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Abstract—This paper considers the problem of decentral-
ized task assignment in a network of heterogeneous robots.
We introduce a new algorithm named heterogeneous robots
consensus-based allocation (HRCA), which can be viewed as
a possible extension of the recently proposed consensus-based
bundle algorithm (CBBA) for homogeneous robot networks.
The HRCA is based on a two stage decentralized procedure. In
the first stage, similarly to CBBA, an initial assignment based
on market-based decision strategies and local communication is
determined, disregarding possible constraints on the maximum
number of tasks assignable to each robot. Constraint violations
are handled in the second stage, in which an iterative procedure
is used by the robots to redistribute the tasks exceeding their in-
dividual capacity with minimal losses in terms of score function.
Numerical simulations are used to evaluate the performance of
the HRCA in a set of randomly generated scenarios, which
include some examples of homogeneous networks to allow a
comparison with CBBA.

I. INTRODUCTION

In the last few years robotic networks (RNs) have drawn

the attention of a large part of the robotics research commu-

nity. A RN is commonly defined as a collection of robots

which cooperate in order to achieve a global objective. The

motivation behind the research on this topic is that a multi-

robot approach offers several advantages over single robot

approaches, such as parallel execution of tasks, robustness

by adding redundancy and elimination of the single point of

failure that is present in single robot systems [1]. A common

assumption in robotics networks is that all the agents or

vehicles are identical, i.e., in other words, that the network is

homogeneous. However, recent trends in multi-agent systems

highlight the advantages of networks composed by agents

with different capabilities, which are generally referred to as

heterogeneous robotics networks [2]. In principle, this type

of networks offers several advantages, which include cost

reduction, higher versatility, scalability and flexibility.

A great deal of research in RNs has focused on the area of

software architectures, task planning algorithms, and control

approaches [3]. In particular, a great effort has been done by

the robotics research community to develop new solutions

to these problems complying with the recent trends of de-

centralizing as much as possible information processing and

decision activities among the various agents in the network.

In this vast research area, a particular attention has been
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paid to the decentralization of the task planning and control.

Several different directions have been investigated. In [4] a

novel robust approach for decentralized task assignment for

fleets of robots has been proposed. In the context of tasks

and mission control, the decentralization of the sequencing

has recently been investigated in [5], [6]. References [7], [8]

address the integration of geometrical information about tar-

gets in the environment and local motion control algorithms

to the distributed task assignment, while [9] investigates the

problem of maintain certain connectivity properties while

defining distributed motion control algorithms. Moreover,

in the context of the coverage control, novel distributed

solutions are proposed in [10], [11].

An alternative approach to the decentralized multi-

assignment task assignment problem that is particularly rele-

vant to our research is the consensus-based bundle algorithm

(CBBA) developed in [4]. The CBBA is a decentralized task

assignment method that greedily generates a vector of tasks

using an auction-based approach and then resolves conflicts

on the assignment by means of consensus algorithms and

nearest-neighbor communications. Several evolutions of the

CBBA have been recently proposed. Reference [12] explores

a variant capable to address cooperation constraints. The

authors propose a framework to embed the cooperation pref-

erences in the scoring structure along with a decentralized

method to eliminate invalid assignments. In [13] the CBBA

is extended in order to address complex missions for a team

of heterogeneous agents (in terms of scheduling capabilities)

in a dynamic environment, proposing appropriate handling

of time windows of validity for tasks and fuel costs of the

vehicles.

Moving in this specific research line, this paper pro-

poses a new variant, named heterogeneous robots consensus-

based allocation (HRCA), to deal with decentralized task

assignment in heterogeneous robot networks. This algorithm,

inspired by CBBA, is based on a two stage decentralized task

assignment strategy for heterogeneous RNs. In the first stage

a consensus-based auction phase allocates all the tasks with

score-based criteria and disregarding possible constraints on

the maximum number of tasks assignable to each robot; in

the second stage, an iterative procedure redistributes the tasks

exceeding robot’s capacity using a strategy based on the least

penalty in terms of score function.

II. PROBLEM STATEMENT

Consider a network of heterogeneous robots, i.e. robots

that cannot be considered identical due to their sensory

or actuating hardware or functionalities. Suppose that each
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robot is characterized by a set of skills (i.e., basic operations

that it is able to execute), and that a list of tasks, each

requiring one or multiple skills, has to be assigned to and

performed by the available robots. This is a standard assign-

ment problem often shortly referred to as task assignment

for heterogeneous robots. This paper focuses on the case in

which the assignment has to be determined with a distributed

algorithm, as the result of local interactions between the

robots without the intervention of any supervisory entity.

More formally, given Nr robots, with the index set I =
{1, . . . , Nr}, Nt tasks, with the index set J = {1, . . . , Nt},
let ∆ ∈ B

Nr×Nt a nonzero matrix, called Matrix of Possible

Assignments (MPA), that represents the ability for each robot

to perform one or more tasks, i.e. if ∆ij = 1 task j can be

performed by robot i and 0 otherwise, the goal of the task

assignment for heterogeneous robots is to find a matching, a

set of robot-task pairs (i, j), that fulfills capability constraints
defined by ∆, ∀i ∈ I and ∀j ∈ J , which maximizes some

overall reward (or minimizes some global cost). The case in

which only one task can be assigned to each robot is called

single-assignment problem, while the more general case in

which each robot can handle a sequence of maximum Lt task

is referred to as multi-assignment problem. Since each robot

is capable of executing at most one task at a time, in the case

of multi-assignment, tasks will be executed in an ordered

sequence. An assignment is said to be free of conflicts if

each task is assigned to no more than one robot. Moreover,

the assignment is said to be complete if all assignable tasks

α ∈ N have been assigned. Even finding the set of assignable

tasks in a heterogeneous robot networks is nontrivial, as it

depends on the actual variety and number of skills of the

robots in the network. A way to address this problem is

described in the following.

Similarly to the case of homogeneous networks already

considered in related literature, we formulate the problem as

an Integer Linear Program (ILP). More specifically, given

Nr robots, each capable to handle a sequence of no more

than Lt tasks, and given a set of Nt tasks that have to be

executed by the robots, find the decision variables xij ∈ B,

where B = {0, 1}, to obtain

Z = max

Nr
∑

i=1

Nt
∑

j=1

cijxij (1)

subject to
Nt
∑

j=1

xij ≤ Lt ∀i ∈ I (2)

Nr
∑

i=1

xij ≤ 1 ∀j ∈ J (3)

x̃ij ≤ ∆ij ∀(i, j) ∈ I × J (4)

where xij = 1 if task j is assigned to robot i and 0 otherwise.
It is assumed that the score value cij ≥ 0 is a generic,

nonnegative function of the assignment, quantifying its ef-

fectiveness or desirability. The determination of the global

objective function Z is subject to a set of constraints, namely,

the maximum number of task assignable to a robot is Lt ; a

task can be assigned to no more than one robot; a task can be

assigned only to robots that can execute it. These constraints

are expressed by equations (2)-(4), respectively.

A key aspect in task assignment for heterogeneous robots

is to guarantee that the number of tasks remaining unassigned

at the end of the assignment stage is always minimized. To

evaluate this aspect, however, it is necessary to determine the

maximum number of assignable tasks α for the considered

task and robot sets. This value can be determined as the

solution of the following ILP problem.

Problem 2.1 (Maximum Number of Allocable Tasks):

Given Nr robots that have to execute Nt tasks, considering

that each robot is allowed to accept and perform a sequence

of no more than Lt tasks, and given the assignment

constraints expressed by matrix ∆, find the decision

variables x̃ij to obtain

α = max

Nr
∑

i=1

Nt
∑

j=1

x̃ij (5)

subject to
Nt
∑

j=1

x̃ij ≤ Lt ∀i ∈ I (6)

Nr
∑

i=1

x̃ij ≤ 1 ∀j ∈ J (7)

x̃ij ≤ ∆ij ∀(i, j) ∈ I × J (8)

The constraints (6)-(8) have a similar role of those just

described in (2)-(4).

To solve this ILP problem in a straightforward way, these

conditions can be placed into a classical matrix formulation

as

Ax̃ ≤ d (9)

where A and d are a block matrix and a block vector,

respectively, and the vector x̃ ∈ B
NrNt×1 represents the

decision variables. In order to reflect the constraints these

objects are structured as follows

A =
[

A1 A2 A3

]T
d =

[

d1 d2 d3

]T

where the matrix A1 ∈ B
Nr×NrNt , which represents the

constraint in (6), is structured as a diagonal block matrix with

the element on the diagonal is 11×Nt ; d1 ∈ N
Lt×1 is a vector

with all elements equal to Lt. The matrix A2 ∈ B
Nt×NrNt

represents the constraint in (7) and is structured as

A2 =
[

I1 I2 · · · INt

]

where Ii, ∀i ∈ I, is the identity matrix INt×Nt ; d2 is

the vector 1Nt×1. The matrix A3 is the identity matrix

INrNt×NrNt , and the vector d3 ∈ B
NrNt×1 is structured

as

d3 =
[

a1 a2 · · · aNr

]T

where ai is the i-th row of MPA matrix.
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Following this structure, the problem in (9) can be solved

using well-known ILP algorithms such as the Branch and

Bound technique. The sum of all elements of the solution

vector x is the number of all assignable tasks α, which can

be used to determine how much a solution for the problem

(1)-(4) is satisfactory in terms of amount of assigned or

unassigned tasks.

In this work we develop a decentralized strategy, based

on local communications among robots in the network, so

as to provide a solution of the task assignment problem for

heterogeneous RNs (1)-(4). In the following, we will use the

value α as a performance metric for the proposed approach,

i.e., we will grade the quality of an assignment not only in

terms of global score, but also considering the number of

unassigned tasks with respect to the theoretical maximum α.

III. HETEROGENEOUS ROBOTS CONSENSUS-BASED

ALLOCATION

The HRCA is a two stage iterative algorithm inspired by

the Consensus-Based Bundle Algorithm (CBBA) [4]. CBBA

is a distributed strategy that makes use of an auction protocol

and a consensus algorithm. The latter is used to converge to

a good approximated solution for the multi-assignment task

assignment problem over a network of homogeneous robots.

More precisely, CBBA consists of iterations between two

phases: a market-based phase where each robot in the net-

work greedily generates an ordered vector of tasks, called a

bundle, and a consensus phase where conflicting assignments

are resolved through nearest-neighbor communication.

Using an enhanced allocation strategy, the HRCA exploits

core features of the CBBA to provide a robust distributed task

assignment for heterogeneous RNs. The HRCA consists of

iterations between two nested stages. In the first one, that is

the consensus-based phase, each robot fills its own bundle

with all tasks that it can execute basing on the owned skills.

When the convergence is reached, i.e. when all conflicts on

the assignment are solved, the second stage is performed.

In this stage bundles of overloaded robots, i.e. robots with

a number of assigned tasks exceeding their limit Lt, are

reduced through a task elimination phase based on the least

penalty in terms of the bundle global score. This process

finds the task that causes the least penalty evaluating the

score produced by removing each task from the bundle and

the associated second bid value obtained in the first stage.

After this check the whole algorithm is run again until

final convergence, i.e. until a conflict free assignment that

meets bundles capacity constraints is reached.

A. Stage 1: Consensus-based Bundle Construction

The first stage of HRCA consists of the filling of the

bundle and the conflict resolution process. Similar to CBBA,

this stage is divided into two phases.

1) Phase 1 (Bundle Filling): In this phase each robot

creates its bundle bi ∈ (J ∪ {∅})Nt , adding freely all tasks

it is able to perform, where ∅ indicates an empty task. In

other words, at this stage the limit Lt on bundle size is

disregarded. Each bundle of each robot has an associated

path pi ∈ (J ∪ {∅})Nt . Tasks in the bundle are ordered

based on which ones were added first in time, while in

the path tasks are ordered based on their location in the

assignment. Note that even if the size of bi and pi is equal

to the number of tasks in the network Nt, in order to obtain

a complete assignment the cardinality of bundle and path

cannot be greater than the maximum assignment size Lt,

and this condition will be checked in the second stage of the

algorithm. Thus, in the following we will define overloaded

each robot for which |bi| > Lt, where | · | denotes the

cardinality of the vector.

The objective of this phase it to build the bundle and the

path in order to obtain the maximum local reward for the

robot i. Let Spi

i be the score function defined as the total

reward value for robot i performing the tasks along the path

pi. We assume two important constraints: the score function

has to satisfy the Diminishing Marginal Gain (DMG) [4]

condition, which states that the value of a task does not

increase as other elements are added to the bundle before it,

and the score of each task has to be increased by a constant

factor ξ. The latter is needed for the comparison between

different types of scores, as we will discuss in the Stage 2 .

A task is added in the bundle considering its marginal

score. If a task j is added to the bundle bi, it incurs the

marginal score improvement

cij =

{

maxn≤|pi| S
pi⊕n{j}
i − Spi

i , ∀j ∈ J \bi

0, if aij = 0
(10)

where⊕n denotes the operation that inserts the second vector

right after the n-th element of the first vector. Note that the

bundle bi contains only tasks the robot i can execute: if the

robot i cannot perform a task due to the ai vector which

represents the i-th row of the matrix ∆, this task is not

included in the bundle. Also, note that if the task is already

included in the bundle, then it does not provide any additional

improvement in score.

In order to properly update information about the assign-

ment in the path, three other vectors are defined: a winning

bid vector yi ∈ R
Nt

+ , which stores the highest bids for each

task; a winning robot vector zi ∈ INt , which stores the

current bidders for values in yi; a first bid vector ui ∈ R
Nt

+ ,

which stores bids for all tasks in the bundle at the end of the

first instance of this phase. Note that values in ui represent

the best bids on the best path of all executable tasks, and this

value does not decrease during the Stage 1 of the algorithm.

The bundle and path are recursively updated as

bi = bi ⊕|bi| {Ji}, pi = pi ⊕ni,Ji
{Ji} (11)

with Ji = argmaxj(cij × I(cij > yij)), where I(·) is one

when the argument is true and zero otherwise, and ni,Ji
=

argmaxn S
pi⊕n{Ji}
i . Moreover the other vectors are updates

as follows: yi,Ji
= ci,Ji, zi,Ji

= i, and ui,Ji
= yi,Ji

.

At the end of this phase each robot maintains information

about all tasks it can bid over. The mechanism to obtain a

conflict free assignment among the robots is described in the

following phase.
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2) Phase 2 (Conflict Resolution): In this phase tasks are

released from the bundle bi, for each robot, if it receives

a higher value from its neighbors for that task. To perform

the release of the exceeding tasks, some fundamental infor-

mation has to be shared among the robots. More precisely,

six vectors are communicated for consensus. Beside the

previously described vectors yi, zi, and ui, we introduce

the second winning bid vector vi ∈ R
Nt

+ , which contains the

second bid value, for each task; the second winning robot

vector wi ∈ INt , which stores the current bidders for values

contained in vi; and the time stamp vector ti ∈ R
Nr , which

contains the iteration number of the last information update

from each of the other robots.

After the communication process, two set of vectors are

updated. Vectors yi and zi are updated in order to decide

which tasks have to be released, vectors vi and wi are

updated to provide the correct information about the second

higher bid and the associated bidder for the task elimination

phase.

There are three possible actions, determined with the same

rules of CBBA [4], that a robot i can take on task j:

1) update: yij = ykj , zij = zkj
2) reset: yij = 0, zij = ∅
3) leave: yij = yij , zij = zij

In order to update vectors vi and wi, if a bid exists for task

j (i.e. yij 6= 0), four temporary variables are built as follows.

Let v⋆ij = maxk vkj be the current second bid value ∀j ∈ J ,

where k is a neighbor of robot i. Let w⋆
ij = argmaxk vkj

be the current second bidder ∀j ∈ J . Let v⋆⋆ij = 2maxk ukj

be the global higher second bid value ∀j ∈ J , based on

each vector ui, where the operation 2max return the second

maximum value in a vector. If no second maximum value

exists, i.e. all values in a vector are equal, the result of this

function is zero. Let w⋆⋆
ij = 2argmaxk ukj be the global

second bidder ∀j ∈ J associated to v⋆⋆ij . Before the update

of vi and wi a preliminary check is performed: if w⋆
ij =

zij then v⋆ij = 0, w⋆
ij = 0, and if w⋆⋆

ij = zij then v⋆⋆ij =
0, w⋆⋆

ij = 0.

After the aforementioned definition of these temporary

variables, vectors vi and wi are obtained using rules shown

in the Table I for each j ∈ J . Note that all information used

for the update of vector vi and wi came from the current or

the last value of the vector ui. Since this vector is related

to the vector yi, that is updated at the end of this phase, all

values v⋆ij , w
⋆
ij , v

⋆⋆
ij , and w⋆⋆

ij are synchronized accordingly.

If a bid is changed as an outcome of communication, each

agent checks if any of the updated or reset task were in their

bundle, and if so, these tasks, along with all of the tasks that

we added to the bundle after them, are released as follows:

yi,bin = 0, zi,bin = ∅, vi,bin = 0, and wi,bin = ∅, where
bin denotes the n-th entry of the bundle bi that has to be

removed.

At the end of this phase the consensus is checked on zi,

yi, vi and wi vectors. If the consensus is not reached the

algorithm returns to the first phase in order to add new tasks.

TABLE I

RULE TABLE FOR THE UPDATE OF VECTORS vij AND wij

v⋆ij = 0
v⋆⋆ij = 0 vij = 0, wij = 0

v⋆⋆ij > 0 vij = v⋆⋆ij , wij = w⋆⋆
ij

v⋆ij > 0

v⋆⋆ij = 0 vij = v⋆ij , wij = w⋆
ij

> 0
v⋆ij > v⋆⋆ij −→ vij = v⋆ij , wij = w⋆

ij

v⋆ij ≤ v⋆⋆ij −→ vij = v⋆⋆ij , wij = w⋆⋆
ij

B. Stage 2: Bundle Check

After the convergence of the Stage 1, a conflict-free

assignment is produced. However, since limitations in the

maximum bundle length have been neglected until now, a

check for overloaded robots has to be performed, and if

necessary the assignment has to be revised to redistribute

the tasks exceeding the maximum allowed capacity. This

operation is performed in the following phase.

1) Phase 3 (Bundle Resize): This phase starts for each

robot having a number of tasks greater than the maximum

size of the bundle Lt. Thus, if all robots are not overloaded,

i.e. after the first stage results |bi| ≤ Lt, this phase does

not take place and the HRCA ends, confirming the solution

achieved as the final assignment of Stage 1.

In this phase an iterative task elimination procedure is

performed. The rationale behind this process is that, for the

agent i, tasks that produce the least penalty, in terms of score,

in bi have to be removed until the size of the bundle is equal

to Lt. The estimation process of the “penalty” produced by

a task is based on both local and previously shared data.

Local information is based on the marginal score that is

produced by removing task j from the path pi and the shared

information is based on the second bid value, that is the

maximum bid in the network on the task j after the current

maximum bid yij . Thus the least penalty causing task is:

J−
i = arg min

n≤|pi|
Spi

i − Spi⊖n

i − γj (12)

where n is the position of task j in the path and γj is

a parameter equal to vij if the second bidder is not an

overloaded robot and 0 otherwise, that is γj = I(|bwij
| ≤

Lt) × vij ∀j ∈ J . Note that the vij value derives from a

score determined as in the equation (10), i.e. it is the marginal

score containing the basic score ξ. Using this assumption on

the score scheme, if there is no second bidder for tasks j
(this means that the robot i is the only executor for j in the

network), the penalty produced removing the task j is much

higher than the penalty caused removing a task j⋆ that has

more than one bidder (vij⋆ 6= 0).
Once the task associated to the least penalty J−

i has been

identified, the i-th robot removes it from the bundle and the

path and sets to zero the value of ai,J−

i
. This implies that the

task Ji cannot be assigned to robot i anymore. Thus, as in

the Phase 2 of the Stage 1, tasks in the bundle after the task
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TABLE II

COMPARISON BETWEEN HRCA AND CBBA: PERCENTAGE

IMPROVEMENT OF FINAL SCORE.

Number of tasks Nt Best value Mean value Worst value

10 0.95% 0.07% −1.09%

20 2.05% 0.72% −0.40%

30 5.66% 1.74% −1.88%

40 1.03% 0.78% 0.63%

50 0.63% −0.98% −2.66%

J−
i are also released and the value of yi,J−

i
, zi,J−

i
, vi,J−

i
,

and wi,J
−

i
are reset.

At the end of this phase yi, zi, vi, and wi variables,

are shared among robots in order to update information

due to the task elimination phase performed by all the

overloaded robots. Then, the algorithm starts again from

Stage 1, until the assignment is completed and there are no

more overloaded robots in the network.

IV. NUMERICAL RESULTS

This section summarizes the results of a preliminary

investigation of HRCA based on numerical simulations. To

assess the overall effectiveness of the approach, this section

initially considers a comparison with CBBA for the case of

homogeneous RNs, and then analyzes the results in the case

of randomly generated heterogeneous RNs.

A. Simulation Setup

In the simulations we consider a RN composed by Nr

robots randomly placed in the environment E
△
= [0, L] ×

[0, L] ⊂ R
2, where L = 2000, that is E is a square

field with side length L. Tasks are considered as target in

the environment placed on a grid-like pattern. Each robot

estimates the target position using a measuring model subject

to a Gaussian zero-mean white noise with variance σ2
0 =

0.1L. The score function, implemented on each robot, is the

Time-Discounted Reward

Spi

i =

Nt
∑

j=1

λ
τ
j

i
(pi)

j + ξ (13)

where λ = 0.95s−1, and every agent moves at a speed of

40 m/s as in the original CBBA. Moreover, for each task a

basic score value ξ = 10 is added in order to perform the

score comparison shown in the Phase 3. The value of ξ has

to be selected greater than the greatest difference between

two generic marginal scores in the proposed scenario.

In order to compare the global score of the final as-

signment of HRCA Z⋆
HRCA

, with the global score of other

algorithms, the contribution of the basic score ξ has to be

removed. Thus, the HRCA global score is calculated using

the following expression:

Z⋆
HRCA

=

Nt
∑

j=1

yj − (ξ Na), (14)

Fig. 1. Evaluation of the HRCA task assignment rate N%
a : variation of

the number of tasks allocated by HRCA Na, respect to α, as a function of
the network redundancy degree ρ.

where yj is the common value of the score of task j after the
consensus convergence and Na is the number of task finally

assigned by the HRCA algorithm.

B. Comparison with CBBA for Homogeneous Networks

The proposed HRCA algorithm inherits some interesting

aspects of CBBA. In oder to evaluate these properties, the

HRCA is compared with CBBA in the case of homogeneous

RNs. In this case each robot has the vector ai equal to 1.

To analyze the improvement of HRCA with respects to

CBBA networks with Nr = 5 robots and Nt = {10, · · · , 50}
are considered. The bundle limit varies as a function of the

number of tasks and the robot Lt = ⌈Nt/Nr⌉. The Table II

summarizes the results, in term of percentage improvement

of the final score, for a Monte Carlo simulation, with up to

50 trials for each task set, of the analyzed scenario. It can be

noticed that the final score of HRCA is always comparable

with the CBBA one. This means that HRCA maintains the

good approximated solution of CBBA also in the case of

homogeneous robots.

C. Performance Evaluation of HRCA

In order to evaluate the performance of the proposed

HRCA algorithm over different heterogeneous networks,

we define the redundancy degree of the network ρ. This
parameter, which represents a measure of the heterogeneity

of the network, is defined as:

ρ =
1

NrNt

Nr
∑

i=1

Nt
∑

j=1

aij (15)

It is straightforward to note that ρ is related to the charac-

teristics of the MPA matrix. Thus, in the case a network of

homogeneous robots results ρ = 1.
As a global measure of performance, we consider the

percentage rate of allocated tasks N%
a . This measure is the

percentage ratio between the number of task finally assigned
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Fig. 2. Comparison between HRCA and CBBAh: variation of total scores
Z⋆

HRCA and Z⋆
CBBAh

respect to the network redundancy degree ρ.

by the HRCA Na and the maximum number of allocable

tasks α. We have studied a network with Nr = 5, Nt = 10,
and Lt = 2, varying the redundancy degree ρ. The results

of this simulation campaign are summarized in Fig. 1. We

have considered the variation of the scenario from a network

with very specialized robots (ρ = 0.15) to a network with

versatile robots (ρ = 0.90), analyzing each value of ρ with

a step of 0.05. For each simulation up to 100 random tasks

and robots configurations have been considered. In Fig. 1,

for each simulation, the mean value (red line), the 25 and 75

percentile (blue box), and the minimum and maximum values

(black dashed lines) are shown. Is straightforward to note that

the highest value of N%
a , about the 98%, is obtained for both

the cases of very specialized (small number of alternative

assignments) and very versatile (large number of alternatives)

robots. In the intermediate cases (ρ = {0.30, . . . , 0.60})
HRCA allocates anyway a good amount of tasks, with mean

values of N%
a of about 95% and worst case values of about

80%.

For a validation on the effectiveness of the strategy pro-

posed in HRCA, the CBBAh (a straightforward adaptation

of the CBBA to the case of heterogeneous networks) is

considered. We implement two simple modifications of the

CBBA algorithm. First, during the bundle construction phase,

as in HRCA, a task j is added to the bundle bi if the robot

i can execute it, i.e. if aij = 1. Second, the consensus

check is performed without taking into account the number

of assigned tasks (for cases in which not all tasks can be

assigned). Also in this case, we have performed different

simulations of heterogeneous RN scenarios. A scenario with

Nr = 5, Nt = 20, and Lt = 4 is considered. For this

comparison ρ varies from 0.30 to 0.90. In Fig. 2 total scores

Z⋆
HRCA

and Z⋆
CBBAh

of the assignment for each scenario are

shown. The scores of HRCA and CBBAh are compared for

the identical experiment, without any variation on the initial

positions of robots and tasks locations. It can be noticed that

the final score of HRCA is always better than the CBBAh

one; this means that the proposed task assignment strategy

for heterogeneous networks is advantageous with respect

to straightforward extensions of the CBBA. Moreover, the

benefits of the HRCA algorithm become more significant as

the heterogeneity of the robot increases, due to the specific

operations performed during Stage 2.

V. CONCLUSION

In this paper a novel decentralized task assignment algo-

rithm for heterogeneous robotic networks has been presented.

The method is based on a rigorous formulation of the task

assignment problem taking into account the different capabil-

ities of robots in the network. The proposed method extends

the robust decentralization structure of the consensus-based

bundle algorithm in order to provide a conflict free multi-

assignment solution in presence of constrained task to robot

association. Current works are focused on the development

of mechanism to guarantee that the maximum amount of

task is always assigned to the available robots, and on the

theoretical analysis of convergence and complexity of the

proposed algorithms.
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