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Abstract— We propose a method for model-reduction of
a class of non-linear models that are relevant to modeling
thermal dynamics of multi-zone buildings. These models can
have large state-space dimension even for a moderate number
of zones. Reduced order models of building thermal dynamics
can be useful to model-based control for improving energy
efficiency, especially to computationally intensive ones such
as Model Predictive Control (MPC). Although there are a
number of well-developed techniques for model reduction of
LTI systems, the same cannot be said about non-linear systems.
The method we propose exploits the linear portion of the model
to compute a transformation (by using balanced realization) and
a specific sparsity pattern of the non-linear portion to obtain the
reduced order model. Simulations are presented with a four-
zone building model, which show that the prediction of the zone
temperatures and humidity ratios by the reduced model is quite
close to that from the full-scale model, even when substantial
reduction of model order is specified.

I. INTRODUCTION

Buildings are one of the primary consumers of energy in

worldwide, and particularly in the United States. Inefficien-

cies in the building technologies, particularly in operating

the HVAC (heating, ventilation and air conditioning) systems

cause a significant fraction of energy consumed by building

to be wasted. Part of the reason is that HVAC systems are

operated on a pre-designed schedule of zone-wise tempera-

ture set points that local PID controllers in every zone try to

maintain. There is growing interest in developing techniques

that seek to compute the optimal building control signals to

minimize building-wide energy consumption, such as MPC

(model predictive control) [18].

Control techniques that seek to determine the optimal

control signals to minimize energy consumption require a

model of the building’s thermal dynamics, i.e., a model that

relate the control signals to the space temperatures (average

temperatures of the zones of the building). A first-principles

based model of the thermal dynamics of a building can

be constructed from energy and mass balance equations by

assuming well-mixed air in the zones, so that each zone

is characterized by a single space temperature value. The

air in the zone is modeled as a thermal capacitor and each

solid surface separating two zones (walls, windows, etc.) is

modeled as a thermal resistor and capacitor. Phenomena such

as non-uniform mixing of air inside a room, heat transfer

due to convection, buoyancy driven flows, etc. are neglected.
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This results in a lumped parameter model that in the form

of a system of coupled non-linear ODEs. Still, such a model

suffers from large state space dimension, which increases

quite steeply as the the number of zones increases. For

instance, a 4-zone building model has a state dimension of

about 40. Depending on the number of floors, zones, and

their layout, the model of a building with 100 zones can

have a state dimension that exceeds 1000. Thus, control

signal computations with model-based control techniques, es-

pecially ones such as MPC that requires on-line optimization,

becomes challenging with such a model.

In this paper, we propose a method for reduction of

the order of such models of building thermal dynamics. A

secondary contribution of the paper is the first-principles

based model of building thermal dynamics, which we call the

“full-scale model”. This full-scale model is a combination of

a linear-time-invariant system and a non-linear component.

The linear component comes from the lumped RC network

models of solid surfaces of the building (walls, windows,

floors and ceilings), while the non-linear part comes from

the non-linear dependencies of enthalpy on mass flow rate of

air, humidity, and temperature. The outputs of the reduced-

order model are the space temperatures and humidities of

the zones, and the inputs are kept same as those of the full-

scale model. Since the number of outputs is 2N for a N-zone

building (temperatures and humidities of the N zones), the

state dimension of the reduced model, though user-specified,

has a minimum possible value of 2N.

Although there are a number of well-developed techniques

for model reduction of linear systems, model reduction of

non-linear systems is much less developed. A few notable

work in this area are [16], [17], [15], with the stronger results

obtained for k-power bilinear systems [15]. Our method

avoids the difficulties in computing the energy function that

is required for the method of [16], and does not require

simulation data as is needed by the method of [17]. The

proposed method leverages existing methods for model re-

duction of LTI system. A coordinate transformation is first

carried out by using only the linear portion of the thermal

model by applying standard balanced realization technique.

The specific sparsity structure of the non-linear portion is

then exploited to truncate the state of the full-scale model

in the transformed coordinates. Although we use balanced

realization to compute the transformation, other methods of

linear model reduction that lead to a state transformation of

the LTI part, such as that in [11], may be potentially used as

well. Simulations are provided to show the predictive power

of the proposed method.
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The rest of the paper is organized as follows. Section II

describes briefly the full-scale model of building thermal

dynamics. The proposed method for order reduction of this

model is described in Section III. Results from simulations

are presented in Section IV.

II. FULL-SCALE MODEL OF BUILDING THERMAL

DYNAMICS

A common configuration of HVAC systems used in mod-

ern buildings is the so-called variable-air-volume (VAV)

system, where a building is divided into a number of “zones”.

The schematic of a building with a VAV system with four

zones is shown in Figure 1. One or more air handling units

(AHUs) condition a mixture of return air (RA) and outside

air (OA) by passing it across a cooling coil where the

temperature and humidity of the air is brought into desired

values. The flow rate of conditioned air supplied into each

of the zones is controlled through dampers in the “VAV

boxes” of the respective zones. The dampers in a zone are

commanded by a local controller that computes its control

command based on the space temperature of that zone and

the desired temperature value.

In practice, the control inputs to the system are the fan

speeds, the damper positions of the VAV boxes, and the

flow rate of chilled water through the cooling coil in the

AHU, which determine the flow rates and temperature of

the supply air into the zones. In this paper, we ignore the

“upstream” side of the dynamics and concentrate on model-

ing the “downstream” side (see Figure 1). The downstream

part of the building’s thermal dynamics is affected by the

following externally specified variables, which are the inputs

to the model: (i) characteristics of the supply air (flow

rate, temperature and humidity), (ii) thermal loads due to

occupants, equipments and lights, (iii) thermal loads due to

solar radiation, (iv) outside temperatures and humidity.

AHU
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Fig. 1. A schematic of a 4-zone building HVAC system.

The reason for ignoring the upstream side, which in-

cludes the AHU dynamics, is twofold. First, the size of the

downstream model increases very fast with the number of

zones, but the size of the upstream model increases only

with the number of AHUs which is typically small for a

large building. Thus, the downstream model requires model

reduction techniques much more than the upstream model.

Second, the AHU has the fastest dynamics in the HVAC

system, with a time constant of about a minute [12], whereas

the thermal dynamics of the zones are far slower with time

constants in the order tens of minutes [13] to hours [14].

As a result, it may be possible to replace the dynamics of

the AHUs and ducts by static gains without significant loss

of accuracy, as long as the system does not operate in the

unstable parts of the fan and AHU characteristics.

The main variables of interest that the model is required to

predict are T1, ...TN ,W1, ...WN , where Ti and Wi are the tem-

perature and humidity ratio in the ith zone respectively. The

vector v of input signals to the building thermal dynamics is

defined below (i = 1, . . . ,N).

v = [min
1 , . . . ,min

N ,W in
1 , . . . ,W in

N ,T in
1 , ...T in

N ,Q
p
1 , ...Q

p
N ,

Qs
1, ...Q

s
N ,T0,WOA]T ,

(1)

where W in
i is the humidity ratio of conditioned air entering

into the ith zone, T in
i is the temperature of conditioned air

entering into the ith zone, Q
p
i is the rate of heat generated by

people in the ith zone, Qs
i is the solar radiation entering in

the ith zone, T0 and WOA are the temperature and humidity

ratio of outside air respectively.

As discussed in Section I, only conductive heat transfer

in considered. A model of a building’s thermal dynamics

can be constructed by combining elemental models of con-

ductive interaction between two zones separated by a solid

surface such as a wall. The most extensively used version of

lumped parameter models for conduction is called the 3R2C

model, in which a solid surface separating two volumes

of air is modeled by a network of three resistors and two

capacitors, as shown in Figure 2. Such RC network models

are well established and experimentally validated [1], [14].

The temperature of each zone is also assigned a node and

capacitance.

Zone Outside

ToT1

Surface

(a) surface element

T1

T2 T3 To
R1 R2 R3

C1 C2 C3

Qp QsSurface

(b) RC-network model

Fig. 2. A lumped RC-network model for conductive interaction between
the outside and an internal air space separated by a single surface.

For a building consisting of a number of surface elements

(wall, window, ceiling and floor), the lumped RC model for

each surface element can be concatenated to produce a RC-

network of the entire building that models the conduction

among the zones. We now briefly review the model structure;

the interested reader is referred to [10] for details. It is

assumed that air density remains constant and uniform in

the zone, so that the thermal capacitance of a zone does not

change with time. The number of nodes in the RC network

model of a multi-zone building is denoted by n. The model
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for the dynamics of the space temperatures in a building,

when considering only conduction across surface elements,

is now a LTI system:

CṪ = AaT + BaU, (2)

where T = [T1, . . . ,Tn]
T is the state vector that contains

the temperatures of not only the zones but also of the

internal nodes of the surface elements, and the input vec-

tor U = [T0,Q
p
1 , . . . ,Q

p
N ,Qs

1, . . . ,Q
s
N ]T contains the outside

temperature as well as the heat gains from solar radiation

and occupants of all the zones, some of which can be

0. These nodes are indexed in such a way that first N

components of T correspond to the space temperature of N

zones, and remaining n−N states correspond to the internal

node temperatures of the surface elements. The elements of

the matrices C,Aa ∈R
n×n and Ba ∈R

n×(2N+1) are determined

by the capacitances and resistances of the zones as well as

that of the internal nodes of all the surface elements.

The model above does not take into account the energy

exchange between the zones and the outside due to the

supplied conditioned air and extraction of the return air. To

accommodate these effects, extra term that accounts for the

enthalpy of the air is needed. The overall dynamics of Ti,

the temperature of zone i, can be expressed as

CiṪi = Aa
i∗T + Ba

i∗U + min
i hin

i (T in
i ,W in

i )−mout
i hout

i (Ti,Wi)

i = 1,2, ...N (3)

where Ci is the thermal capacity of the ith zone, Aa
i∗ and

Ba
i∗ denote the ith row of matrices Aa and Ba, respectively,

mout
i (t) is the flow rate of air leaving zone i, hin(·) is the

enthalpy of the incoming (supply) air, and hout(·) is the

enthalpy of the outgoing air. It is assumed that air leaving

a zone through ventilation ducts has the same temperature

and humidity ratio as air present in the zone. The enthalpies

for incoming and outgoing air in (3) can be computed from

psychometric equations [4] as

hin
i = CpaT in

i +W in
i (hwe +CpwT in

i ) (4)

hout
i = CpaTi +Wi(hwe +CpwTi) (5)

where Cpa is specific heat capacity of air at constant pressure,

hwe is the evaporation heat of water at 0◦C, Cpw is specific

heat capacity of water vapor at constant pressure. The

humidity ratio Wi is directly tied to the occupancy of zone i

due to perspiration. Humidity dynamics can be derived from

mass balance and gas laws as

dWi

dt
=

RgTin
p
i ωH2O

ViPi

+
RgTi(W

in
i −Wi)m

in
i

ViPi(1 +W in
i )

(6)

where Rg is ideal gas constant and Pi, Vi are the pressure and

volume of the ith zone, respectively [10]. Eq. (6) can be com-

pactly written as Ẇ = g(Tz,W ), where Tz = [T1 T2 ... TN ]T

and W = [W1 W2 ... WN ]T . Combining (3) - (6), the full-scale

model of thermal dynamics in a building is obtained:

Ṫ = AT + BU + f (T,W,v) (7)

Ẇ = g(Tz,W,v), (8)

where A and B are matrices of dimension n×n and n×(2N+
1) respectively, f (T,W,v) is the nonlinear part in (3) that

captures the enthalpy difference of supplied conditioned and

outgoing return air. Note that U is a sub-vector of v, which

is the vector of all inputs specified in (1). It is also important

to note that f has a special structure; only its first N entries

are potentially non-zero, which correspond to thermal loads

of the N zones. The remaining entries of f are zeros. This

fact will be useful in the proposed model reduction method.

III. PROPOSED MODEL REDUCTION METHOD

We start with a brief review of the classical balanced

truncation method for LTI systems that is used in the

proposed method.

A. Review of balanced truncation method for LTI system

Consider a linear time invariant system with a p × m

transfer function G(s) with a minimal realization

ẋ = Ax + Bu, y = Cx + Du (9)

where A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n and D ∈ R

p×m. Con-

sider a transformation xb = Rx which gives us the trans-

formed realization

ẋb = Abxb + Bbu, yb = y = Cbxb + Du, (10)

Ab = RAR−1
, Bb = RB, Cb = CR−1

.

This is called balanced realization if R is chosen in a way

that controllability and observability Gramians are both equal

and diagonal [8]. Suppose we want to reduce the full-scale

nth order system (10) to a rth order system. Decompose

Ab,Bb,Cb as

Ab =

[

A11 A12

A21 A22

]

, Bb =

[

B1

B2

]

, Cb =

[

CT
1

CT
2

]T

(11)

where A11 ∈ R
r×r,A12 ∈ R

(n−r)×r,A21 ∈ R
(n−r)×r,A22 ∈

R
(n−r)×(n−r),B1 ∈ R

r×m,B2 ∈ R
(n−r)×m,C1 ∈ R

p×r and C2 ∈

R
p×(n−r). The system

ẋr = A11xr + B1u, yr = C1xr + Du (12)

is a reduced order model of (9), where states corresponding

to the n− r smallest eigenvalues of the controllability and

observability gramians are ignored [9], [8].

B. Application of balanced truncation to nonlinear building

thermal model

Recall that the temperature dynamics of the building

thermal model is

Ṫ = AT + BU + f (T,W,v) (13)

where T ∈ R
n contains the n temperature states. Since the

vector T contains the temperatures of the internal nodes of

the surface elements, n > N, where N is the number of zones.

We re-index the entries of T into “zone temperatures” and

“internal node temperatures” to obtain

T =
[

T T
z , T T

n

]T
(14)
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where Tn ∈R
(n−N) is the vector of temperature of the internal

nodes of surface elements. Due to the special structure of

f , (the first N entries being non-zero and remaining entries

being zero) f can be re-indexed as

f (T,W,v) = [ f T
a (T,W,v) 0T

(n−N)×1]
T
, where fa ∈ R

N (15)

We now introduce a fictitious output of the following form:

Y = CT, C ∈ R
p×n(p ≥ N) (16)

with the constraint that Y contains Tz as a sub-vector. With

appropriate indexing, C can be decomposed as

C =

[

IN×N 0N×(n−N)

Cz Cn

]

(17)

where I is an identity matrix, Cz ∈ R
(p−N)×N and Cn ∈

R
(p−N)×(n−N). Using (14) and (17), Y can be expressed as

Y =

[

Tz

CzTz +CnTn

]

:=

[

Yz

Yn

]

(18)

where Yz = Tz ∈ R
N and Yn ∈ R

(n−N). Combining (13) -(18),

overall dynamics can be rewritten as
[

Ṫ

Ẇ

]

=

[

AT + BU +[ f T
a (Yz,W,v) 0T

(n−N)×1
]T

g(Yz,W,v)

]

(19)

Y = CT

Note that the nonlinear function f (T,W,v) is transformed

into another nonlinear function [ f T
a (Yz,W,v) 0T

(n−N)×1
]T .

The new nonlinear function f T
a (Yz,W,v) uses output Yz

instead of the temperature state T . This nonlinear function

transformation is possible only if the output vector Y contains

Tz.

Let Tb := RT , where R ∈ R
n×n the co-ordinate transfor-

mation that leads to a balanced realization of the system

Ṫ = AT + BU , where A,B are the corresponding matrices

from (7). Eq. (7)-(8) can now be expressed as
[

Ṫb

Ẇ

]

=

[

AbTb + BbU + R[ f T
a (Yz,W,v) 0T

(n−N)×1
]T

g(Yz,W,v)

]

(20)

Y = CbTb

where Ab = RAR−1, Bb = RB, Cb = CR−1

Note that the computation of R is solely based on the LTI

part of (7). Decomposing Ab,Bb,Cb,T, f (Y,W,v) gives us the

following matrices.

Ab =

[

A11 A12

A21 A22

]

, Bb =

[

B1

B2

]

Cb =
[

C1 C2

]

, R =

[

R11 R12

R21 R22

]

where matrices A11 ∈ R
r×r,A12,A21 ∈ R

(n−r)×r,A22 ∈

R
(n−r)×(n−r),B1 ∈ R

r×m,B2 ∈ R
(n−r)×m,C1 ∈ R

p×r,C2 ∈

R
p×(n−r),R11 ∈R

r×r,R12,R21 ∈R
(n−r)×r,R22 ∈ R

(n−r)×(n−r).

We now truncate the last n− r states of Tb, which leads to

the following (r + N)th order reduced system
[

Ṫk

Ẇk

]

=

[

A11Tk + B1U + R11h(Yk,Wk,u)
g(Yk,Wk)

]

(21)

Yk = C1Tk

where h(Yk,Wk,v) = [ f T
a (Yz,Wk,v) 0]T ∈ R

r×1. The notation

f T
a (Yk,Wk,v) denotes a function that is obtained by replacing

the elements of Yz (W ) that appear in the function fa(Yz,W,v)
by the the corresponding elements of Yk (Wk). The implicit

assumption here is that the effect of the truncated n−r states

is not significant in the nonlinear term. Simulation results in

next section suggest that this assumption holds well up to a

particular order (r) of reduced model. Eq. (21) is the reduced

order model of the full-scale system model (7)-(8). In the

reduced model, Wk is the vector of zone humidity ratios and

the first N entries of Yk are the space temperatures for the N

zones.

Using the transformation xb = Rx, given the initial temper-

ature T (0) and humidity ratio W (0) of the full-scale model,

initial value of the state ([T T
k (0), W T

k (0)]T ) can be calculated

as
[

Tk(0)
Wk(0)

]

=

[

[R11 R12]T (0)
W (0)

]

. (22)

C. Non-Dimensionalization

Before applying the technique developed in the previous

section to the model (7), (8) directly, the states and inputs

need to be non-dimensionalized by appropriate scaling in

order to achieve numerical robustness. To see the need

for this, notice that the input vector U in (7) contains

variables such as outside temperature and heat gains from

solar radiation and occupants, which differ significantly in

magnitudes depending on the units of measurement used.

For an LTI model ẋ = Ax + Bu, if two input signals have

equal effect on the state but one has a much higher typical

magnitude than the other, the entry(-ies) of the B matrix

corresponding to the larger input is likely to be smaller than

those that correspond to the smaller input. In such a situation

balanced truncation may incorrectly determine certain inputs

to have little effect on the output. Effect of inputs on outputs

should not depend on the choice of units of measurements,

and non-dimensionalizing the equations of the model before

model reduction ameliorates such numerical issues.

Therefore, we scale the variables T, To,Q
s and Qp as

T̄ =
T

T (0)
, T̄o =

To

Toavg

, Q̄s =
Qs

Qs
avg

, Q̄p =
Qp

Q
p
avg

, (23)

where Toavg is the average of maximum and minimum of

the outside temperatures range expected, Qs
avg is the average

of maximum and minimum heat gain of a zone from solar

radiation, and Q
p
avg is the average of maximum and minimum

heat generated by people in a zone. Eq. (7) can now be re-

expressed in terms of the non-dimensional variables defined

above, which is denoted as

˙̄T = AsT̄ + BsŪ + fs(T̄ ,W, v̄) (24)

where Ū = [T̄o Q̄sT
Q̄pT

]T , and v̄ is the scaled counterpart

of v. Instead of applying balanced transformation to the

LTI part of (7), it is applied to the LTI part of (24) and

the transformation matrix R described in Section III-B is

obtained. This new R matrix so obtained is used in the full-

scale model defined in (7) and rest of procedure is same as

described in Section III-B.
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IV. SIMULATION RESULTS

Simulations are carried out for a four-zone building that

is shown schematically in Figure 1. All four zones have an

equal floor area of 25m2, each wall is 5 meters wide by

3 meters tall. This provides a volumetric area of 75m3 for

each zone. Zone 1 has a small window (5m2) on the north

facing wall, whereas zones 2 and 4 have a larger window

(7m2 each) on the east facing wall. Zone 3 does not have

a window. Wall thermal resistances and capacitances are

obtained from Carrier’s Hourly Analysis Program (HAP)[6].

The HVAC system used for both the buildings is designed

to supply maximum flow rate of 0.25 kg/s per zone at the

temperature of 12.78◦C. These design choices were made

after consulting with a HVAC expert. The number of people

in a zone is chosen as a random integer that is uniformly

distributed between 0 and 4. Outside temperature, outside

humidity ratio and solar radiation data is obtained for a

summer day (05/24/1996) of Gainesville, Fl [5].

Numerical results presented here are obtained from sim-

ulations conducted in MATLAB c©using ode45. The inputs

in the vector U are kept constant for every 10 minute

intervals. A PI controller for each zone is used in the full-

scale model to determine the flow rates of conditioned air

to track the desired zone temperatures, which are set as

19◦C for all the zones. The mass flow rates computed by

the PI controllers are used as inputs to the reduced order

model. All temperatures and humidity ratios are initialized

at 24◦C and 0.01 respectively. In figures and figure captions,

superscript r represents the results obtained from reduced

order model and legends 1, 2, 3 and 4 represent the results

for the 1st , 2nd, 3rd and 4th zone, respectively. Inputs such as

outside temperature, outside humidity ratio, mass flow rates

(obtained from the PI controller) and total internal loads are

shown in Figure 3.

The full-scale model for the four-zone building has 40

states. We applied the proposed method to construct two

reduced order models for this system: (i) one with 14 states

and (ii) one with 8 states. For a four zone building, 8 is

the minimum possible order using the proposed method.

Figures 4 and 5 show the space temperatures and humidity

ratios for the 14th-order reduced model. It is clear from

Figure 4 that the temperature and humidity ratio predictions

by the reduced model are close to the predictions by the full-

scale model for all the zones. Predictions by the 8th order

reduced model are shown in Figure 6 and Figure 7. Temper-

ature predictions by the 8th order reduced model show larger

error in both transient and steady state behavior. However,

humidity ratio predictions are close to those by the full-scale

model, as seen from Figure 7. It seems to suggest that the

effect of temperature variation on humidity ratio is not large.

Comparing the error in zone temperature predictions by the

14th and 8th order reduced models illustrates the compromise

between prediction accuracy and model order.

V. CONCLUSION

This paper presents a method for model reduction of a

class of non-linear systems that model conductive thermal
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Fig. 3. Inputs to the four-zone building model: mass flow rates (min
i ),

outside temperature (TO), outside humidity ratio (WOA) and total internal
load (Q) for the 4 zones.
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Fig. 4. Space temperatures for full-scale 40th order (Ti) and reduced 14th

order (T r
i ) model for a four-zone building, i=1,2,...4.

0 10 20 30

8

10

x 10
−3

 a)

Time (hr)

W
1

 

 

W
i

W
i

r

0 10 20 30

8

10

x 10
−3

 b)

Time (hr)

W
2

 

 

W
i

W
i

r

0 10 20 30

8

10

x 10
−3

 c)

Time (hr)

W
3

 

 

W
i

W
i

r

0 10 20 30

8

10

x 10
−3

 d)

Time (hr)

W
4

 

 

W
i

W
i

r

Fig. 5. Zone humidity ratios for full-scale 40th order (Wi) and reduced
14th order (W r

i ) model for a four-zone building, i=1,2,...4.
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Fig. 6. Space temperatures for full-scale 40th order (Ti) and reduced 8th

order (T r
i ) model for a four-zone building, i=1,2,...4.
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Fig. 7. Zone humidity ratios for full-scale 40th order (Wi) and reduced 8th

order (W r
i ) model for a four-zone building, i=1,2,...4.

interactions in a multi-zone building. The full-scale model

of the building thermal dynamics, which is itself a lumped

parameter model, has a larger number of states even for a

moderate number of zones. The proposed model reduction

technique is seen to work exceedingly well in simulations

- the prediction of the zone temperatures and humidities

are quite close to the predictions of the full-scale model

even with substantial order reduction. It is observed that

appropriate scaling of the states of the full-scale model,

before applying the reduction method, is crucial for the

reduced model to have accurate predictive power. Although

we did not report it here due to lack of space, without such

scaling the reduced model’s predictions are considerably

poorer. Since the number of outputs of the model is twice

the number of zones, the minimum order of the reduced

model achievable by this method is also twice the number of

zones. Further work is needed on the method if further order

reduction is desired. Another avenue for future research is

to provide theoretical guarantees on the difference between

the input-output map of the reduced model and the full-scale

model.

We finally note that althogh the full-scale model here

ignores convection, if convection between pairs of zones

can be modeled as RC-networks, the proposed method is

applicable for order reduction of a model that contains

both convection and conduction effects. Preliminary work on

modeling convection with RC-networks is under way [19].
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