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Abstract— The aim of this work is to show how partial

least squares (PLS) regression when combined with two other

techniques Karhunen-Loeve (KL) expansion and Markov

chain Monte Carlo (MCMC) can be efficient and effective

at addressing parameter uncertainties that affect the pre-

dictive ability of a model for critical applications such as

monitoring and control. We introduce a combination of PLS

regression and KL to develop a reduced-order model (ROM)

that captures the uncertain parameters effect on the model

outputs, and the combination of PLS regression and MCMC

for efficient updates of the uncertain parameter distributions.

Two examples, a tubular reactor and an oil producing reservoir

are presented to demonstrate these concepts.

1. INTRODUCTION
Partial least squares (PLS) regression is a statistical tech-

nique that was developed in the 1960’s as an econometric
technique in the social sciences [1]. The objective of a
PLS developed model is to predict a set of dependent
variables from a set of independent variables (predictors),
which are the factors that have the largest effect on the
dependent variables. From the predictors a set of latent
variables that has the best predictive power is extracted
and used to realize the prediction [2]. The PLS technique
performs a simultaneous decomposition of predictors and
dependent variables with the constraint that the dominant
latent variables explain as much as possible the covariances
between predictors and dependent variables.

PLS as a regression technique is used widely today in
various and different disciplines (medicine to manufactur-
ing). In this paper, PLS regression is used in the study of
uncertainty. Uncertainty always exist in the description of
models to represent real process phenomena. For example,
the heat transfer process between hot and cold streams is
characterized by a heat transfer coefficient. The value of
this parameter is not exact, it contains some degree of error
in the estimation of its bulk value. The error in this value
can affect the final design of the heat transfer device, the
overall economics and the estimation of the exiting stream
temperatures. This work will demonstrate that PLS when
combined with other techniques can predict the relationship
between the uncertain parameters and the model outputs.
Such knowledge can be useful for applications such as
model-based control, online monitoring and fault diagnosis.
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The paper is organized as follows. Sections 2 presents
an overview of the methods used to address: sampling
and sequencing effectiveness to propagate the uncertainties,
efficient updating of the uncertain parameter estimates to
maintain model accuracy, and improving computational
efficiency for online applications by identifying a reduced-
order model that captures the relationships between the
parameters and the model outputs. Two examples, a chem-
ical tubular reactor and an oil producing reservoir, are
introduced in section 3 to demonstrate these concepts. An
analysis of the results also is presented. Lastly, section 4
summaries the major contributions of this work.

2. METHODOLOGY
A. PLS Regression Technique

The following was excerpted from [3]. Let Xn×I be a
matrix of I predictors collected on n observations that
describe J dependent variables, Yn×J . Decompose both X
and Y as a product of a set of orthogonal factors (T) and a
set of loadings (P),

X = TP
�+E

Y = TBC
�+F

(1)

The columns of T are the latent vectors, P is the coefficient
matrix of X, the diagonal elements of B are the regression
weights, C represents the weights of the dependent vari-
ables, and E and F are the matrices of residual errors.

To specify the latent vectors in T, two sets of weights
w and c are needed to create a linear combination of
the columns of X and Y such that their covariance is a
maximized. The goal is to obtain a first pair of vectors ti =
Xw j and ui = Yc j, i = j with constraints that bi = t�iu j, i = j
is maximal and w�iw j = 1, i= j, t�i t j = 1, i= j. It then folllows
that pi = X� ti.

Procedurally, let Q = X and R = Y. Then column center
and normalize R,Q .

Step 1: Initialize the vector u with random values
Step 2: Estimate weights for X, w ∝ Q�u
Step 3: Estimate X factor scores, t1 = Qw1
Step 4: Estimate weights for Y, c1 ∝ R� t1
Step 5: Estimate Y scores, u1 = Rc1
Step 6: Return to step 2 if t1 has not converged. Oth-
erwise continue

Step 7: Calculate b = t�1u1
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Step 8: Compute the loadings for X: p1 = Q�T.
Step 9: Subtract the effect of t1 from both Q and R:

Q=Q− t1 p�
1

and R= F−bt1c�
1
. b is a diagonal element

of B.
Step 10: Go to step 1 until the matrix Q becomes null.

The symbol ∝ represents a normalization of the result. The
above relations show that w1 is the first right singular vector
of X�Y and c1 is the first left singular vector of X�Y.
Similarly, t1 and u1 are the first eigenvectors of XX�YY�
and YY�XX�, respectively [3].

The prediction of dependent variables is based on a
multivariate regression given by,

Ŷ = TBC
� = XBPLS (2)

where BPLS = (P�)−1BC�.

B. Karhunen-Loève Technique
A system (M) of nonlinear partial differential equations

(PDEs) with appropriate initial and boundary conditions can
be used to represent a computational model of a physical
process. Solutions of these PDEs are infinite series solution
that cannot readily be used for real-time model-based con-
trol applications. To address this issue, it is not unusual to
substitute a reduced-order model (ROM) to overcome this
limitation. The Karhunen-Loève (KL) expansion [4] is one
such technique that when combined with a suitable solution
method gives a satisfactory ROM for the designed operating
targets. To use the KL method requires a large collection
of data that are generated experimentally or numerically
(simulation of a physical model) [5]. As stated above, the
parameters in all physical models are never known exactly.
This means that the accuracy of the model’s predictions
may be affected by these uncertainties in some complex and
nonlinear fashion. The technique known as Latin hypercube
Hammersley sequence sampling (LHHS) has been shown to
be computationally efficient when compared to Monte Carlo
at sampling multiple uncertain distributions to cover the
uncertain regions effectively [6]. In this manner, the LHHS
technique provides the conditions for the PLS technique to
find the relationships between the uncertain parameters and
the model’s outputs.

It is recognized that the outputs of M, y(t,z) ∈ Rn, t ∈
R,z ∈ Ω0,1 may be many compared to the number of
uncertain parameters, Θm

p ,m � n. Additionally, the set y,
is not independent. For example, the measured value of the
reactor temperature at a spatial location z(t) = 1/2L is not
independent of the measurement at z(t) = 1/3L where L is
the reactor length. To reduce the size of y and concentrate
the information about the relationships between Θp and y a
ROM can be generated using the KL technique that is sim-
ilar to PLS in that it represents the dominant relationships
using a small number of empirical eigenfunctions (EEFs)
that are dictated by the data [7],

M(z, t) = M̄(z, t)+
K�

k=1

�
λkςk(t)ψk(z) (3)

where M(z, t) is an element of the data matrix M, M̄ denotes
the mean of M, ψ j ∈ Ψ and λ j ∈ Λ are the eigenfunctions
and eigenvalues of the covariance of M, respectively and
the coefficients ςk are the projections of M onto ψ, K is the
number of ψk that represent the dominant characteristics of
the data M.

It is very convenient to predict the coefficients, ς, of ψk
from knowledge of the Θp by an application of PLS. To
apply PLS, let the set of sample points of Θp be X and
the set of ς be Y given in Equation (1). Then, given any
samples of Θp, ς can be calculated from the relationship in
Equation (2). It then follows, that with the known ς, yROM
can be obtained without resorting to simulations of M. It is
remarked that a limitation to the proposed approach is that
both PLS and KL are linear techniques.

C. Markov Chain Monte Carlo
The prediction characteristic of the PLS regression tech-

nique also can be used to update Θp when combined with
a technique such as Markov chain Monte Carlo (MCMC).
The MCMC technique generates parameter values from a
constructed Markov chain that converges to a stationary dis-
tribution [8], [9]. The adaptive Metropolis (AM) algorithm
that generates the uncertain parameters in a single iteration
is used in this work [10].

Start with an arbitrarily chosen initial vector of param-
eters Θp = Θ

i
p. A candidate set, Θ∗p, is generated from a

proposed density distribution based on the current values
Θi

p. Next, compute the acceptance probability, α as a
function of Θi

p,Θ
∗
p and M. If Θ∗p is accepted with acceptance

probability

α =min


1,

P(X |Θ∗p)P(Θ∗p)

P(X |Θi
p)P(Θi

p)


 (4)

it then follows that Θi+1
p = Θ

∗
p, otherwise Θi+1

p = Θ
i
p. Here

P(X |Θp) is the likelihood function of the observed data X
and P(Θp) is the prior distribution of Θp.

The likelihood function is a multi-normal joint probabil-
ity density function of the data,

P(X |Θp) = (2πσ2
ε)
−NX/2exp



−
�NX

j=1[X(z j)−M(z j;Θp)]2

2σ2
ε




(5)
where NX is the number of data points, X(z) is an observed
datum at location z. M(z;Θp) is the result from M(z), Θp
is the vector of uncertain parameters to be estimated from
the observed data. The error term is given by, ε(z) = X(z)−
M(z;Θp) and σ2

ε is its variance.
Update of the uncertain parameters distribution in M with

MCMC cannot be done without comparing the observed
data and y. A huge number of sets of Θp must be simulated
by M to generate y. This step constitutes a large computa-
tional burden. To overcome this inefficiency, PLS regression
is applied to find the relationship between Θp and y. But
since the set Θp is smaller than the set y, the KL technique
is applied first to reduce the size of y.
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3. EXAMPLES
The following examples are cited from [6] and [7].

A. Tubular Reactor to Produce Benzene
The example is a nonlinear tubular reactor system used

for the production of benzene from the hydrodealkylation
of toluene [11] (see Figure 1),

Feed

Finj Benzene
Quench

z = 0 z = 1

51  ii

Output
components

C7H8

H2   CH4

C7H8   H2

C6H6    CH4

C12H10

Fig. 1. Plug Flow Reactor.

C7H8+H2 → C6H6+CH4
2C6H6 � C12H10+H2

The first reaction is irreversible and the second is an equi-
librium reaction. The reaction temperature (deg F) is such
that 1150 < T < 1300 and the reactor pressure is 500 psia.
The ratio of H2 and C7H8 is maintained at 5:1 to prevent
coking. The chemical phenomena can be described by a
system (M) of nonlinear PDEs in dimensionless quantities,
[11],
∂ε1
∂τ

= −υ[∂ε1
∂τ1
+
ε1
θ

∂θ

∂τ1
]−ε1ε0.52 θ

1.5eγ
(θ−1/θ)
1

∂ε2
∂τ

= −υ[∂ε2
∂τ1
+
ε2
θ

∂θ

∂τ1
]−ε1ε0.52 θ

1.5eγ
(θ−1/θ)
1

+k2(ε3θ)2eγ
(θ−1/θ)
2 − k3ε2ε5θ2eγ

(θ−1/θ)
3

∂ε3
∂τ

= −υ[∂ε3
∂τ1
+
ε3
θ

∂θ

∂τ1
]+ε1ε0.52 θ

1.5eγ
(θ−1/θ)
1 −

2k2(ε3θ)2eγ
(θ−1/θ)
2 +2k3ε2ε5θ2eγ

(θ−1/θ)
3 +FBm

∂ε4
∂τ

= −υ[∂ε4
∂τ1
+
ε4
θ

∂θ

∂τ1
]+ε1ε0.52 θ

1.5eγ
(θ−1/θ)
1

∂ε5
∂τ

= −υ[∂ε5
∂τ1
+
ε5
θ

∂θ

∂τ1
]+ k2(ε3θ)2eγ

(θ−1/θ)
2

−k3ε2ε5θ2eγ
(θ−1/θ)
3

∂θ

∂τ
=

1
ζ

(Hr1
∂ε1
∂τ
−Hr2

∂ε5
∂τ
+Q(θF − θ)

−v(ζ
∂θ

∂τ1
−Hr1

∂ε1
∂τ1
+Hr2

∂ε5
∂τ1

))−FBmζB

The outputs of M, y, are benzene concentration and reactor
temperature. The set Θp that affects y includes the reaction
rate and heat of reaction of the first reaction, and the fresh
benzene injection rate used for quench purposes. A means
of validating the ROM is to compare the ROM results, yROM
to that of y. Figure 3 shows yROM (◦) and y (�) when a
+5% bias in the mean values of Θp is introduced. Three ψ
are used, because 99.49% of the output data characteristics
can be explained. The results show that yROM tracks y
satisfactorily. The maximum relative errors between M and
the ROM are listed in Table I.

TABLE I
Maximum relative errors between yM and yROM .

ROM (+5%) Benz Temp

With uncertainty +3.47% +0.22%

Without uncertainty -12.21% -0.74%

B. Oil Producing Reservoir
The example is a five-spot pattern reservoir for oil

production as shown in Figure 2 [12]. The water wells
are located at the four corners of the reservoir and oil
production is located in the middle. The reservoir covers
an area of 630×630 ft2 and has a thickness of 30 ft which
is modeled by a 9×9×1 horizontal two dimensional (2D)
grid. The set Θp consists of porosity, φ, and permeability,
K [12], [13].

Injection well 1 Injection well 3

Injection well 2 Injection well 4

Production wellI III

II IV

Fig. 2. Schematic of a 2D reservoir. ↓: water injection; ↑: oil production.

Assume the grids on the left (I and II) have the same
porosity φl and permeability Kl and the same assumption
holds for the grids on the right (III and IV), φr and Kr.
Additionally, K in the x and y directions are assumed to
have the same values. Clearly the value of the properties
are uncertain. However, prior knowledge of the reservoir’s
geologic structure speculates that φl and Kl are about 0.1
and 10 mDarcy, respectively and φr and Kr are about 0.3
and 500 mDarcy.

The LHHS technique can be used to sample the assumed
distributions of Θp = {φ,K}. The set, Θp are inputs to M
to generate y = {oil production, water production and the
bottom hole pressures of wells}. Here, M is an ECLIPSE
(Schlumberger, Houston, TX) model of the reservoir. PLS
can be applied to determine the relationship between Θp
and y supplanting the huge number of model executions
needed to compare with the observed data. The execution
time to generate the PLS results is more than 10 times less
than one execution of M. The error in the PLS predictions
is within 1% of the true values.

Figure 4 describes the prior and posterior probability
density of φl. The posterior distribution shows that φ̄l and
σ(φl) are 0.115 and 0.051, respectively. Figure 5 describes
the prior and posterior probability density of Kl. The
posterior distribution’s K̄l and σ(Kl) are 8.8 mDarcy and
0.6, respectively. Figures 6 and 7 give the prior and posterior
distributions of φr and Kr. The posterior’s K̄r, φ̄r are 0.32
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and 585 mDarcy, respectively; and σ(φr),σ(Kr) are 0.02
and 40, respectively. Table II lists the root mean square
errors (RMS) of the prior and posterior values of Θp that
are calculated by Equation (6) ,

RMS =




�M
j=1(x j− xt

j)
2

p




0.5

(6)

where p is the number of parameters; x j is an estimate of
the parameters; xt

j is the true value of the parameters.

TABLE II
Root mean square errors

RMS φ K

Prior 0.004 11.11

Posterior 0.0012 1.67

4. SUMMARY

This work desribed new applications for the use of
PLS regression combined with other techniques to address
model parameter uncertainty. For a high-dimension set
of outputs, it was shown that the combination of PLS
and Karhunen-Loeve expansion (also known as proper
orthogonal decomposition) can identify the relationships
between the uncertain parameters and the coefficients of
the KL model so that an estimate of the outputs can be
determined quuickly thereby avoiding the potentially large
computational overhead associated with the simulation of
a fundamental model. It also was shown that PLS when
combined with Markov Chain Monte Carlo technique can
provide fast updates of the parameters to maintain model
prediction accuracy.
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Fig. 3. Output of the ROM and the physical model in the presence of a
5% bias in the mean value of the uncertain parameters [6]. Top: Benzene
concentration. Bottom: Reactor temperature. �: Physical model. ◦: ROM
with uncertainty. +: ROM without uncertainty.
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Fig. 4. Distribution of porosity in the left part of the reservoir. Top: prior
probability density. Bottom: posterior probability density.
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Fig. 5. Distribution of permeability in the left part of the reservoir. Top:
prior probability density. Bottom: posterior probability density.
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Fig. 6. Distribution of porosity in the right part of the reservoir. Top:
prior probability density. Bottom: posterior probability density.
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Fig. 7. Distribution of permeability in the right part of the reservoir. Top:
prior probability density. Bottom: posterior probability density.
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