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Abstract—Accurate prediction of the battery electrochemical 
dynamics is important to avoid undesired battery operation 
under aggressive driving. This paper proposes a battery power 
management strategy considering Li-ion concentration in the 
electrodes to prevent excessive battery charging and 
discharging. The proposed approach adjusts the allowable 
battery power limits through the feedback of the estimated 
electrode-averaged Li-ion concentration information. An 
advanced hybrid electric vehicle (HEV) power split strategy is 
constructed implementing a Li-ion battery model with 
electrochemical diffusion dynamics to capture the battery 
dynamic behavior under transients. A novel contribution arises 
from the implementation of an extended Kalman filter (EKF) 
using uneven discretization of the particle radius for fast and 
accurate prediction of the Lithium intercalation dynamics. The 
control design modifies the allowable battery power limit used 
in the supervisory controller, thus, maintaining low complexity 
of the control structure.   

I. INTRODUCTION 
ONTROL design of hybrid electric vehicle (HEV) or 
plug-in HEV (PHEV) is important to obtain the 

maximum hardware potential and to prevent battery 
degradation. The supervisory control affects battery 
operations regardless of HEV configurations: series HEV, 
parallel HEV, and power-split HEV. In the series HEV, 
propulsion power is entirely dependent on electric power, and 
the electric power is only delivered by the battery and the 
generator. Thus, supervisory controller must manage the 
electricity requirement for each electric component to achieve 
the desired performance and to prevent the possible abnormal 
operations. The current levels are generally high. Recently, 
Lithium-ion (Li-ion) batteries have been used in the electric 
vehicle (EV) and (P)HEV due to its high energy density. 
However, Li-ion battery is less durable than other types of 
rechargeable batteries, such as nickel metal hydride or 
nickel-cadmium designs. Thus, preventing overcharging and 
discharging is critical for improving the battery life and 
stability.  

Electrochemical models of the Li-ion battery were 
developed by Doyle et al. [1], and further improved in the 
following studies [2],[3]. The full order electrochemical 
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models can predict the solid concentration profiles across the 
electrodes and electrolyte, but, their long computational time 
and the extensive model complexity prevent their application 
in control design and real-time on-board estimator. Reduced 
battery models are beneficial for model-based battery control 
design. To reduce the model order for fast simulation, a 
residue grouping approach was proposed by Smith et al. 
[4],[5]. The approach showed good prediction accuracy, yet 
the Li-ion diffusion dynamics toward the center of the solid 
particle is not observable in this model. Another approach is 
the model reduction using the simple electrode-averaged, 
single-particle model proposed by Di Domenico et al. [6], [7]. 
The averaged model is valid when the concentration 
distribution along the length of the electrodes and separator 
can be assumed constant. Regardless of the limitation, the 
averaged model provides Li-ion concentration profiles in the 
electrodes and can produce a state-space system with linear 
dynamics of spherical diffusion in the solid material and a 
nonlinear voltage output equation [6],[7]. Thus, the averaged 
battery model is used for prediction of Li concentration via a 
Kalman filter design with measured terminal voltage and 
applied current. 

Many previous simulation-based HEV studies and design 
optimizations used equivalent circuit battery models. In those 
cases, fuel economy and battery operation are executed 
without the consideration of electrochemical diffusion 
dynamics [8], [9]. The terminal voltage is directly affected by 
the solid-electrolyte concentration, and high discharge rate 
results in sudden voltage drops and Li-ion depletion at the 
boundary of the electrolyte with the solid particles [6],[7]. 
Such effects become more important in predicting battery 
behavior under transients. 

In the present paper, a control strategy with the 
consideration of the Li-ion diffusion dynamics is proposed to 
moderate excessive battery charging and discharging. The 
proposed control design is devised to utilize the predicted 
dynamics without excessive increase of the control structure 
complexity by augmenting the rule-based supervisory 
controller. It modifies the allowable battery power for the 
supervisory controller. First, we propose a HEV simulation 
framework to design supervisory control including the 
electrode-averaged Li-ion battery model. Then, model-driven 
extended Kalman filter (EKF) is designed and is implemented 
to estimate the Li-ion concentration in a representative solid 
particle. A controller for compensating the battery power 
limits is designed using the estimated Li-ion concentration 
profile. Then, the effects of the proposed controller on battery 
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responses are reviewed, and this paper is summarized with 
conclusions. 

II. SIMULATION FRAMEWORK FOR CONTROL DESIGN 
HEV simulation framework is constructed to obtain 

realistic responses of each component with the balance of 
computation time and prediction accuracy. A heavy-duty 
series HEV equipped with a relatively small battery is 
selected as the target vehicle to investigate the effect of the 
electrochemistry battery dynamics on control design. The 
heavy-duty series HEV requires high propulsion power due to 
the large mass. The propulsion power entirely comes from 
electricity. Table 1 shows the specification of the target 
vehicle and battery size. The component sizes were initially 
determined to satisfy the performance targets: maximum 
speed, gradeability, and acceleration. Rolling resistance, drag, 
and grade terms are taken into account in the vehicle power 
demand. 

e veh prop RR WR GRm v F F F F    ,                (1) 

where Fnet is the net force applied to the vehicle, Fprop is the 
propulsion force from the powertrain, FRR is the rolling 
resistance force, FWR is the wind resistance force, FGR is the 
grade resistance force and all other external forces applied to 
the vehicle, me is the equivalent vehicle mass, vveh is the 
vehicle velocity, and aveh is the vehicle acceleration. 

Figure 1 shows the overall vehicle simulation framework. 
The vehicle model is a forward looking model, and the driver 
determines control commands to follow desired velocity 
profiles. The supervisory controller assigns propulsion and 
braking power to the engine and the motor respectively. Then, 

the electric power demand to the battery is determined as 

Pbatt = Pegn+Pmot+Paccs,                (2) 

where Pbatt is the battery output power, Pmot is the motor 
output power, Peng is the engine output power, and Paccs is 
electric accessory power. The required Pbatt determines the 
current input to the battery, Ibatt, using the battery terminal 
voltage, Vbatt, and the terminal voltage is calculated from the 
finely discretized averaged electrochemistry battery model. 
We note that the only input to the battery cell model is 
“current”, and the only output to the battery cell is “terminal 
voltage” in the simulation framework same as in a real 
vehicle.  

III. ELECTRODE-AVERAGED BATTERY MODEL 
Li-ion battery cells are modeled by describing the key 

dynamics of charging and discharging in the electrodes. In the 
averaged electrochemistry model, Li-ion concentration 
change in the solid particles along the electrode is neglected, 
and the concentration in the electrolyte concentration is 
assumed as constant. Although the simplification may lose 
the prediction accuracy under high charging and discharging 
conditions, important diffusion dynamics in the solid particle 
are captured. 

Figure 2 (a) shows the general structure of Li-ion batteries, 
and it consists of three parts: two porous electrodes, cathode 
and anode, and a separator between those two electrodes. The 
potential energy difference in each electrode generates 
voltage. Li-ions have the lowest potential energy in the 
interstitial sites within the solid crystalline structure of the 
cathode. During the charging process, Li-ions are forced to 
move from the cathode to the anode. The Li-ions diffuse to 
the surface within the cathode’s solid structure, then, 
traveling through the electrolyte across the separator, and 
entering into the anode. During the discharging process, the 
Li-ions diffuse into the anode’s interstitial sites.  

The key equations presented by Di Domenico et al. [6],[7] 
for the averaged electrochemistry battery model (see- Fig. 2 
(b)) are derived from the complete set of equations describing 
the Li-ion battery system with solid and electrolyte 
concentrations (cs, ce) and solid and electrolyte potentials (s, 
e) by Fuller et al.[2],   

TABLE I 
HEAVY-DUTY SERIES-HEV SPECIFICATION: HYBRIDIZED M-ATV 

 Specification 
Vehicle Hybridized M-ATV 
Weight 13,400 kg 
Payload 1,814 kg (4000 lbs) 

Frontal area 5.72 m2 (Width/Height: 2.49/2.70 m) 
Engine I6 Turbo-diesel engine: 275 kW 

Generator Permanent Magnet: 275 kW 
Battery Li-ion 6.0 kWh 
Motors Permanent Magnet: 380kW 

 

 
Fig. 1.  Simulation frame work of the series hybrid electric vehicle in SIMULINK with a forward-looking approach 
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where eff  is the effective electrolyte phase conductivity, 
eff  is the effective solid phase conductivity, F is the 

Faraday’s constant, eff
eD and Ds are the effective diffusion 

coefficient of Li-ion in the electrolyte and electrodes 
respectively, t0 is the transfer number of the Li-ion with 
respect to the velocity of solvent, and jLi is the Butler-Volmer 
current density defined as 

0 exp expLi a c
s

F F
j a j

RT RT
 

 
          

    
,            (7) 

where as is the active surface area per electrode unit volume, 
a and c are the anodic and cathodic transfer coefficients of 
electrode, R is the universal gas constant, T is the absolute 
temperature, and  is an over-potential obtained as 

( )s e seU c     ,         (8) 

where c is the volume-averaged Li-ion concentration with 
subscripts e and s referring to the concentration in the 
electrolyte and solid phases, U(cse) is the open circuit 
potential and expressed by empirical correlation function of 
the solid surface concentration, cse, which is the 

electrode-average solid concentration at the electrolyte 
interface, and j0 is the exchange current density dependent on 
the solid and electrolyte concentration,  

     0 ,max
aa c

e s se sej k c c c c
   .        (9) 

The terminal voltage is computed as  

   0 f
s s

R
V x L x I

A
       ,        (10) 

where Rf is the film resistance on the electrode surface, and A 
is the collectors surface, and I is the applied current. 

In an averaged electrochemistry model represented by one 
solid particle for each electrode (anode and cathode), the 
Butler-Volmer current is assumed constant Li

nj  regardless 
spatial locations, and it is evaluated from the spatial integral. 

 
0

1 1Li LiIj j x dx
A



 
    ,      (11) 

where  is the electrode thickness.  
The model is then expressed as a set of ordinary differential 

equations (ODE) by using the finite difference method for the 
spatial variable r so that it is used as the battery control 
oriented model.  The sphere radius is divided into r = (r1, r2, 
…, rMr−1) with uneven discretization. The system states are 
distributed Li-ion concentration in the solid, cs = (cs,1, cs,2, …, 
cs,Mr1)T. The resulting state-space equation is expressed as 

u s sc Ac B ,        (12) 

where A is a constant tri-diagonal matrix determined from  
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    ,(13)  
for k=2, …Mr2, and 1k k kr r r   , with boundary 
conditions:  
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surface. 
The battery voltage (8), using the average values at the 

anode and the cathode, can be written as 

        , ,
f

p n e p e n p p n n

R
V U U I

A
            . (14) 

where ,max/se sc c  is normalized solid-electrolyte 
concentration,  and p n  can be expressed as  

 
(a) 

 
(b) 

Fig. 2.  Illustration of Li-ion battery models under discharging: (a) 
macroscopic (x-direction) cell model with coupled microscopic solid 
diffusion model (r-direction), (b) electro-averaged cell model with coupled 
microscopic solid diffusion model (r-direction) 
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from the equations (7) and (8),  
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where  is the electrode thickness with subscripts p, sep, and n 
referring to the cathode, the separator, and the anode. Finally, 
the battery voltage (12) can be written as a function of current 
demand and average solid concentration, 
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where ( 2 )
2r n sep p feff

IK R
Ak

      is a term accounting 

for both internal and collector film resistances, effk  is the 
effective electrolyte phase conductivity. 

IV. SUPERVISORY CONTROL DESIGN 
The supervisory controller is designed by augmenting the 

thermostatic SOC control strategy with additional logic for 
limiting potentially harmful charging/discharging power. The 
controller consists of four driving modes, and it distributes 
the required propulsion power between the engine and the 
battery depending on either SOC (energy), or demanded rates 
of charging/discharging (power). The modes and rules are 
summarized as follows:  
 
(1) Electric mode 

if 0 < Pdem < Pbatt.max and SOCbatt > SOCub, 
       Pmot = Pdem,  Peng = 0,  Pbatt = Pmot+Paccs. 

(2) Thermostatic control mode 
if 0 < Pdem < Pbatt.max and SOCbatt < SOCub, 

Pmot = Pdem,  Peng = f (SOCbatt) in Fig. 3, 
Pbatt = –Peng +Pmot +Paccs. 

(3) Power mode 
if Pdem > Pbatt.max, 

Pmot = Pdem,  Peng = Pmot +Paccs– Pbatt.max, 
Pbatt = Pbatt.max. 

(4) Braking mode 
  if Pbatt.min < Pdem < 0, 
   Pmot = Pdem, Peng = 0, Pbatt = Pmot+Paccs, 
  else if Pdem < Pbatt.min, 

Pmot = Pbatt.min, Peng = 0, Pmech.brk = Pdem – Pmot,    
Pbatt = Pmot+Paccs. 

  
The thermostatic SOC control strategy has been used in 

series hybrid hydraulic vehicle (HHV) and HEV control 
design in several previous studies [8],[10].  It is very effective 
in managing SOC, and providing efficiency gains when 
combined with optimal engine operating scheme [10]. The 
basics of the thermostatic SOC control are illustrated in Fig. 3. 
Whenever the battery SOC hits the lower limit denoted on 
SOClb in Fig. 3, the engine begins charging the battery with 
the threshold power until the battery SOC reaches to the 

 
Fig. 4. Schematic diagram of the controller structure for battery power limits management using electrochemistry battery model-driven extended Kalman filter 

 
Fig. 3.  Illustration of the thermostatic SOC power management control  
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SOCub. When the battery SOC is lower than the SOClb, the 
engine power demand is determined depending on the current 
SOC as shown in Fig. 3, and threshold power.  The engine 
power is delivered with a combination of torque-speed that 
keeps the engine operated on the best bsfc (brake specific fuel 
consumption) line for the minimum fuel consumption [8].  

We propose to augment this by monitoring the 
instantaneous battery power, and triggering the Mode 3 
whenever the power reaches potentially harmful levels. The 
allowable battery power limits (Pbatt,max and Pbatt,min) prevent 
battery over-charging and over-discharging, and the Mode 3 
rule adds a new layer to the supervisory controller. The key to 
the successful implementation is prediction of allowable 
battery power limits using estimated instantaneous Li-ion 
concentration by the electrochemical model-driven extended 
Kalman filter (EKF). The schematic diagram of the controller 
structure is shown in Fig. 4. The allowable battery power 
limits are adjusted by the Mode 3 controller and fed into the 
supervisory controller. Then, the supervisory controller 
distributes the demanding power to the engine and battery 
using the rules.  

High current discharging causes a sudden Li-ion 
concentration change at the surface of the solid material, thus, 
resulting in sudden voltage drops. Terminal voltage of the 
battery is sensitive to both the SOC and Li-ion solid surface 
concentration. In contrast, high current charging causes a 
sudden voltage rise. If the battery power demand is 
determined without the consideration of the battery diffusion 
dynamics, the battery could be over-charged and 
over-discharged under severe acceleration and braking 
respectively. It can be explained as follow: when the solid 
surface concentration is changed suddenly under discharging, 
the available power is significantly lowered although the 
SOC remains almost same. If the controller has no 
information of the battery internal states, it determines battery 
power demand based only on the SOC and terminal voltage. 
Thus, the required power exceeds the battery capability, and 
the battery could be eventually damaged. The proposed 
strategy is actively engaged to prohibit it. 

A. Model-driven Extended Kalman Filter 
The electrode-averaged model based EKF design proposed 

by Di Domenico et al. [7] is used as a battery state estimator. 
The model is expressed as  

ˆ ˆ ˆ( )
ˆ ˆ( , )

eu+ K y y
y V x u
  




p px A x B

 ,     (18) 

where x̂ and ŷ are the estimate state x and output y. The state  

, 1 , 2 , ( 1)ˆ ˆ ˆ ˆ( , , , )T
s p s p s p Mrc c c  x . The matrices Ap and Bp are 

obtained from eqn. (12).  The nonlinear output is linearized 
by C=V/x, which is a row matrix with zeros in its first Mr2 
elements. The last non-zero term is numerically computed 
from , ( 1)ˆ/ s p MrV c   in the EKF.  

To reduce the computation efforts while maintaining the 
estimation accuracy, the solid radius is discretized with a 

small number of uneven steps after reviewing the Li-ion 
concentration profiles under various operations. The number 
of states is set to eight (8), and the estimated states are 
compared to the reference battery model with 49 states for the 

 
Fig. 5. Transient response of the terminal voltage predicted from the 
extended Kalman filter and measured from the 98th order electrode-averaged 
battery model 
 

 
(a) 

 
(b) 

Fig. 6. Comparison between estimated and reference Li-ion concentrations 
under fast transient: (a) discharging; (b) charging 
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Li-ion concentration in the cathode.  
The Kalman gain is obtained by 

Ke = PCR1 ,             (19) 

where P is the solution of the Ricatti equation 
-1

0

-

(0)

T T
p pP A P PA PCR C P Q

P P
  




 ,        (20) 

and Q and R are positive definite matrices to obtain small 
battery voltage prediction errors. While solving the Ricatti 
equation, the P matrix is reinitialized whenever the battery 
current direction is changed. Furthermore, 

, ( 1)ˆ/ s p MrV c   frequently has a large number under transient, 
thus, resulting in abnormally large Kalman gains and causing 
large estimation errors. Thus, the ranges of P and Ke are 
limited to avoid the high estimation errors of Li-ion 
concentration, and the designed filter is capable of estimating 
the Li-ion concentration with sufficient accuracy over the 
entire battery operating range.  

The voltage outputs from the EKF and the reference battery 
model under fast transient are shown in Fig. 5. The accurate 
tracking performance validates the proposed approach to 
obtain the appropriate Kalman gains. Estimation results under 

severe transients (up to 30C) are presented at both charging 
and discharging. The reference concentrations are obtained 
from the high order averaged electrochemistry Li-ion battery 
model. We note that sudden discharging significantly changes 
the Li-ion concentration near the solid boundary (-see Fig. 6 
(a)), although concentrations deeper inside the particle solid 
are almost constant. Figure 6 (b) also shows that the 
concentration profile has multiple curvatures along the 
particle radius under sequential charging and discharging 
events or vice versa.  

B. Battery Power Management Strategy 
The adjustment amount of the battery power limits is 

determined using the Li-ion concentration along the solid 
radius direction and the averaged Li-ion concentration 
computed from the bulk SOC. Figure 7 illustrates the 
concentration change with different discharging current with 
the same SOC calculated by coulomb counting and the same 
solid surface concentration. Despite the similar SOC, bulk 
Li-ion concentration, ,s bulkc , and the solid surface 
concentration, the available discharging current, which is 
defined as the maximum discharging current dropping the 
terminal voltage to the lower voltage limit, could be different. 
The relaxation time of the concentration of the fast 
discharging case is shorter than the slow discharging case 
with the same SOC and the surface concentration. Thus, not 
only the Li-ion concentration at the solid surface but also the 
entire Li-ion concentration profile must be considered by the 
battery management control design.  

The control command for the modification of the allowable 
battery power limits is computed through the 
proportional-integral (PI) feedback of the following cost 
function, 

1

,
1

ˆ( )
rM

i s bulk si
i

J w c c




   ,         (21) 

where ,s bulkc is the averaged Li-ion concentration, ˆsic is the 
estimated Li-ion concentration at the ith radial segment of 
solid, wi is the weighting at the ith element. The weighting 
vector w = ( 1w , 2w , …, 1Mrw  ) is tuned to capture the effect of 
the concentration profile on the battery available power limit, 
and higher weights are assigned near the solid surface.  

V. SIMULATION RESULTS 
Performance of the supervisory control design is 

investigated through HEV simulation.  To emphasize the 
controller performance, aggressive military driving cycles, 
“urban assault cycle” (-see Fig. 8), and a relatively small 
battery (6 kWh) is used for the heavy vehicle (13.4 ton). The 
battery capacity per cell is 6AH and the nominal voltage is 3.6 
V. The resulting maximum available power from battery is 
marginal to propel the vehicle under the cycle, thus, accurate 
control is required to prevent battery over-charging and over 
-discharging.  

 

 
(a) 

 
(b) 

Fig. 7.  Illustration of Li-ion concentration at the cathode under the different 
magnitudes: (a) discharging; (b) charging 

393



  

  

 
Fig. 8. Urban assault driving cycle velocity profile 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 9.  Battery responses under transient by the proposed battery management strategy using the estimated Li-ion concentration by the EKF: (a) battery power 
limits; (b) battery current inputs; (c) battery voltage outputs 
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Simulation results with two different supervisory controls are 
shown in Fig 9. To illustrate the performance of the proposed 
control design, the simulation results within the most 
aggressive section are highlighted here. During sudden 
acceleration and deceleration, the magnitudes of power limits 
constrained as shown in Fig. 9 (a). The large adjustments 
occur around 680 seconds under severe acceleration. Li-ion 
concentration in the cathode increases suddenly. The base 
control strategy requires power computed without 
consideration of the Li-ion concentration, yet, the battery 
dynamics lead to a severe drop of the Li-ion concentration at 
the solid surface. Hence, further voltage drops occur, and the 
battery will be damaged by over-discharging. In contrast, the 
EKF captures the dynamic behavior and significantly 
modifies the instantaneous allowable power limits to 
maintain the battery terminal voltage within the safe limits. 

The battery current inputs and voltage outputs are 
compared in Fig. 9 (b). Under the mild driving from 400 to 
540 seconds, battery responses are exactly same each other 
with both control strategies. Under aggressive driving, the 
proposed controller limits the battery power demand to 
prevent further discharging and charging. Thus, the voltage 
range is kept within the allowable range.  

Figure 9 (c) shows the comparison of the voltage traces 
between the base control and the proposed control. Without 
the battery power limit adjustment, the voltage fluctuation 
range is large and often beyond the battery operation range 
(2.7V~3.9V). The voltage exceeds the upper bound several 
times due to excessive regeneration braking. Under the severe 
acceleration, the uncontrolled battery current inputs result in 
severe voltage drops, then the battery finally cannot handle 
the power demand. In contrast, the controlled battery power 
limits allow the safe battery operation within the battery 
operating voltage range under fast transient.  

VI. CONCLUSIONS 
This paper proposes a control strategy for the management 

of the allowable battery power limits to prevent excessive 
battery charging and discharging rates. First, the simulation 
framework for a series-HEV is constructed with the 
rule-based supervisory controller. The series-HEV simulation 
framework includes a finely discretized electrode-averaged 
electrochemistry battery model to capture the realistic battery 
voltage drops with respect to applied current. Then, a control 
strategy considering the dynamics of Li-ion diffusion is 
proposed to moderate excessive battery charging and 
discharging. The proposed controller modifies the allowable 
battery power limits by using the entire battery Li-ion 
concentration information along the solid particle. The 
rule-based supervisory controller uses the modified battery 
power limits and distributes the required power between the 
engine and the battery. The proposed control design uses the 
same rule-based supervisory controller structure, and it 
adjusts only the allowable battery power limits in the control 
rules. Thus, the overall supervisory controller complexity is 
not increased. 

The battery Li-ion concentration profiles used in the 
control design is estimated by the electrochemical 
model-driven extended Kalman filter (EKF). The EKF is 
designed using the electrode-averaged electrochemistry 
model with uneven discretization of the particle radius for the 
fast and accurate prediction of the Lithium intercalation 
dynamics. The EKF shows good Li-ion concentration 
estimating performance over transient driving. Then, the 
allowable battery power limits are modified through the 
proportional-integral (PI) feedback of the weighted average 
of the Li-ion concentration difference from the bulk Li-ion 
concentration. The proposed battery power management 
strategy successfully prevents over-charging and 
over-discharging under aggressive driving. With the 
proposed battery control, smaller batteries can be used to 
obtain the same level of HEV performance and fuel economy 
while preventing battery degradation. Thus, the battery cost 
will be significantly reduced.  
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