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Abstract— Improvements in diesel engine technology have
resulted in their expanded usage as powertrains in automotive
applications. The Diesel Particulate Filter (DPF) is a common
component of the exhaust after-treatment system of Diesel
engines that removes the harmful Particulate Matter (PM) in
the exhaust gas. To ensure that the filter is able to reduce
PM levels of the diesel exhaust below regulated limits, On
Board Diagnostics (OBD) of DPFs is required to provide alerts
in the case of filter malfunction or failure. In the present
study a method for performing the failure detection of Diesel
Particulate Filter is proposed based on an adaptive model based
technique. To detect a failure the coefficients of a healthy model
of the pressure difference across the filter are compared with
the adapted model coefficients since the presence of failure
alters the dynamics of the system. This approach is robust to
modeling errors, sensor noise and process variability and has
OBD capability without the need of any additional sensors. The
proposed approach is experimentally validated on a federal test
procedure (FTP-75) drive cycle for healthy and failed filters in
a heavy duty diesel engine test cell.

I. INTRODUCTION

High fuel economy, torque and efficiency have long ago

made the diesel engines an obvious choice for heavy duty

automotive applications. Recent advances in the field of

diesel engine technology have improved the power, drive-

ability and cost thereby increasing their popularity for light

duty applications as well. This can be seen by the fact that

the diesel engine market in Europe has reached almost 40

percent and is growing in US too [1]. One of the drawbacks

of the diesel engines is the emissions of NOx and particulate

matter. Due to the harmful effects of these emissions govern-

ment agencies around the world have imposed increasingly

stringent emission norms. Table I shows the PM regulation

for heavy duty diesel engines in US [2] and the table II shows

the corresponding PM emission norms in Europe . Emission

limits in other countries are presented in.

TABLE I

PM EMISSION NORMS IN US

Year HDV

PM(g/bhp-hr)

2007 .01

2010 .01

The increasingly tighter emission limits of PM is usually

enforced by the Diesel Particulate Filter which is a diesel

engine exhaust gas treatment device that filters the PM or
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TABLE II

PM EMISSION NORMS IN EUROPE

Emission Standard Year HDV

PM(g/kWh)

Euro IV 2005 .10

Euro V 2008 .02

soot. The above shown limits of PM should be met for

the full useful life of the filter which in US is considered

to be around 435000 miles [2]. The failure to do so

would result in the soot emission from the filter exceeding

the permissible limit. To prevent this, the OBD system

mandated by the Environmental Protection Agency (EPA)

and the California Air Resources Board (CARB) requires

continuous monitoring of Diesel Particulate Filter. In case

of a failure of the DPF the engine control module should

be able to alert the vehicle driver.

OBD of the DPF device is the motivation of the present

study. A Parametric Adaptive Model based failure detection

method is proposed which can be used for OBD to detect

the failure of a Diesel Particulate Filter that results in

emission level of PM exceeding the legal limits. The

proposed method uses a mathematical model of the pressure

difference across the filter and the change in the coefficients

of the model due to the presence of a failure is exploited

for failure detection.

Conventional DPF failure detection is based on analyzing the

pressure difference signals. The delta pressure measurement

just after complete regeneration is compared with that of

the known value of the pressure drop of healthy filter. This

approach is shown to be highly sensitive to sensor noise

and leads to very large threshold values for failure criteria

[3]. Other methods of DPF failure detection are off-line and

lack real time OBD capability or involve additional sensor

costs [4],[5].

The model based approach presented in this paper does not

involve any additional sensor costs and can be effectively

used for OBD of DPF. The method uses orhthogonal least

squares (OLS) estimation for model structure and parameter

determination and is robust against modeling errors and

sensor noise. The effect of process variability is taken into

account by employing a threshold on the magnitude of the

coefficient changes. The presented approach is validated

using experimental results obtained from both healthy and

failed DPFs.
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II. DIESEL PARTICULATE FILTER REVIEW

Presented in this section is the overview of the process of

trapping PM by DPF and the phenomena of regeneration

and the conditions under which a DPF fails. The model

of pressure drop across DPF obtained from first principles

is also shown. The DPF is used to trap the PM which is

typically less than 10µm in size, present in the diesel engine

exhaust [6]. The most common type of filter used in practice

is ceramic extruded honeycomb wall flow filter. This type of

filter consist of honeycomb substrate and is typically made

from cordierite or silicon carbide.

The working principle of a DPF can be explained in terms of

its two operating regimes, namely the loading regime and the

regenerating regime. In the loading regime a filter captures

the particulate matter in the exhaust gas and gets loaded.

Fig. 1 shows the flow path of the exhaust gas in a filter.

The substrate of the filter consists of a number of channels

half of which are plugged at the inlet end and the rest half

are plugged at the outlet end. The gas enters the unplugged

inlet channel and is forced through the wall of the channel

to exit from the adjacent open outlet channel. Hence, as the

gases pass through the channel wall the particulate matter

gets trapped.

Fig. 1. Flow pattern in wall flow monolith

The filtration efficiencies of wall flow filters are very high

(greater than 90 percent) which results in quick accumulation

of particulate matter. This increases the resistance to flow

of the exhaust gases which is an unfavorable condition

since it results in increased fuel consumption. To overcome

this problem the trapped PM is oxidized by burning and

removing it from the filter, in a process called regeneration.

A number of different methods can be used for filter

regeneration as presented in [6],[7]. All these methods serve

to increase either the temperature of the exhaust gases or

make the filter environment more reactive to aid in the

oxidation of PM.

Causes of DPF failure

The major causes of DPF failure are thermal and mechanical

stresses [6]. Thermal stresses are produced by high

temperatures during the regeneration process. Very high

temperature spikes can occur during soot oxidation under

certain favorable conditions of high oxygen content in the

filter which can cause cracking or melting of the filter.

Mechanical stresses in the filter are produced by vehicle and

engine vibrations. These stresses can lead to failure of filter

wherein the filter will not be able to trap the particulate

matter with full efficiency.

Delta Pressure Model from First Principles

The pressure drop across the filter depends on the flow

models characterizing the flow of exhaust gases in the

inlet and outlet channels, across the soot layer and the

filter wall and flow entrance and exit effects [8],[9]. An

analytical expression of the filter pressure drop derived from

first principles is shown in [8].The authors used a one

dimensional model based on solution of mass and momentum

conservation equations in a single channel of DPF and

with zero initial soot loading, for pressure drop formulation.

This model was later extended in [7] for arbitrary initial

filter loading and verified by performing simulations and

experiments. The expression derived in [7] is given below
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where,

V= volume of filter

Q=exhaust gas flow through the filter

µ =exhaust dynamic viscosity

α =filter cell size

ws =filter wall thickness

k0 =clean filter wall permeability

Ksoot =particulate layer permeability

w =particulate layer thickness

l =Effective channel length

F =factor equal to 28.454

The above expression for delta pressure can be represented

by a lumped parameter model written as

∆P = RQ (2)

where R is the resistance to flow given by

R =
µ
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(3)

The above expressions show that delta pressure depends

on flow of the exhaust gases and the resistance to flow

offered by the filter. The resistance in turn depends on

the microstructural and geometrical properties of the filter

and temperature of the flowing gases (soot permeability and
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exhaust gases viscosity are temperature dependant [7]) in the

DPF.

III. PROPOSED FAILURE DETECTION METHOD

In this section the proposed online method to detect

a failed DPF is presented. The present study utilizes an

adaptive model based failure detection method such that the

model output tracks the sensor measurement. This model

based approach is based on the dynamics of the system

which is affected in the presence of a failure. The changes

in the coefficients of the adapted model from that of the

healthy model forms the basis of the failure detection. The

mathematical model of pressure differential across the DPF

will be used for this purpose where the model structure as

well as the coefficients of the model are identified using

orthogonal least squares based algorithms which reduces the

modeling errors and the effect of sensor noise. Moreover the

change of coefficients are used for failure detection rather

than their absolute values which further reduces the effect

of modeling errors. The effect of process variability is taken

into account by employing a threshold for the magnitude of

changes of the coefficients based on the standard deviation

of the computed healthy coefficients.

1) Orthogonal Least Squares: Orhthogonal least Squares

algorithm can be efficiently used for black box modeling

of the unknown system. It identifies the regressors of the

model from a large number of possible permutations ob-

tained by input and output combinations. OLS introduces an

auxiliary model defined such that the terms in the model

are orthogonal over the data set and evaluates the effect

of each regressor in reducing the output variance which is

also known as error reduction ratio (ERR) [10],[11]. The

algorithm uses this criterion to select the model regressors

until a point of diminishing return is reached. Additionally

OLS also estimates the parameters of a linear and linear

in parameters non-linear model with respect to each input

sequentially and independently of other inputs. Under the

conditions of persistent excitation, consistent estimates can

be obtained even in the presence of correlated noise.

The inputs required by the OLS are different regressors,

the maximum number of terms desired in the model and

the maximum power that the regressor combinations can be

raised to. To reduce the modeling errors, this information

in the present case will be obtained from a physics based

model of the delta pressure of DPF. This process correlates

the physics based model with the OLS obtained black box

model.

The above procedure of model structure and parameter

estimation using OLS and the physics based model results

in robustness against the modeling errors and the sensor

noise.

2) Threshold Evaluation: In the present study the pres-

ence of a failure in the system is detected by evaluating the

coefficient error vector against a threshold that represents

system variability. The coefficient error vector is obtained

by comparing the healthy model coefficients with adapted

model coefficients that may or may not contain a failure. In

the presence of failure the coefficient error vector points to

specific fault in the fault space. A generalized representation

of fault space is shown in fig. 2 which shows three dis-

tinct fault spaces which could correspond to three different

possible faults of the system.The origin of the fault space

represents the healthy system and the radius of each fault

space is a result of system variability possibly due to, among

other things, sensor noise and accuracy.

Let the healthy model coefficients be represented by

Fig. 2. Fault Space

H = [h1, . . . , hn] ∈ Rn

where n is the number of model coefficients and let the

adapted model coefficients obtained by online parameter

estimation be represented by

F = [f1, . . . , fn] ∈ Rn

The coefficient error vector or the residual is then obtained

by the following equation

E = D(HT − FT )T (4)

where,

D = diag

[

1

h1

, . . . ,
1

hn

]

(5)

The matrix D is used to normalize each coefficient.

Detecting the presence of a failure can be accomplished by

evaluating the magnitude of E and ensuring that this error

is not due to the standard variability of the system. Hence a

failure would be detected if

|| E ||2> ǫ (6)

where,

|| E ||2=
√

∑n

i=1
| E(i, 1) |2

Here ǫ is the threshold value that represents the degree of

variability of the system. This threshold can be calculated by

statistical analysis of the coefficients of the model.

In the present study the coefficients are identified by per-

forming a number of experiments. The mean of the values

1569



obtained from different experiments represents the true value

of the coefficients and the standard deviation of each of the

coefficient is used to determine ǫ.

ǫ =|| 3σh1
, . . . , 3σhn

||2 (7)

The value of 3σhi
corresponds to 99.73 % confidence

interval assuming a normal distribution of obtained values

of coefficients from different experiments.

IV. EXPERIMENTAL VALIDATION OF FAILURE

DETECTION METHOD

The data used in this study was obtained from tests

performed on a Cummins heavy duty diesel engine

equipped with a cooled exhaust gas recirculation (EGR)

system and a variable geometry turbocharger system (VGT)

in a test bench with a dynamometer capable of running

transient speed load maps. Federal test Procedure (FTP-75)

cycle was used to collect data for wide operating points of

DPF operation. Closed loop EGR and VGT valve control

was in effect during these cylces to test the DPF for real

world situations.

Types of Filters

For failure detection data was provided by Cummins on two

sets of filters. Each set had three filters with one production

base filter which will be denoted as healthy filter and two

failed filters . In the rest of the paper these would be referred

to as dataset-1 and dataset-2.

Dataset-1 had artificially failed filters of different degree of

severity. The filters were artificially failed by cutting away

the outlet face of the DPF to remove the plugs, with various

thickness (in the present case it is 2” and 3”) and for a

complete arc of the circle. This type of failure is known as

Annular Milling and represents a type of real world failure

of DPF. Dataset-2 had two real world field failed DPF’s of

unknown failure. Table III shows the different filters present

in each of the dataset. The dimension of filters in both the

data set are different and is shown in Table IV.

TABLE III

FILTER DESCRIPTION OF EACH DATASET

Data Set 1 Data Set 2

Healthy Filter Healthy Filter

2” Annular milling Failed Filter-1

3” Annular Milling Failed Filter-2

TABLE IV

FILTER DIMENSION

Data Set 1 Data Set 2

Length 12” 12”

Diameter 10” 12”

A. Main Results

1) Model Structure Identification: As explained in

section III the model structure for the pressure difference

across the DPF would be identified using OLS, the input

data for which will be obtained from the physics based

model. The OLS algorithm is implemented on an entire

FTP-75 cycle consisting of 1050 data points. This efficiently

reduces the effect of sensor noise as large data length is

used to estimate the parameters.

Delta Pressure Model from Orthogonal Least Squares

To identify the model regressors using OLS, flow through

DPF, Q(m3/s) and diesel oxidation catalyst (DOC) outlet

temperature, TDOC (degree K) were used and up to two

backsamples of each of these variables were considered.

DOC temperature is used instead of DPF temperature be-

cause DPF temperature sensor measures the filter outlet

temperature. A maximum power of up to 3 that the regressors

can be raised to and a total of up to 8 eight terms model

where considered.

The model that gave minimum least squared error for all the

filters was selected. The model as given by OLS is

∆P (t) = φT (t)θ (8)

where,

φ = [Q(t), TDOC(t − 1), Q(t) ∗ TDOC(t − 1)]T (9)

and

θ = [a1, a2, a3]
T (10)

The argument (t-1) denotes the first backsample of the

variable since the sampling frequency of the experimental

data is 1 rad/s.

This model was chosen since increasing the number of

terms or the power of the regressors did not produce any

significant improvement in the model output.

Correlation of OLS and Physics Based Model

The model obtained through OLS is

∆P = a1Q(t) + a2TDOC(t − 1) + a3Q(t)TDOC(t − 1)

= a2TDOC(t − 1) + (a1 + a3TDOC(t − 1))Q(t)

= a2TDOC(t − 1) + RQ(t) (11)

where,

R = a1 + a3TDOC(t − 1) (12)

It can be seen from (11) that the OLS based delta pressure

model is in agreement with the physics based model (1)

and also includes a bias term. The resistance in (12) as

predicted from the physics based model depends on the

temperature of exhaust gases entering the DPF. The presence

of a backsample of DOC temperature in the model can be

explained by the fact that DOC is placed before DPF and

the temperature of gases entering the DPF at the current

instant would correspond to temperature of gases leaving
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Fig. 3. Plot of Actual Output vs OLS Model Output for Healthy Filter
Dataset-1

the DOC at one previous instant. This shows that the model

obtained from OLS correlates well with the physics based

model.

The tracking ability of the OLS generated model with that

of the actual output is shown in Fig. 3 for the healthy

system of dataset-1.

2) Failure Detection of DPF- Dataset-1: Data Set-1 had

one healthy filter and two artificially failed filter through

annular milling of size 2” and 3” respectively. For each filter

four FTP-75 test cycle runs were performed and sets of four

values of each coefficient of the model and for all the filters

were found. The mean value in each set was considered to

be the true value and standard deviation was calculated of

the coefficients of the healthy system. Table V shows the

mean estimated coefficients of the filters in dataset-1. The

coefficients have been normalized to address the significant

difference in the magnitude of the coefficients.

TABLE V

OLS ESTIMATED COEFFICIENTS DATASET-1

Type of Filter a1 a2 a3

Healthy Filter 1.2944 -1.2861 9.8996

2” Annular milling 0.3141 -0.6175 7.276

3” Annular Milling 0.2729 -0.1915 6.3742

The threshold for Data Set-1 is given by

ǫ =|| 3σa1, 3σa2, 3σa3 ||2

For healthy filter ǫ = 0.1836 . Now the error vector was

defined in (4).

For 2” Annular Milling filter

E = [0.7573, 0.5199, 0.2650]T

and || E ||2= 0.9286
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Fig. 4. Error Vectors in Fault Space Data Set-1
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Fig. 5. Plot of Coefficients of the delta Pressure model for filters of Data
Set-1

Since || E ||2> ǫ hence a failure is present. Now for 3”

Annular Milling

E = [0.7891, 0.8511, 0.3561]T

and || E ||2= 1.1799 again since || E ||2> ǫ a failure is

present.

Fig. 4 shows the error vector plots of the failed filters

in the fault space. Failure estimation can be performed by

analyzing the magnitude of the error vector as can be seen

in Data Set-1. The magnitude of error vector corresponding

to 3” Annular Milling is larger than that of the 2” Annular

Milling vecor. Fig. 5 shows the 3-D plot of the coefficients

of all the filters of Data Set-1.

3) Failure Detection of real world DPF- Dataset-2:

This data set consists of one healthy filter and two real

world failed filters with unknown failure modes. The OLS

estimated, normalized mean values of the coefficients are

shown in table VI. The coefficients of healthy filter of both

the data-sets differ due to different filter geometry. This

implies that in order to implement the proposed methodology

baselining of the healthy filter is required.
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TABLE VI

OLS ESTIMATED COEFFICIENTS DATASET-2

Type of Filter a1 a2 a3

Healthy Filter 1.1642 0.-7171 4.4778

Failed Filter-1 0.4011 -1.3019 11.0364

Failed Filter-2 0.2766 -0.7253 8.6513
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Fig. 6. Error Vectors in Fault Space Dataset-2

The threshold for this data set calculated from the healthy

filter coefficients is given by ǫ = 0.3365.

For Failed Filter-1 the error vector of coefficients is

E = [0.6554,−0.8154,−1.4646]T

and || E ||2= 2.1725
Since || E ||2> ǫ hence a failure is present.

Now for Failed Filter-2

E = [0.7623,−0.0114,−0.932]T

and || E ||2= 1.5227 again since || E ||2> ǫ a failure is

present.

Fig 6 shows the plot of error vector of Data Set-2 in the

fault space and Fig 7 shows the coefficient plot of all the

filters.

V. SUMMARY

An adaptive model based technique to detect the presence

of failure in the Diesel Particulate Filter system is presented.

This methodology can be used on board to alert the vehicle

operator in case of failure of filter resulting in PM emission

exceeding the legal limits. The mathematical model of

the pressure difference across the filter is used for failure

detection. The fact that in the presence of failure the

dynamics of the system gets affected and the coefficients of

the model would change to accommodate this effect is the

concept behind the proposed failure detection methodology.

The method is successfully implemented and validated to

detect the failed filters from healthy ones through the engine

test cell data on two sets of filters where each set had both
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Fig. 7. Plot of Coefficients of the Delta Pressure Model for Filters of
Dataset-2

healthy and failed filters.
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