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Abstract— We discuss four metrics for determining sensor
placement in energy efficient building design. These include the
norm of the observer gain, the trace of the observer Riccati
solution, the distance to the nearest unobservable system,
and the linear quadratic Gaussian (LQG) cost from given
initial state and state estimates. These metrics have different
computational complexity, but all lead to the same optimal
sensor location in this study where a single room model is
considered.

I. INTRODUCTION

In this paper, we investigate methodologies for determin-
ing optimal sensor placement in the design of HVAC systems
in buildings. The current state of the science in whole build-
ing simulation uses lumped models that are not amenable
to addressing these control questions. Studies that involve
more sophisticated modeling approaches are appearing in the
literature, but are limited to addressing the model/simulation
problem, e.g. [1], [2], [3]. Our present study is limited to
the flow in one room and considers the use of distributed
parameter control theory to design the physical configuration
of the control system. The model in this preliminary study
leads to an advection diffusion equation where the advection
velocity is given by the Navier-Stokes equations. We build
upon related efforts in the actuator/sensor placement problem
over the past decade, e.g. [4], [5], [6], [7], [8]. In particular,
we consider four metrics that can be used: the norm of the
observer gain, the trace of the observer Riccati solution, the
distance to the nearest unobservable system, and the LQG
cost from given initial state and state estimates. Numerical
experiments are given that compare the efficiency and quality
of these metrics.

The remainder of this paper is organized as follows: in
the next section we present a model for the transport of
thermal energy, moisture, etc. in a single room. We then
make a simplifying assumption for this study as well as
present the distributed control problem. The objective is
to control the average temperature in the center region of
the room by specifying the incoming air temperature and
measure the temperature at one location on a side wall. We
present four metrics in the next section that can be used to
evaluate the quality of the sensor location. This is followed
by a numerical study that considers an entire range of sensor
locations on one wall of a room. Finally, we present our
conclusions as well as outline our plans for future work.
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lzietsma@vt.edu.

Fig. 1. Simplified room: the region Ωw is shaded

II. MODEL AND CONTROL DESIGN PROBLEM

The transport of air, thermal energy, and chemical species
in a room can be modeled using the Boussinesq equations
along with passive scalar equations for each component of
interest (water vapor, CO2, etc.). We ignore the buoyancy
forces that gradients in chemical species could impart on the
flow. The PDE system is

∂v

∂t
+ v · ∇v = −∇p+

1

Re
∆v +

Gr

Re2T k̂ + Bvuv(1)

∇ · v = 0 (2)
∂T

∂t
+ v · ∇T =

1

RePr
∆T +BTu (3)

∂si
∂t

+ v · ∇si = εi∆si +Bsiusi (4)

where for each time t > 0, x ∈ Ω ⊂ IR3, v(t,x) is
the velocity vector, p(t,x) is the pressure, T (t,x) is the
temperature, and si(t,x), i = 1, . . . , S, are additional scalar
fields of interest. Nondimensionalization has been carried out
where Re is the Reynolds number, Gr is the Grashof number,
Pr is the Prandtl number, and εi is a diffusion coefficient
associated with scalar si (cf. [9]). The flow is considered in
a unit room Ω depicted in Fig. 1 with an inlet vent on one
wall and an outlet vent on the opposing wall.

The model includes control input terms Bvuv, BTu and
Bsusi that affect, respectively, the velocity, temperature and
species at the heating vent. A uniformly heated, uniform
species concentration, parabolic inflow velocity profile is
assumed at the heating duct with stress-free fluid boundary
conditions at the return vent. No slip boundary conditions
for the velocity are imposed on the remainder of the walls,
while homogeneous Neumann conditions are assumed for
the remaining boundary conditions on temperature and con-
centrations.

Our preliminary study, which emphasizes performance
metrics for studying sensor location, makes a number of sim-
plifying assumptions. The main assumption is that we ignore
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the buoyancy term due to the temperature (ignoring the term
GrT/Re2 in (1)). This completely decouples equations (1)
and (2) from equations (3) and (4). If we assume that the fan
is always on, then the distributed parameter control problem
can be built from equation (3) with v computed by solving
the steady-state Navier-Stokes equations (also ignoring the
time derivative term in (1)). The treatment of scalar variables
and the temperature are similar, so we only consider the
control problem for the temperature.

Using Linear Quadratic Regulator (LQR) control, system
(3) takes the form of a differential equation on a Hilbert
space Z,

ż(t) = Az(t) +Bu(t), z(0) = z0 (5)

where [z(t)] (x) = T (t,x). The objective is to find the
control that minimizes

J(u) =

∫ ∞
0

[〈Qz(t), z(t)〉Z + 〈Ru(t), u(t)〉] dt, (6)

subject to (5), where Q corresponds to a characteristic
function in a workspace (see Fig. 1). Under reasonable
conditions, see [10], an optimal control exists and has the
form

u∗(t) = −Kz(t), (7)

where K : Z → R is a bounded linear “gain” operator. In
addition, K = R−1B∗Π where Π : Z → Z is a bounded
linear operator, Π = Π∗ and Π satisfies the Riccati equation

A∗Π + ΠA−ΠBR−1B∗Π +Q = 0. (8)

Under the assumption that the flow is fixed and only the
temperature of the air is controlled, the Riesz Representation
Theorem implies that there exists a function kT (x) such that

Kz(t) =

∫
Ω

kT (x)T (t,x)dx. (9)

The kernel kT (x) is called a functional gain. The functional
gains define the optimal LQR controller and can be used
to place sensors and design low order controllers (see [11],
[12], [13], [14], [15]).

Assume we place one sensor on a wall with support in the
region Ω1 ⊂ Ω, then the sensed output is given by

y(t) =

∫
Ω1

c(x)T (t,x)dx = Cz(t). (10)

It is often not possible to locate sensors in the “optimal”
places and/or to have full state information even with optimal
sensor location. Hence, one must construct a state estimator
(observer) and use sensed information to construct (partial)
state information needed for the control. Therefore, we
consider a standard linear state estimator (observer) of the
form

że(t) = Aeze(t) + Fy(t), (11)

where F : R→ Z has the representation

[Fy](x) = fT (x)y

where the function fT is the observer functional gain.

III. SENSOR PLACEMENT METRICS

A. Optimal LQG Cost

A Linear Quadratic Gaussian (LQG) control would have
the form of (5) with an additional noise term,

ż(t) = Aze(t) +Bu(t) +Gη(t), z(0) = z0. (12)

The additional term G(η) accounts for model errors or
unmodeled dynamics (additional measurement error models
could be added to (10) but have not been included here).
The control is given by u(t) = −Kze(t) and rather than
computing the optimal LQR cost, which does not have any
information about the sensor, we consider the LQG cost
functional

JLQG(Ω1) ≡
∫ tf

0

[〈Qz(t), z(t)〉Z + 〈RKze(t),Kze(t)〉] dt,
(13)

for a sufficiently large tf . Finding the sensor location (Ω1)
that produces the best state estimate for the control problem,
will produce a minimum LQG cost. Note that there are a
number of parameters in this metric: the structure of the
operator G, the value of tf , and the initial state and state
estimates, z(0) and ze(0). We note here that this leads to a
very expensive computational cost since it includes the cost
of solving two Riccati equations (for the control gain and
for the observer gain) as well as the cost of numerically
integrating the coupled [z; ze]

T system.

B. Norm of the Observer Gain

Our second proposed metric is the norm of the observer
gain. Specifically, for a given Ω1, we use finite element
methods to compute approximations An, Cn and Gn to
A, C = C(Ω1), G, respectively. An approximation to the
observer gain fT can be found by solving the observer
Riccati equation

PA∗n +AnP − PC∗nCnP +GnG
∗
n = 0,

whence fn = PC∗n. The observer gain provides a mapping
from observations y to their contribution to the observer
equation (11). Thus, if this gain is large, it indicates that
observations are “better felt” by the observer. Therefore, we
propose using the norm of the observer gain as a metric
for sensor placement. This metric has the distinct advantage
of being the most computationally feasible for complex
problems as there are methods available for computing the
action of the matrix P on a vector without having to fully
compute P first, cf. [16], [17], [18]. The previous metric also
shares this advantage in that only K and F are needed, and
Π and P don’t have to be formed explicitly.

C. Minimum Error Variance

A well known result [19], [20] of observers is that the trace
of P gives the variance of e(t) ≡ z(t) − ze(t). Therefore,
finding the P = P (Ω1) with minimum trace is a good
metric for determining sensor placement. Unfortunately, this
requires the full solution to the observer Riccati equation and
is expensive for large problems.
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D. Distance to Nearest Unobservable System

Traditional methods used to determine a yes/no result
about the observabilty (alternatively controllability) of a sys-
tem, may lead to incorrect conclusions, see [21]. Therefore
a continuous metric, the distance between the original ob-
servable (controllable) system and the nearest unobservable
(uncontrollable) system is used.

This measure of the distance to unobservability is defined
by

τ(An, Cn) ≡ min {‖∆An ∆Cn‖ such that the system
(An + ∆An, Cn + ∆Cn) is unobservable}

where ‖ · ‖ denotes the spectral or Frobenius norms.
This measure is equivalent to the singular value minimiza-

tion problem, see [22], [23],

τ(An, Cn) = inf
λ∈C

σmin[ATn − λI CTn ]

where σmin[X] denotes the smallest singlar value of X ∈
Cn×n.

There exist a vast literature on algorithms designed to
compute τ(An, Cn), see for example [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37]. Each
of these algorithms has significant limitations. For example,
the local minimum found is not necessarily the global
minimum, or the computing time is inversely proportional to
τ2(An, Cn) which is extremely expensive for systems that
are nearly uncontrollable.

The recent breakthrough by Gu [38], lead to polynomial
time algorithms by Gu et al., [39]. Mengi [40], proposed an
algorithm that reduces the cost, on average, from O(n6) to
O(n4).

IV. NUMERICAL RESULTS

A finite element method with 33 points in each direction
(producing a mesh with 143,360 tetrahedral Taylor-Hood
elements) is used for the flow simulation. The inlet heating
duct is located at {(0, y, z) | 0.375 < y < 0.625, 0.75 <
z < 0.875}, and the return vent is located at the x = 1
wall where y ranges from 0.375 to 0.625 and z ranges
from 0.125 to 0.375. A single sensor is now placed at
different locations on the wall 0 < x < 1, y = 0,
0 < z < 1. Each sensor location corresponds to an interior
vertex of the tetrahedra. This results in 225 different locations
and the different measures are computed for each of these
locations.

The feedback functional gain as described in (9) is pre-
sented in Fig. 2. This gain has most support near the center
area, ΩQ = (1/3, 2/3)3, where the temperature is being
controlled, see Fig. 1. This suggests that the sensor should
ideally be placed in that region ΩQ, but is not possible since
we only consider wall sensors.

A. Optimal LQG Cost

In this preliminary study, we computed the optimal LQG
cost (13) where we selected G = 1. Due to the enormous
computational time required for this metric, we selected

Fig. 2. Feedback functional gain.
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Fig. 3. L2-norm of observer gain.

only the four corners of the y = 0 wall as four sensor
locations. For each of these sensor locations we ran the
simulations for tf = 1. The results differed in the 13th
significant digit due to the fact that the control had yet
to produce a significant difference between the estimated
solutions. However, this study favored the sensor location at
(x, z) = (.8125, .1875) over the locations at (.1875, .1875),
(.1875, .8125), and (.8125, .8125). We are currently in the
process of accurately integrating the solutions over substan-
tially long simulation times so that differences in this metric
are greater than numerical integration errors. Based on the
enormous computational time required to integrate these stiff
equations, we do not expect this metric to be of practical use,
but to be used in this study to validate the other proposed
metrics.

B. Norm of the Observer Gain

In Fig. 3 the L2-norm of the observer functional gain
computed for each of the 225 sensor locations associated
with the interior vertices of the tetrahedra on the wall
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(x, 0, z), 0 < x < 1, 0 < z < 1, is presented. The support
of fT (x) is the smallest if the sensor is placed at the top
left corner of the wall, see Fig. 4, and largest if the sensor
is placed at the bottom right corner of the wall, see Fig. 5.
This indicates that the sensor should ideally be placed near
the bottom right corner of the wall.

Fig. 4. Observer functional gain, fT , for sensor in top left corner.

C. Minimum Error Variance

This optimal sensor location in the bottom right hand
corner is also confirmed by computing the trace of the
solution to the observer Riccati equation which is a measure
of the expected value of ‖z(t)− ze(t)‖2. The trace is again
computed for each of the 225 sensor locations on the wall
(x, 0, z), 0 < x < 1, 0 < z < 1, and is presented in Fig. 6.
The trace is smallest in the bottom right hand corner. This
indicates that the best location to place the observer is nearest
the return vent.

D. Distance to Nearest Unobservable System

These results are also confirmed by the observability
radius for different sensor locations on the wall. In Fig. 7
the observability radius for the different sensor locations on
the wall (x, 0, z), 0 < x < 1, 0 < z < 1, is presented.

Fig. 5. Observer functional gain, fT , for sensor in bottom right corner.
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Fig. 6. Trace of solution to observer Riccati equation.
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Fig. 7. Observability radius for different sensor locations on the wall.

Again, the distance to the nearest unobservable system is
largest near the bottom right corner. This implies that the
sensor should be placed in that region close to the return
vent.

V. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a number of metrics for
evaluating the location of sensors in a room. Each metric
indicated the well-known result in HVAC design of placing
temperature sensors as close to the return vent as possible.
We note that the use of the feedback functional gain would
indicate the obvious choice of locating the sensor in the
workspace (where the air quality needs to be assured).
However, simply using the value of the functional gain along
walls would lead to misleading results (see Fig. 2).

The metrics presented here are all computationally chal-
lenging to implement for HVAC design problems. This is
due to the complex dynamics and discretization sizes that
are used to approximate the distributed parameter control
problem. Both B.) the norm of the observer gain and C.) the
minimum error variance produced adequate sensor placement
for the least computational cost. The distance to the nearest
unobservable system (D.) is clearly a metric that one would
like to maximize, but theoretical underpinnings need to
be addressed before this is offered as a production tool.
For example, the meaning of this quantity (τ ) under mesh
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refinement and the difficulty to compute this quantity when
the system is nearly unobservable. Finally, we would like
to have a more complete picture of the optimal LQG cost
(A.), however simulation times dramatically increase when
the fully coupled state and state estimator equations are
integrated. This will require much longer simulation times.

To date, most studies of sensor placement questions have
been concerned with one and two dimensional problems.
However, the appearance of new algorithms make some
of these metrics practicable for complex systems, such as
the original flow model given in Section II with realistic
parameter values. The ability to use model reduction methods
to compute functional gains for systems with low numbers
of control inputs and sensors allow us to avoid explicit
calculation of the Riccati solution regardless of whether we
have low-rank matrices [16] or high-rank matrices [17]. The
optimal LQG cost and the norm of the observer gain can
then be feasibly computed for complex cases: i.e., the fully
coupled (but linearized) equations (1)-(4). More development
of these algorithms is needed to enable the practical use of
CFD along with distributed parameter control theory in the
design of high-performance, energy efficient buildings.
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