes a
convex function fi, and all the N nodes wish to determine
an optimizer x∗, which minimizes the sum of the fi’s, i.e.,

x∗ ∈ argmin
x

N
∑

i=1

fi(x). (1)

The optimization problem (1) has many applications in
emerging and future multi-agent systems and wired/wireless/
social networks, where agents or nodes often need to collab-
orate in order to jointly accomplish sophisticated tasks in
distributed and optimal fashions [1].

To date, a family of discrete-time subgradient algorithms,
aimed at solving problem (1) under general convexity as-
sumptions, have been reported in the literature. These subgra-
dient algorithms may be roughly classified into two groups.
The first group of algorithms [1]–[4] are incremental in
nature, relying on the passing of an estimate of x∗ around
the network to operate. Such passing may be carried out in
several ways, including passing along a Hamiltonian cycle
(i.e., a closed path that visit every node exactly once), ran-
dom and equiprobable multi-hop passing, and probabilistic
one-hop passing based on a Markov chain associated with
the network. The second group of algorithms [5]–[7], in
contrast to the first, are non-incremental, relying instead on
a combination of subgradient updates and linear consensus
iterations to operate, although gossip-based updates have also
been considered [8]. For each of these algorithms, a number
of convergence properties have been established, including
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the resulting error bounds, asymptotic convergence, and
convergence rates.

In [9], we developed a gossip-style, distributed asyn-
chronous algorithm, referred to as Pairwise Equalizing (PE),
which solves the scalar version of problem (1), in a manner
that is fundamentally different from the aforementioned
subgradient algorithms. More recently in [10], we show that
the two basic ideas behind PE—namely, the conservation
of a certain gradient sum at zero and the use of a first-
order-convexity-condition-based Lyapunov function—can be
extended, leading to Controlled Hopwise Equalizing (CHE),
a distributed asynchronous algorithm that allows individual
nodes to use potential drops in the value of the Lyapunov
function to control, on their own, when to initiate an iteration,
so that problem (1) can be solved efficiently over wireless
networks. In both the papers [9], [10], problem (1) was
studied in a discrete-time, asynchronous setting, and only
the scalar version of it was considered.

In this paper, we address problem (1) from a continuous-
time and multi-dimensional standpoint, building upon the
two basic ideas behind PE. Specifically, using the same
Lyapunov function candidate as the one for PE and CHE, we
first derive a family of continuous-time distributed algorithms
called the Zero-Gradient-Sum (ZGS) algorithms, with which
the states of the resulting nonlinear networked dynamical
systems slide along an invariant, zero-gradient-sum manifold
and converge asymptotically to the unknown minimizer x∗

in (1). We then describe systematic and concrete ways to
construct ZGS algorithms, including a class of algorithms,
which turns out to be exponentially convergent. For this
class of algorithms, we also provide lower bounds on their
exponential convergence rates, which are expressible in terms
of the convexity characteristics of the problem and the
network topology, including its algebraic connectivity. As
another contribution of this paper, we show that there is an
intimate connection between the continuous-time distributed
consensus algorithms in the literature (e.g., [11]–[16]) and
the ZGS algorithms for distributed convex optimization. In
particular, we found that the consensus algorithms studied in
[11]–[14], [16] are only a Hessian inverse and an initial con-
dition away from solving any convex optimization problem
of the form (1).

The outline of this paper is as follows: Section II intro-
duces the preliminaries. Section III formulates the problem.
Section IV presents the ZGS algorithms. Section V analyzes
the exponential convergence of a subset of the ZGS algo-
rithms. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A twice continuously differentiable function f : R
n → R

is locally strongly convex if for any convex and compact
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set D ⊂ R
n, there exists a constant θ > 0 such that the

following equivalent conditions hold [17], [18]:

f(y)−f(x)−∇f(x)T (y−x)≥
θ

2
‖y−x‖2, ∀x, y ∈ D, (2)

(∇f(y)−∇f(x))T (y−x) ≥ θ‖y−x‖2, ∀x, y ∈ D, (3)

∇2f(x) ≥ θIn, ∀x ∈ D, (4)

where ‖ · ‖ denotes the Euclidean norm, ∇f : R
n → R

n

is the gradient of f , ∇2f : R
n → R

n×n is the Hessian of
f , and In ∈ R

n×n is the identity matrix. The function f is
strongly convex if there exists a constant θ > 0 such that the
equivalent conditions (2)–(4) hold forD = R

n, in which case
θ is called the convexity parameter of f [18]. Finally, for any
twice continuously differentiable function f : R

n → R, any
convex set D ⊂ R

n, and any constant Θ > 0, the following
conditions are equivalent [18], [19]:

f(y)−f(x)−∇f(x)T (y−x)≤
Θ

2
‖y−x‖2, ∀x, y ∈ D, (5)

(∇f(y)−∇f(x))T (y−x) ≤ Θ‖y−x‖2, ∀x, y ∈ D, (6)

∇2f(x) ≤ ΘIn, ∀x ∈ D. (7)

III. PROBLEM FORMULATION

Consider a multi-hop network consisting of N ≥ 2 nodes,
connected by L bidirectional links in a fixed topology. The
network is modeled as a connected, undirected graph G =
(V , E), where V = {1, 2, . . . , N} represents the set of N
nodes and E ⊂ {{i, j} : i, j ∈ V , i 6= j} represents the set
of L links. Any two nodes i, j ∈ V are one-hop neighbors
and can communicate if and only if {i, j} ∈ E . The set
of one-hop neighbors of each node i ∈ V is denoted as
Ni = {j ∈ V : {i, j} ∈ E}, and the communications are
assumed to be delay- and error-free, with no quantization.

Suppose each node i ∈ V observes a function fi : R
n → R

satisfying the following assumption:

Assumption 1. For each i ∈ V , the function fi is twice
continuously differentiable, strongly convex with convexity
parameter θi > 0, and has a locally Lipschitz Hessian ∇2fi.

Suppose, upon observing the fi’s, all the N nodes wish
to solve the following unconstrained, separable, convex op-
timization problem:

min
x∈Rn

F (x), (8)

where the objective function F : R
n → R is defined as

F (x) =
∑

i∈V fi(x). The proposition below shows that F
has a unique minimizer x∗ ∈ R

n, so that problem (8) is
well-posed:

Proposition 1. With Assumption 1, there exists a unique
x∗ ∈ R

n such that F (x∗)≤F (x) ∀x ∈ R
n and ∇F (x∗)=0.

Proof. By Assumption 1, F is twice continuously dif-
ferentiable and strongly convex with convexity parameter
∑

j∈V θj > 0. Pick any xo ∈ R
n and define the set

D = {x ∈ R
n : F (x) ≤ F (xo)}. Since xo ∈ D and F is

continuous,D is nonempty and closed. Pick any y ∈ R
n with

‖y‖ = 1 and consider the ray {xo +ηy ∈ R
n : η ≥ 0}. From

(2), F (xo + ηy) ≥ F (xo) + η∇F (xo)
T y + η2

∑

j∈V
θj

2 ‖y‖2.
Since ‖y‖ = 1 and η ≥ 0, F (xo + ηy) ≥ F (xo) −

η‖∇F (xo)‖ + η2
∑

j∈V
θj

2 . Therefore, ∀η > 2‖∇F (xo)‖
∑

j∈V
θj

,

F (xo + ηy) > F (xo), so that xo + ηy /∈ D. Hence, D
is bounded and, thus, compact. Since F is continuous, there
exists an x∗ ∈ D such that F (x∗) ≤ F (x) ∀x ∈ D. By
definition of D, F (x∗) ≤ F (x) ∀x ∈ R

n. Because F is
strongly convex, x∗ is unique and satisfies ∇F (x∗) = 0.

Given the above network and problem, the aim of this
paper is to devise a continuous-time distributed algorithm of
the form

ẋi(t) = ϕi(xi(t),xNi
(t); fi, fNi

), ∀t ≥ 0, ∀i ∈ V , (9)

xi(0) = χi(fi, fNi
), ∀i ∈ V , (10)

where t ≥ 0 denotes time; xi(t) ∈ R
n is a state representing

node i’s estimate of the unknown minimizer x∗ at time t;
xNi

(t) = (xj(t))j∈Ni
∈ R

n|Ni| is a vector obtained by

stacking xj(t) ∀j ∈ Ni; fNi
= (fj)j∈Ni

: R
n → R

|Ni|

is a function obtained by stacking fj ∀j ∈ Ni; ϕi : R
n ×

R
n|Ni| → R

n is a locally Lipschitz function of xi(t) and
xNi

(t) governing the dynamics of xi(t), whose definition
may depend on fi and fNi

; χi ∈ R
n is a constant determining

the initial state xi(0), whose value may depend on fi and
fNi

; | · | denotes the cardinality of a set; and xi(t), fi, ϕi,
and χi are maintained in node i’s local memory. The goal of
the algorithm (9) and (10) is to steer all the estimates xi(t)’s
asymptotically (or, better yet, exponentially) to the unknown
x∗, i.e.,

lim
t→∞

xi(t) = x∗, ∀i ∈ V , (11)

enabling all the nodes to cooperatively solve problem (8).
Note that to realize (9) and (10), for each i ∈ V , every node
j ∈ Ni must send node i its xj(t) at each time t if ϕi does
depend on xj(t), and its fj at time t = 0 if ϕi or χi does
depend on fj .

IV. ZERO-GRADIENT-SUM ALGORITHMS

In this section, we develop a family of algorithms that
achieve the stated goal. To facilitate the development, we
let x∗ = (x∗, x∗, . . . , x∗) ∈ R

nN denote the vector of
minimizers and x(t) = (x1(t), x2(t), . . . , xN (t)) ∈ R

nN , or
simply x = (x1, x2, . . . , xN ), denote the entire state vector.

Consider a Lyapunov function candidate V : R
nN → R,

defined in terms of the observed fi’s as

V (x) =
∑

i∈V

fi(x
∗) − fi(xi) −∇fi(xi)

T (x∗ − xi). (12)

Notice that V in (12) is continuously differentiable because
of Assumption 1, and that it satisfies V (x∗) = 0. Moreover,
V is positive definite with respect to x∗ and is radially
unbounded, which can be seen by noting that Assumption 1
and the first-order strong convexity condition (2) imply

V (x) ≥
∑

i∈V

θi

2
‖x∗ − xi‖

2, ∀x ∈ R
nN , (13)

and (13) in turn implies V (x) > 0 ∀x 6= x∗ and V (x) → ∞
as ‖x‖ → ∞. Therefore, V in (12) is a legitimate Lyapunov
function candidate, which may be used to derive algorithms
that ensure (11).
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Taking the time derivative of V along the state trajectory
x(t) of the system (9) and calling it V̇ : R

nN → R, we
obtain

V̇ (x(t)) =
∑

i∈V

(xi(t) − x∗)T∇2fi(xi(t))

· ϕi(xi(t),xNi
(t); fi, fNi

), ∀t ≥ 0. (14)

Due to Assumption 1 and to each ϕi being locally Lipschitz,

V̇ in (14) is continuous. In addition, it yields V̇ (x∗) = 0.

Hence, if the functions ϕi ∀i ∈ V are such that V̇ is negative
definite with respect to x∗, i.e.,
∑

i∈V

(xi − x∗)T∇2fi(xi)ϕi(xi,xNi
; fi, fNi

) < 0, ∀x 6=x∗,

(15)

the system (9) would have a unique equilibrium point at
x∗, which by the Barbashin-Krasovskii theorem would be
globally asymptotically stable. Consequently, regardless of
how the constants χi ∀i ∈ V in (10) are chosen, the goal
(11) would be accomplished.

As it follows from the above, the challenge lies in finding
ϕi ∀i ∈ V , which collectively satisfy (15). Such ϕi’s,
however, may be difficult to construct because x∗ in (15) is
unknown to any of the nodes, i.e., x∗ depends on every fi via
(8), but ϕi maintained by each node i ∈ V can only depend
on fi and fNi

. As a result, one cannot let the ϕi’s depend
on x∗, such as letting ϕi(xi,xNi

; fi, fNi
) = x∗−xi ∀i ∈ V ,

even though this particular choice guarantees (15) (since each
∇2fi(xi) is positive definite, by (4)). Given that the required
ϕi’s are not readily apparent, instead of searching for them,
below we present an alternative approach toward the goal
(11), which uses the same V and V̇ as in (12) and (14), but
demands neither local nor global asymptotic stability.

To state the approach, we first introduce two definitions: let
A ⊂ R

nN represent the agreement set and M ⊂ R
nN rep-

resent the zero-gradient-sum manifold, defined respectively
as

A = {(y1, y2, . . . , yN ) ∈ R
nN : y1 =y2 = · · ·=yN}, (16)

M = {(y1, y2, . . . , yN ) ∈ R
nN :

∑

i∈V

∇fi(yi) = 0}, (17)

so that x ∈ A if and only if all the xi’s agree, and x ∈ M
if and only if the sum of all the gradients ∇fi’s, evaluated
respectively at the xi’s, is zero. Notice from (16) that x∗ ∈
A, from (17) and Proposition 1 that x∗ ∈ M, and from all of
them that x ∈ A∩M ⇒ x = x∗. Thus, A∩M = {x∗}. Also
note from the continuity of each ∇fi that M is closed and
from the Implicit Function Theorem and the nonsingularity
of each ∇2fi(x) ∀x ∈ R

n that M is indeed a manifold of
dimension n(N − 1).

Having introduced A and M, we now describe the ap-
proach, which is based on the following recognition: to
attain the goal (11), condition (15)—which ensures that every
trajectory x(t) goes to x∗—is sufficient but not necessary.
Rather, all that is needed is a single trajectory x(t), along

which V̇ (x(t)) ≤ 0 ∀t ≥ 0 and limt→∞ V (x(t)) = 0,
since the latter implies (11). Recognizing this, we next derive
three conditions on the ϕi’s and χi’s in (9) and (10) that
produce such a trajectory. Assume, for a moment, that the
χi’s dictating the initial state x(0) have been decided, so

that we may focus on the ϕi’s that shape the trajectory
x(t) leaving x(0). Observe that V̇ in (14) takes the form

V̇ (x(t)) = Φ1(x(t)) − x∗T Φ2(x(t)) ∀t ≥ 0, where Φ1 :
R

nN → R and Φ2 : R
nN → R

n. Thus, the unknown x∗—
which may undesirably affect the sign of V̇ (x(t))—can be
eliminated by setting Φ2(x) = 0 ∀x ∈ R

nN , i.e., by forcing
the ϕi’s to satisfy

∑

i∈V

∇2fi(xi)ϕi(xi,xNi
; fi, fNi

) = 0, ∀x ∈ R
nN . (18)

With this first condition (18), V̇ becomes free of x∗, reducing
to

V̇ (x(t)) =
∑

i∈V

xi(t)
T∇2fi(xi(t))ϕi(xi(t),xNi

(t); fi, fNi
),

∀t ≥ 0. (19)

Next, notice that whenever x(t) is in the agreement set A,

due to (16) and (18), V̇ (x(t)) in (19) must vanish. However,
whenever x(t) /∈ A, there is no such restriction. Hence, any

time x(t) /∈ A, V̇ (x(t)) can be made negative by forcing
the ϕi’s to also satisfy
∑

i∈V

xT
i ∇

2fi(xi)ϕi(xi,xNi
; fi, fNi

) < 0, ∀x ∈ R
nN −A.

(20)

With this additional, second condition (20), no matter what
x∗ is, V̇ (x(t)) ≤ 0 along x(t), with equality if and
only if x(t) ∈ A. Finally, note that (18) and (9) im-
ply d

dt

∑

i∈V ∇fi(xi(t)) =
∑

i∈V ∇2fi(xi(t))ẋi(t) = 0
∀t ≥ 0, while (11), the continuity of each ∇fi, and
Proposition 1 imply limt→∞

∑

i∈V ∇fi(xi(t)) =
∑

i∈V
∇fi(limt→∞ xi(t)) =

∑

i∈V ∇fi(x
∗) = ∇F (x∗) = 0.

The former says that by making the ϕi’s satisfy (18), the
gradient sum

∑

i∈V ∇fi(xi(t)) along x(t) would remain
constant over time, while the latter says that to achieve
limt→∞ V (x(t)) = 0 or equivalently (11), this constant sum
must be zero, i.e.,

∑

i∈V ∇fi(xi(t)) = 0 ∀t ≥ 0. Therefore,
in view of (10), the χi’s must be such that

∑

i∈V

∇fi(χi(fi, fNi
)) = 0, (21)

yielding the third and final condition.
By imposing algebraic constraints on the ϕi’s and χi’s,

conditions (18), (20), and (21) characterize a family of
algorithms. This family of algorithms share a number of
properties, including one that has a nice geometric interpre-
tation: observe from (21), (10), and (17) that x(0) ∈ M
and further from (18) and (9) that x(t) ∈ M ∀t > 0.
Thus, every algorithm in the family produces a nonlinear
networked dynamical system, whose trajectory x(t) begins
on, and slides along, the zero-gradient-sum manifold M,
making M a positively invariant set. Due to this geometric
interpretation, these algorithms are referred to as follows:

Definition 1. A continuous-time distributed algorithm of the
form (9) and (10) is said to be a Zero-Gradient-Sum (ZGS)
algorithm if ϕi ∀i ∈ V are locally Lipschitz and satisfy (18)
and (20), and χi ∀i ∈ V satisfy (21).

The following theorem lists the properties shared by ZGS
algorithms, showing that every one of them is capable of
asymptotically driving x(t) to x∗, solving problem (8):
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Theorem 1. Consider the network modeled in Section III
and the use of a ZGS algorithm described in Definition 1.
Suppose Assumption 1 holds. Then: (i) there exists a unique
solution x(t) ∀t ≥ 0 to (9) and (10); (ii) x(t) ∈ M ∀t ≥ 0;

(iii) V̇ (x(t)) ≤ 0 ∀t ≥ 0, with equality if and only if x(t) =
x∗; (iv) limt→∞ V (x(t)) = 0; and (v) limt→∞ x(t) = x∗,
i.e., (11) holds.

Proof. Since ϕi ∀i ∈ V are locally Lipschitz, to prove (i)
it suffices to show that every solution x(t) of (9) and
(10) lies entirely in a compact subset of R

nN . To this
end, let B(x∗, r) ⊂ R

nN denote the closed-ball of radius
r ∈ [0,∞) centered at x∗, i.e., B(x∗, r) = {y ∈ R

nN :
‖y − x∗‖ ≤ r}. Note from (14), (18), and (20) that

V̇ (x(t)) ≤ 0 along x(t). This, together with (13), implies

that V (x(0)) ≥ V (x(t)) ≥ mini∈V θi

2 ‖x(t) − x∗‖2 along

x(t). Hence, x(t) ∈ B(x∗,
√

2V (x(0))
mini∈V θi

) ∀t ≥ 0, ensuring (i).

Statement (ii) has been proven in the paragraph before
Definition 1. To verify (iii), notice again from (14), (18),
and (20) that V̇ (x(t)) = 0 if and only if x(t) ∈ A. Due
to (ii) and to A ∩M = {x∗} shown earlier, (iii) holds. To
prove (iv), observe from (13) and (iii) that V (x(t)) ∀t ≥ 0
is nonnegative and non-increasing. Thus, there exists a c ≥ 0
such that limt→∞ V (x(t)) = c and V (x(t)) ≥ c ∀t ≥ 0. To
show that c = 0, assume to the contrary that c > 0. Then,
because V in (12) is continuous and positive definite with
respect to x∗, there exists an ǫ > 0 such that B(x∗, ǫ) ⊂ {y ∈
R

nN : V (y) < c}. With this ǫ, define a set K ⊂ R
nN as

K = M∩{y ∈ R
nN : ǫ ≤ ‖y−x∗‖ ≤

√

2V (x(0))
mini∈V θi

}. Notice

that x(t) ∈ K ∀t ≥ 0 because x(t) ∈ M, V (x(t)) ≥ c, and

x(t) ∈ B(x∗,
√

2V (x(0))
mini∈V θi

) ∀t ≥ 0. Also note that K ⊂ M

but K 6∋ x∗. This, along with the properties A∩M = {x∗}
and V̇ (y) < 0 ∀y /∈ A, implies that V̇ (y) < 0 ∀y ∈ K.

Since V̇ in (14) is continuous and K is nonempty and
compact (due to M being a closed set), there exists an η > 0
such that maxy∈K V̇ (y) = −η. Since x(t) ∈ K ∀t ≥ 0,

V (x(t)) = V (x(0)) +
∫ t

0
V̇ (x(τ)) dτ ≤ V (x(0)) − ηt.

This implies V (x(t)) < c ∀t > V (x(0))−c

η
, which is a

contradiction. Therefore, c = 0, establishing (iv). Finally,
(v) is an immediate consequence of (13) and (iv).

Having established Theorem 1, we now present a sys-
tematic way to construct ZGS algorithms. First, to find χi’s
that meet condition (21), consider the following proposition,
which shows that each fi has a unique minimizer x∗i ∈ R

n:

Proposition 2. With Assumption 1, for each i ∈ V , there
exists a unique x∗i ∈ R

n such that fi(x
∗
i ) ≤ fi(x) ∀x ∈ R

n

and ∇fi(x
∗
i ) = 0.

Proof. For each i ∈ V , the proof is identical to that of
Proposition 1 with x∗, F , and

∑

j∈V θj replaced by x∗i , fi,
and θi, respectively.

Proposition 2 implies that
∑

i∈V ∇fi(x
∗
i ) = 0. Hence,

(21) can be met by simply letting

χi(fi, fNi
) = x∗i , ∀i ∈ V , (22)

which is permissible since every x∗i in (22) depends just on
fi. It follows that each node i ∈ V must solve a “local”

convex optimization problem minx∈Rn fi(x) for x∗i before
time t = 0, in order to execute (10) and (22).

Next, to generate locally Lipschitz ϕi’s that ensure con-
ditions (18) and (20), notice that each ϕi is premultiplied
by ∇2fi(xi), which is nonsingular ∀xi ∈ R

n. Therefore, the
impact of each ∇2fi(xi) can be absorbed by setting

ϕi(xi,xNi
; fi, fNi

) = (∇2fi(xi))
−1φi(xi,xNi

; fi, fNi
),

∀i ∈ V , (23)

where φi : R
n×R

n|Ni| → R
n is a locally Lipschitz function

of xi and xNi
maintained by node i. For each i ∈ V ,

because ∇2fi is locally Lipschitz (due to Assumption 1) and
the determinant of ∇2fi(xi) for every xi ∈ R

n is no less
than a positive constant θn

i (due further to (4)), the mapping
(∇2fi(·))−1 : R

n → R
n×n in (23) is locally Lipschitz.

Thus, as long as the φi’s are locally Lipschitz, so would
the resulting ϕi’s, fulfilling the requirement. With (23), the
dynamics (9) become

ẋi(t) = (∇2fi(xi(t)))
−1φi(xi(t),xNi

(t); fi, fNi
),

∀t ≥ 0, ∀i ∈ V , (24)

and conditions (18) and (20) simplify to
∑

i∈V

φi(xi,xNi
; fi, fNi

) = 0, ∀x ∈ R
nN , (25)

∑

i∈V

xT
i φi(xi,xNi

; fi, fNi
) < 0, ∀x ∈ R

nN −A. (26)

Finally, to come up with locally Lipschitz φi’s that assure
conditions (25) and (26), suppose each φi is decomposed as

φi(xi,xNi
; fi, fNi

)=
∑

j∈Ni

φij(xi, xj ; fi, fj), ∀i ∈ V , (27)

so that the dynamics (24) become

ẋi(t) = (∇2fi(xi(t)))
−1

∑

j∈Ni

φij(xi(t), xj(t); fi, fj),

∀t ≥ 0, ∀i ∈ V , (28)

where φij : R
n×R

n → R
n is a locally Lipschitz function of

xi and xj maintained by node i. Then, (25) can be ensured
by requiring that every φij and φji pair be negative of each
other, i.e.,

φij(y, z; fi, fj) = −φji(z, y; fj, fi),

∀i ∈ V , ∀j ∈ Ni, ∀y, z ∈ R
n, (29)

since
∑

i∈V φi =
∑

i∈V

∑

j∈Ni
φij =

∑

{i,j}∈E φij + φji =
0. With (27) and (29), the left-hand side of (26) turns into

∑

i∈V

xT
i φi(xi,xNi

; fi, fNi
)

=
1

2

∑

i∈V

∑

j∈Ni

(xi−xj)
Tφij(xi, xj ; fi, fj), ∀x∈R

nN . (30)

Because the graph G is connected, for any x ∈ R
nN − A,

there exist i ∈ V and j ∈ Ni such that xi − xj in (30)
is nonzero. Hence, (26) can be guaranteed by requiring the
φij ’s to also satisfy

(y − z)Tφij(y, z; fi, fj) < 0,

∀i ∈ V , ∀j ∈ Ni, ∀y, z ∈ R
n, y 6= z. (31)
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Note that if (29) holds, then φij satisfies the inequality in (31)
if and only if φji does. Therefore, every pair of neighboring
nodes i, j ∈ V need only minimal coordination before time
t = 0 to realize the dynamics (28): only one of them, say,
node i, needs to construct a φij that satisfies the inequality
in (31), and the other, i.e., node j, only needs to make sure
that φji = −φij .

Examples 1 and 2 below illustrate two concrete ways to
construct φij ’s that obey (29) and (31):

Example 1. Let φij(y, z; fi, fj) = (ψij1(y1, z1), ψij2(y2,
z2), . . . , ψijn(yn, zn)) ∀i ∈ V ∀j ∈ Ni ∀y = (y1, y2, . . . ,
yn) ∈ R

n ∀z = (z1, z2, . . . , zn) ∈ R
n, where each ψijℓ :

R
2 → R can be any locally Lipschitz function satisfying

ψijℓ(yℓ, zℓ) = −ψjiℓ(zℓ, yℓ) and (yℓ − zℓ)ψijℓ(yℓ, zℓ) < 0
whenever yℓ 6= zℓ (e.g., ψijℓ(yℓ, zℓ) = tanh(zℓ − yℓ) or

ψijℓ(yℓ, zℓ) = −ψjiℓ(zℓ, yℓ) = zℓ−yℓ

1+y2

ℓ

). Then, (29) and (31)

hold. �

Example 2. Let φij(y, z; fi, fj) = ∇g{i,j}(z) − ∇g{i,j}(y)
∀i ∈ V ∀j ∈ Ni ∀y, z ∈ R

n, where each g{i,j} : R
n → R

can be any twice continuously differentiable and locally
strongly convex function associated with link {i, j} ∈ E
(e.g., g{i,j}(y) = 1

2y
TA{i,j}y, where A{i,j} ∈ R

n×n is any
symmetric positive definite matrix, or g{i,j}(y) = fi(y) +
fj(y)). Then, (29) and (31) hold. �

Examples 3 and 4 below show that some of the con-
tinuous-time distributed consensus algorithms in the litera-
ture are special cases of ZGS algorithms. In addition, they
are just a slight modification away from solving general
unconstrained, separable, convex optimization problems:

Example 3. Consider the scalar (i.e., n = 1) linear consensus
algorithm ẋi(t) =

∑

j∈Ni
aij(xj(t) − xi(t)) ∀t ≥ 0 ∀i ∈ V

with symmetric parameters aij = aji > 0 ∀{i, j} ∈ E
and arbitrary initial states xi(0) = yi ∀i ∈ V , studied
in [12]–[14], [16]. By Definition 1 and Theorem 1, this
algorithm is a ZGS algorithm that solves problem (8) for
fi(x) = 1

2 (x − yi)
2 ∀i ∈ V . Moreover, the algorithm

is only a Hessian inverse and an initial condition away
(i.e., ẋi(t) = (∇2fi(xi(t)))

−1
∑

j∈Ni
aij(xj(t)−xi(t)) with

xi(0) = x∗i ) from solving any convex optimization problem
of the form (8) for any n ≥ 1. Note that the same can be
said about the scalar nonlinear consensus protocol in [11].�

Example 4. Consider the multivariable (i.e., n ≥ 1) weigh-
ted-average consensus algorithm ẋi(t) = W−1

i

∑

j∈Ni

(xj(t) − xi(t)) ∀t ≥ 0 ∀i ∈ V with Wi = WT
i > 0 and

xi(0) = yi, proposed in [15] as a step toward a distributed
Kalman filter. This algorithm is a ZGS algorithm that solves
problem (8) for fi(x) = 1

2 (x − yi)
TWi(x − yi) ∀i ∈ V .

Indeed, it came close to solving for general fi’s. �

V. CONVERGENCE RATE ANALYSIS

In this section, we derive lower bounds on the exponential
convergence rates of a class of ZGS algorithms.

Reconsider the class of ZGS algorithms specified in Ex-
ample 2, which takes the form

ẋi(t)=(∇2fi(xi(t)))
−1

∑

j∈Ni

∇g{i,j}(xj(t))−∇g{i,j}(xi(t)),

∀t ≥ 0, ∀i ∈ V . (32)

Suppose the initial state x(0) is given, which may simply
be x(0) = (x∗1, x

∗
2, . . . , x

∗
N ) according to (22). To analyze

the convergence behavior of this class of ZGS algorithms,
let Ci = {x ∈ R

n : fi(x
∗) − fi(x) − ∇fT

i (x)(x∗ − x) ≤
V (x(0))} ∀i ∈ V and let C = conv∪i∈VCi, where conv
denotes the convex hull of a set. Due to the strong convexity
of each fi and (5), each Ci is compact. Hence, C is convex
and compact. Because of (iii) in Theorem 1, V (x(t)) is non-
increasing. This, along with (12), implies that

xi(t), x
∗ ∈ Ci ⊂ C, ∀t ≥ 0, ∀i ∈ V . (33)

Due to Assumption 1 and (4), for each i ∈ V , there exists a
Θi ≥ θi > 0 such that

∇2fi(x) ≤ ΘiIn, ∀x ∈ C. (34)

In addition, for each {i, j} ∈ E , because g{i,j} is locally
strongly convex and because of (3), there exists a γ{i,j} > 0
such that

(∇g{i,j}(y) −∇g{i,j}(x))
T (y − x) ≥γ{i,j}‖y − x‖2,

∀x, y ∈ C. (35)

Note that Θi ∀i ∈ V and γ{i,j} ∀{i, j} ∈ E depend on the
set C, which in turn depends on the initial state x(0). This
suggests that the convergence rate results presented below
are dependent on x(0).

The following theorem establishes the exponential conver-
gence of the aforementioned class of ZGS algorithms and
provides a lower bound on their convergence rates:

Theorem 2. Consider the network modeled in Section III
and the use of a ZGS algorithm in the form of (32). Suppose
Assumption 1 holds. Then,

V (x(t)) ≤ V (x(0))e−ρt, ∀t ≥ 0, (36)
∑

i∈V

θi‖xi(t) − x∗‖2 ≤
∑

i∈V

Θi‖xi(0) − x∗‖2e−ρt, ∀t ≥ 0,

(37)

where ρ = sup{ε ∈ R : εP ≤ Q} > 0, P = [Pij ] ∈ R
N×N

is a positive semidefinite matrix given by

Pij =

{

(1
2 − 1

N
)Θi + 1

2N2

∑

ℓ∈V Θℓ, if i = j,

−Θi+Θj

2N
+ 1

2N2

∑

ℓ∈V Θℓ, otherwise,

and Q = [Qij ] ∈ R
N×N is a positive semidefinite matrix

given by

Qij =







∑

ℓ∈Ni
γ{i,ℓ}, if i = j,

−γ{i,j}, if {i, j} ∈ E ,

0, otherwise.

Proof. Due to space limitation, we provide only a sketch of
the proof here. Since F (x∗) ≤ F (η) ∀η ∈ R

n and x(t) ∈ M
∀t ≥ 0, V (x(t)) ≤

∑

i∈V fi(
1
N

∑

j∈V xj(t)) − fi(xi(t)) −

∇fT
i (xi(t))(

1
N

∑

j∈V xj(t)−xi(t)) ∀t ≥ 0. Due to (33) and

the convexity of C, 1
N

∑

j∈V xj(t) ∈ C. It follows from the
strong convexity of each fi, (34), (5), and (7) that

V (x(t)) ≤
∑

i∈V

Θi

2
‖xi(t) −

1

N

∑

j∈V

xj(t)‖
2

= x(t)T (P ⊗ In)x(t), ∀t ≥ 0, (38)

where ⊗ denotes the Kronecker product. Moreover, due

to (32), (9), and (19), V̇ (x(t)) = 1
2

∑

i∈V

∑

j∈Ni
(xi(t) −
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xj(t))
T (∇g{i,j}(xj(t))−∇g{i,j}(xi(t))) ∀t ≥ 0. This, along

with (35) and (33), implies that

−V̇ (x(t)) ≥
1

2

∑

i∈V

∑

j∈Ni

γ{i,j}‖xi(t) − xj(t)‖
2

= x(t)T (Q⊗ In)x(t), ∀t ≥ 0. (39)

Based on (38) and (39), it can be shown that ρV (x(t)) ≤
−V̇ (x(t)) ∀t ≥ 0, where ρ = sup{ε ∈ R : εP ≤ Q} > 0,
so that (36) holds. Finally, from the strong convexity of each
fi, (2), (36), (34), (33), (5), and (7), we obtain (37).

Notice that the lower bound ρ on the convergence rate in
Theorem 2 can be calculated by forming the matrices P and
Q, finding the largest ε > 0 such that εP ≤ Q, and setting
ρ to this largest ε. The following corollary to Theorem 2
presents a more conservative lower bound on the convergence
rate, which, however, makes the algebraic connectivity of the
network explicit in the result:

Corollary 1. Consider the network modeled in Section III
and the use of a ZGS algorithm in the form of (32). Suppose
Assumption 1 holds. Then,

V (x(t)) ≤ V (x(0))e−
2γ
Θ

λ2t, ∀t ≥ 0, (40)

‖x(t) − x∗‖ ≤

√

Θ

θ
‖x(0) − x∗‖e−

γ
Θ

λ2t, ∀t ≥ 0, (41)

where γ=min{i,j}∈E γ{i,j}, Θ=maxi∈V Θi, θ=mini∈V θi,
and λ2 > 0 is the algebraic connectivity of the graph G.

Proof. Again, only a sketch of the proof is provided. From
(38) and (39), we have V (x(t)) ≤ Θ

2

∑

i∈V ‖xi(t) −
1
N

∑

j∈V xj(t)‖2 = Θ
2N

x(t)T (LḠ ⊗ In)x(t) ∀t ≥ 0

and −V̇ (x(t)) ≥ γ
2

∑

i∈V

∑

j∈Ni
‖xi(t) − xj(t)‖2 =

γx(t)T (LG ⊗ In)x(t) ∀t ≥ 0, where LḠ ∈ R
N×N

is the Laplacian matrix of the complete graph Ḡ whose
vertex set is V and LG ∈ R

N×N is the Laplacian ma-
trix of G. Let λ1, λ2, . . . , λN with λ1 ≤ λ2 ≤ · · · ≤
λN be the eigenvalues of LG . Note that λ1 = 0 and
λ2 > 0. Let w1, w2, . . . , wN be the corresponding normal-
ized eigenvectors and W = (w1, w2, . . . , wN ) ∈ R

N×N .
Then, WTLGW = diag(0, λ2, . . . , λN ) and WTLḠW =
diag(0, N, . . . , N). Hence, λ2W

TLḠW ≤ NWTLGW , i.e.,
2γ
Θ λ2 ·

Θ
2N

LḠ ≤ γLG . It follows that (40) and (41) hold.

Notice that in the special case where (32) reduces to the
scalar linear consensus algorithm described in Example 3,
i.e., fi(x) = 1

2 (x − yi)
2 ∀i ∈ V , and where g{i,j}(x) =

1
2a{i,j}x

2 with a{i,j} > 0 ∀{i, j} ∈ E , we may let θi,
Θi ∀i ∈ V and γ{i,j} ∀{i, j} ∈ E all be 1. In this case,
Theorem 2 and Corollary 1 lead to the same lower bound on
the convergence rate, i.e., ‖x(t)− x∗‖ ≤ ‖x(0)− x∗‖e−λ2t

∀t ≥ 0, which coincides with the well-known convergence
rate result, obtained in [12], for the linear consensus al-
gorithm. Therefore, Theorem 2 and Corollary 1 may be
regarded as a generalization of the convergence rate result
for distributed consensus to distributed convex optimization.

VI. CONCLUSION

In this paper, using a convexity-based Lyapunov function
candidate, we have developed and analyzed a family of
continuous-time distributed algorithms, which solve a class

of convex optimization problems over undirected networks
with fixed topologies. Referred to as ZGS algorithms, we
have shown that they produce nonlinear networked dy-
namical systems, whose states remain on a zero-gradient-
sum manifold and move asymptotically toward the unknown
minimizer. We have also provided concrete ways to construct
ZGS algorithms and obtained, for a subset of them, lower
bounds on their exponential convergence rates in terms of
the convexity characteristics of the problem and the network
topology. Finally, we have shown that ZGS algorithms may
be viewed as a generalization of certain existing continuous-
time distributed consensus algorithms, thereby providing a
connection between distributed consensus and distributed
convex optimization.

REFERENCES

[1] M. G. Rabbat and R. D. Nowak, “Distributed optimization in sensor
networks,” in Proc. International Symposium on Information Process-
ing in Sensor Networks, Berkeley, CA, 2004, pp. 20–27.

[2] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent incremental
gradient method with a constant step size,” SIAM Journal on Opti-
mization, vol. 18, no. 1, pp. 29–51, 2007.

[3] B. Johansson, M. Rabi, and M. Johansson, “A simple peer-to-peer
algorithm for distributed optimization in sensor networks,” in Proc.
IEEE Conference on Decision and Control, New Orleans, LA, 2007,
pp. 4705–4710.
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