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Abstract

In this paper, we derive the optimal control policy for
a decentralized control problem. The system consid-
ered here consists of two interconnected subsystems with
communication allowed in only one direction. In addi-
tion, full state feedback is not assumed, as in previous
instances of this problem. We construct the optimal con-
trollers via a spectral factorization approach. Explicit
state-space formulae are provided, and the orders of the
optimal controllers are established.

1 Introduction

This paper addresses optimal controller synthesis for a
decentralized two-player system. This problem is an
example of a larger class of distributed control prob-
lems, consisting of multiple subsystems interacting over
a network with limited communication. Many important
practical problems fall into this category. Examples in-
clude formation flight, coordination of teams of vehicles,
or large spatially distributed systems such as the internet
or the power grid.

In general, decentralized control problems are cur-
rently intractable [2]. A classic example illustrates that,
even for linear, time-invariant systems, linear control
policies can be strictly suboptimal [20]. As a result, much
of the research in decentralized control has been aimed at
characterizing which problems are tractable [3, 6, 8, 1].
The most general of these results is based on the concept
of quadratic invariance [11]. For systems connected over
networks, recent results have determined which class of
networked systems are currently tractable [10, 15, 13].

Tractability, as it is used here, means that the un-
derlying optimization problem has a convex representa-
tion. Though convex, the formulations remain infinite-
dimensional. In particular, the approach in [11] requires
a change of variables via the Youla parametrization, and
optimization over this parameter. Since the parameter
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itself is a linear stable system, a standard approximation
would be via a finite basis for the impulse response func-
tion. This is in contrast to the centralized case, for which
explicit state-space formulae can be constructed.

This paper focuses on a specific information structure,
consisting of two interconnected systems with dynamics
such that player 1’s state affects the state of player 2.
Our objective is to find a pair of controllers such that
player 1 can measure only the first state, whereas player 2
has access to the first state and a noisy measurement of
the second state. The controller is chosen to minimize
the H2 norm of the closed-loop transfer function.

This work follows a series of papers on this problem.
In [17], explicit formulae for the optimal controllers were
constructed for the finite-horizon, time-varying, state
feedback version of this problem via a spectral factor-
ization approach. These results were reproduced in [16],
using a dynamic programming method. The infinite-
horizon, state feedback problem was solved in [18]. This
paper is the first to solve this problem in which full state
feedback is not required. In addition to explicit state-
space formulae, we provide intuition to the structure of
the optimal controllers. Moreover, we establish the or-
der of the optimal controller for this system, which is
an open problem for general decentralized systems, even
in the simplest cases. In particular, it differs from the
results obtained in [18] for the full state feedback case.

Our approach makes use of spectral factorization. The
methods used here extend naturally to more general net-
works. The two-player problem considered here provides
the fundamental understanding for the general case.

Many different approaches have been taken to find
numerical solutions to some of these problems. Some
methods were suggested, though not implemented, in
[19]. Semidefinite programming approaches have been
presented in [12, 9, 21] for similar problems. For
the quadratic case, vectorization [11] provides a finite-
dimensional approach, but loses the intrinsic structure
and results in high-order controllers.

However, in none of these previous approaches have ex-
plicit state-space formulae been derived. Such formulae
offer the practical advantages of computational reliabil-
ity and simplicity, as well as provide understanding and
interpretation of the controller structure. Moreover, we
establish the order of the optimal controller which previ-
ous approaches do not provide.
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2 Problem Formulation

The following notation is used in this paper. The real
and complex numbers are denoted by R and C, respec-
tively. The complex unit disc is D, and its boundary,
the unit circle, is T. The set L2(T) is the Hilbert space
of Lebesgue measurable functions which are square inte-
grable on T. As is standard, H2 denotes the Hardy space
of functions analytic outside the closed unit disc, and at
infinity, with square-summable power series. The set H⊥

2

is the orthogonal complement of H2 in L2.

Also, L∞(T) denotes the set of Lebesgue measurable
functions bounded on T. Similarly, H∞ is the subspace
of L∞ with functions analytic outside of T, and H−

∞ is
the subspace of L∞ with functions analytic inside T.

The prefix R indicates the subsets of proper real ratio-
nal functions. That is, RL2 is the set of transfer functions
with no poles on T, and RH2 is the set of transfer func-
tions with no poles outside T. Note that, in this case,
RH2 = RH∞; we will use these spaces interchangeably.

Some useful facts about these sets which we will make
use of in this paper are [22]:

• if G(z) ∈ L∞, then G(z)L2 ⊂ L2

• if G(z) ∈ H∞, then G(z)H2 ⊂ H2

• if G(z) ∈ H−
∞, then G(z)H⊥

2
⊂ H⊥

2

For transfer functions F ∈ RL2, we use the notation

F (z) =

[

A B

C D

]

= C(zI − A)−1B + D

We are interested in the following state-space system

[

x1(t + 1)
x2(t + 1)

]

=

[

A11 0
A21 A22

] [

x1(t)
x2(t)

]

+

[

B11 0
B21 B22

] [

u1(t)
u2(t)

]

+

[

H1 0
0 H2

] [

w1(t)
w2(t)

]

This corresponds to the two-player system, in which
player 1’s state can influence player 2’s state. In general,
noisy measurements y1 and y2 of each state are made.
For this system, we consider a partial output feedback

system. That is, player 1’s state is measured directly,
and player 2’s measured output is

y2(t) = C21x1(t) + C22x2(t) + Hvv(t)

Note that w1(t), w2(t), and v(t) are independent, exoge-
nous noise. We are interested in finding transfer functions
K11,K21,K22 ∈ RL∞ so that our controller is of the form

[

u1

u2

]

=

[

K11 0
K21 K22

] [

x1

y2

]

That is, player 1 makes decision u1 based only on the
history of his own state x1, while player 2 makes decision
u2 based on the history of both outputs, x1 and y2.

For a set T , we define lower(T ) to be the set of
2 × 2 block lower triangular matrices with elements in
T . In particular, our desired controllers are in the set
K ∈ lower(RL∞). It will also be convenient to define

E1 =
[

I 0
]T

and E2 =
[

0 I
]T

, where the dimensions
are defined by the context.

We define S = lower(RH2) ⊂ L2, and note that S has
an orthogonal complement, such that G ∈ S⊥ if and only
if G11, G21, G22 ∈ H⊥

2
and G12 ∈ L2. We will also define

PH2
: L2 → H2 as the orthogonal projection onto H2.

Our cost is the vector

z(t) =
[

C11 C12

]

[

x1(t)
x2(t)

]

+
[

D1 D2

]

[

u1(t)
u2(t)

]

where, for simplicity, we will assume that DT D > 0.
Notice that this formulation allows for coupling of the
states and actions in the cost. Consequently, our plant
can be expressed as the matrix P ∈ RL∞, which is the
mapping (w, v, u) 7→ (z, x1, y2) given by

[

P11 P12

P21 P22

]

=











A H 0 B

C1

ET
1

C2

0 0 D

0 0 0
0 Hv 0











(1)

where H1 and H2 are invertible. Note that H being in-
vertible simply implies that no component of the state
evolves noise-free. This assumption merely simplifies our
presentation, while not fundamentally affecting our re-
sults. Lastly, we define F(P,K) as the linear fractional
transformation

F(P,K) = P11 + P12K(I − P22K)−1P21

The objective function is the H2 norm of the closed-loop
transfer function from (w, v) to z. In other words, we
have the following optimization problem.

minimize ‖F(P,K)‖2

subject to K is stabilizing

K ∈ lower(RL∞)

(2)

3 Main Results

Using the notation of the previous section, we can now
solve the optimization problem in (2). To this end, the
following assumptions will be made throughout the pa-
per.

A1) A is stable

A2) DT D > 0 and HvH
T
v > 0

A3)

[

A − λI B

C1 D

]

has full column rank for all λ ∈ T

A4)

[

A22 − λI H2 0
C22 0 Hv

]

has full row rank for all λ ∈ T
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We will discuss the need for these assumptions in Sec-
tion 4. We state the main results here. The remaining
sections will develop the proof of these results.

Theorem 1. For the system in (1), suppose assump-

tions A1–A4 hold. Let X, Y , and S be the stabilizing

solutions to the algebraic Riccati equations

X = CT

1
C1 + AT XA − (AT XB + CT

1
D)

× (DT D + BT XB)−1(BT XA + DT C1) (3)

Y = CT

12
C12 + AT

22
Y A22 − (AT

22
Y B22 + CT

12
D2)

× (DT

2
D2 + BT

22
Y B22)

−1(BT

22
Y A22 + DT

2
C12) (4)

S = H2H
T

2
+ A22SAT

22

− A22SCT

22
(HvHT

v + C22SCT

22
)−1C22SAT

22
(5)

Define

K = (DT D + BT XB)−1(BT XA + DT C1) (6)

J = (DT

2
D2 + BT

22
Y B22)

−1(BT

22
Y A22 + DT

2
C12) (7)

N = SCT

22
(HvHT

v + C22SCT

22
)−1 (8)

and let

AK = A− BK, AJ = A22 − B22J, AN = (I − NC22)AJ

Then, there exists a unique optimal K ∈ lower(RL∞)
for (2) given by:

• Controller 1 has realization

q1(t + 1) = (AK)22q1(t) + (AK)21x1(t)

u1(t) = −K12q1(t) − K11x1(t)

• Controller 2 has realization

q2(t + 1) =

[

(AK)22 0
ANNC22 AN

]

q2(t)

+

[

(AK)21 0
ANNC21 −ANN

] [

x1(t)
y2(t)

]

u2(t) =
[

−K22 + JNC22 J
]

q2(t)

+
[

−K21 + JNC21 −JN
]

[

x1(t)
y2(t)

]

Note that Assumptions A3 and A4 guarantee the ex-
istence of stabilizing solutions to the algebraic Riccati
equations (3–5). This will be discussed in the following
section. Having established the form of the optimal con-
troller, a number of remarks are in order.

We see that both controllers have dynamics; player 1’s
controller has order equal to the state dimension of x2,
and player 2’s controller has order of twice that.

While Theorem 1 provides the mathematical form of
the optimal controller, additional insight can be gained
by considering the estimation structure of the policies. It

will be shown in Section 6 that there are two estimation
processes occurring in the optimal policies. In a manner
to be defined therein, by letting x̂2|1(t) be the estimate
of x2(t) given the history of x1, and letting x̂2|12(t) be
the estimate of x2(t) given the histories of x1 and y2, the
optimal control policy can be written as

u1(t) = −K11x1(t) − K12x̂2|1(t)

u2(t) = −K21x1(t) − K22x̂2|1(t) + J
(

x̂2|1(t) − x̂2|12(t)
)

(9)
Thus, the optimal policy is, in fact, attempting to per-
form the optimal centralized policy, though using x̂2|1

instead of x2. However, there is an additional term in
u2 which represents player 2’s estimate of the error that
player 1 makes in estimating x2. We also see that in the
case where y2 = x2, so that x̂2|12 = x2, then the opti-
mal distributed controller reduces to the optimal state
feedback solution obtained in [18].

4 Analysis

Before proving the results of the previous section, it is
worth making a few remarks regarding the assumptions
A1–A4.

The stability of the plant (A1) is not necessary in
general. In the case where A is unstable, Assump-
tion A1 is replaced by the assumption that (A11, B11) and
(A22, B22) are stabilizable and (A22, C22) is detectable.
While the results are not fundamentally affected by this
assumption, the proofs in the unstable case are signifi-
cantly more complicated and omitted here for the sake
of clarity. See [14, Chapter 6] for a full treatment of the
unstable case.

Assumptions A2–A4 are standard assumptions, which
guarantee existence and uniqueness of solutions. In par-
ticular, the approach used here is known as spectral fac-

torization and requires stabilizing solutions of algebraic
Riccati equations. A well-known result to this end is as
follows.

Lemma 2. Suppose DT D > 0. Then, there exists a

unique X ∈ Rn×n satisfying

X = CT C + AT XA − (AT XB + CT D)

× (DT D + BT XB)−1(BT XA + DT C)

such that A − B(DT D + BT XB)−1(BT XA + DT C) is

stable, if and only if (A, B) is stabilizable and

[

A − λI B

C D

]

has full column rank for all λ ∈ T

Proof. See [22] and [7] for proofs.

With Lemma 2, Assumptions A1– A4 immediately
guarantee the existence of stabilizing solutions to the
algebraic Riccati equations (3) and (5). The existence
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of (4) similarly follows since A1 implies the stability of
A22, and the requisite rank condition of Lemma 2 follows
from the rank condition in A3.

Having established the motivation for the Assump-
tions A1–A4, we turn now to solving (2). For the general
decentralized control problem, the primary difficulty in
finding optimal solutions is that the optimization prob-
lem is not convex. In the classical, centralized prob-
lem, this difficulty is avoided by introducing a Youla
parametrization which results in a convex formulation of
the problem. Fortunately, the problem considered here
also admits a convex parametrization.

Lemma 3. Let S = lower(RH∞). For the system in (1),
suppose A is stable. Then, the set of all stabilizing con-

trollers K ∈ lower(RL∞) is parametrized by

K = Q(I + P22Q)−1 Q ∈ S

Moreover, the set of stable closed-loop transfer functions

satisfies

{F(P,K) | K ∈ lower(RL∞), K stabilizing}

= {P11 + P12QP21 | Q ∈ S}

Proof. Note that the set lower(RL∞) is closed
under addition, multiplication, and inversion, so that
Q ∈ lower(RL∞) if and only if K ∈ lower(RL∞). The
result then follows from the standard Youla parametriza-
tion for the problem. See, for example [22].

As a result of this Youla parametrization, the opti-
mization problem in (2) is equivalent to

minimize ‖P11 + P12QP21‖2

subject to Q ∈ S
(10)

In order to solve this new optimization problem, it is con-
venient to find an equivalent optimality condition, pro-
vided by the following lemma.

Lemma 4. Let S = lower(RH2), and suppose that

P11, P12, P21 ∈ RH∞. Then, Q ∈ S minimizes (10) if

and only if

P ∗
12

P11P
∗
21

+ P ∗
12

P12QP21P
∗
21

∈ S⊥ (11)

Proof. The proof follows from the classical projection
theorem. Since the construction is standard, we omit the
proof; for the general idea, see for example [4].

We will solve this optimality condition in the next sec-
tion.

5 Spectral Factorization

Our goal is now to find a solution Q ∈ S which satisfies
the optimality condition (11). Before solving this prob-
lem, let us first compare it to the full state feedback case
considered in [18].

The difference here is that player 2 has output feedback
instead of state feedback. Mathematically, this means
that P21 is no longer invertible in S, as it was for the
full state feedback case. In that case, invertibility of P21

meant that we could group QP21 as a new variable Q̂ ∈ S.
This additional parametrization decoupled the columns
of the optimality condition and allowed us to solve for Q̂

block by block.

Unfortunately, when output feedback is introduced
into the problem, as it is here, this parametrization is
not possible. More specifically, an additional step is re-
quired before such a parametrization is possible. To this
end, we have the following result.

Lemma 5. For the system in (1), suppose Assump-

tions A1– A4 hold. Then, there exists G ∈ S, such that

G−1 ∈ S GG∗ = P21P
∗
21

S⊥G−∗ ⊂ S⊥

Moreover, such a G ∈ S is given by

G =







A AHE1 E2A22NV
1

2

ET
1

C2

H1 0

C2HE1 V
1

2







where V = HvH
T
v +C22SCT

22
, with S and N satisfying (5)

and (8), respectively.

Proof. First, notice that G11 and G22 satisfy

G−1

11
= H−1

1
− z−1H−1

1
A11

G−1

22
= V − 1

2 (C22(zI − A22(I − NC22))
−1A22N + I)

Thus, G−1

11
, G−1

22
∈ RH∞, so G−1 ∈ S.

As a consequence of this, we see that G−∗
11

, G∗
21

, G−∗
22

∈
H−

∞. Thus, for any Λ ∈ S⊥, it is straightforward to show
that the product of ΛG−∗ ∈ S⊥.

Our last step is to show that GG∗ = P21P
∗
21

. To this
end, note that G11 = z(P21)11 and G21 = z(P21)21.
Lastly, algebraic manipulations of the Riccati equa-
tion (5) shows that G22G

∗
22

= (P21)22(P21)
∗
22

. This is
a standard spectral factorization result and is the dual
of Lemma 7, to follow. See [5] for a simple proof. As a
result, we have

P21P
∗
21

=

[

z−1G11 0
z−1G21 (P21)22

] [

zG∗
11

zG∗
21

0 (P21)22

]

=

[

G11G
∗
11

G11G
∗
21

G21G
∗
11

G21G
∗
21

+ (P21)22(P21)
∗
22

]

=

[

G11G
∗
11

G11G
∗
21

G21G
∗
11

G21G
∗
21

+ G22G
∗
22

]

= GG∗

With Lemma 5, the optimality condition (11) is equiv-
alent to

P ∗
12

P11P
∗
21

G−∗ + P ∗
12

P12Q̂ ∈ S⊥ (12)

where, since G is now invertible S, we have grouped QG

as the new variable Q̂ ∈ S. As a result, we have once
again decoupled the columns of the optimality condition.
This allows for us to solve for Q̂, as follows.
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Lemma 6. Let S = lower(RH2), and suppose F, G ∈
RH∞. Then, Q ∈ S satisfies

G∗F + G∗GQ ∈ S⊥

if and only if the following two conditions both hold:

i)

[

(G∗F )11
(G∗F )21

]

+ G∗G

[

Q11

Q21

]

∈ H⊥
2

ii) (G∗F )22 + (G∗G)22Q22 ∈ H⊥
2

Proof. This result was proved in [18]. In short, (i)
comes from solving for the first column of Q and (ii)
from the second column of Q.

The importance of Lemma 6 is that it reduces (12)
over S⊥ into two separate conditions over H⊥

2
. Each of

these conditions can be solved via a spectral factorization
approach, described by the following lemmas.

Lemma 7. Suppose R1, R2 ∈ RH∞ have the realizations

R1 = C(zI − A)−1H

R2 = C(zI − A)−1B + D

Suppose there exists a stabilizing solution X to the alge-

braic Riccati equation

X = CT C + AT XA − (AT XB + CT D)

× (DT D + BT XB)−1(BT XA + DT C)

Let W = DT D +BT XB and K = W−1(BT XA+DT C)
and L ∈ RH∞ given by

L = W
1

2 K(zI − A)−1B + W
1

2

Then, L−1 ∈ RH∞, L−∗ ∈ RH−
∞, and L∗L = R∗

2
R2.

Moreover,

L−∗R∗
2
R1 = z−1W− 1

2 BT (z−1I − (A − BK)T )−1XH

+ W
1

2 K(zI − A)−1H

Proof. This is a standard spectral factorization result.
A simple proof follows the approach in [5].

Lemma 8. For the system in (1), let G ∈ S be defined

as in Lemma 5. Then,

P ∗
21

G−∗ =

[

zI 0
0 (P21)

∗
22

G−∗
22

]

and

(zI−A22)
−1H2E

T

1
(P21)

∗
22

G−∗
22

= (zI−A22)
−1A22NV

1

2

+ z−1S(z−1I − (I − NC22)
T AT

22
)−1CT

22
V − 1

2

Proof. This result follows directly from the con-
struction of G and algebraic manipulations of (5), as in
Lemma 7.

We can now solve for the Q̂ ∈ S satisfying our opti-
mality condition (12)

Lemma 9. For the system in (1), suppose Assump-

tions A1– A4 hold. Let X, Y, S satisfy (3)–(5), respec-

tively. Also, define K, J, N as in (6)–(8), and let G ∈ S
be defined as in Lemma 5. Then, the unique Q̂ ∈ S sat-

isfying (12) is given by

[

Q̂11

Q̂21

]

= −zK(zI − (A − BK))−1E1H1 (13)

Q̂22 = −zJ(zI − (A22 − B22J))−1NV
1

2 (14)

Proof. Using Lemma 6, the optimality condition can
be solved as two separate problems. Condition (i) of the
lemma implies that we must find Q̂E1 ∈ RH2 satisfying

P ∗
12

P11P
∗
21

G−∗E1 + P ∗
12

P12Q̂E1 ∈ H⊥
2

(15)

From Lemma 8, we have P ∗
21

G−∗E1 = zE1. Letting R1 =
P11E1 and R2 = P12, we define L ∈ RH∞ as in Lemma 7,
via (3). Since L−∗ ∈ H−

∞, then L−∗H⊥
2
⊂ H⊥

2
, and (15)

is equivalent to

zL−∗P ∗
12

P11E1 + LQ̂E1 ∈ H⊥
2

Consequently, Q̂E1 can be found by projecting this ex-
pression onto H2. Using Lemma 7, we obtain

Q̂E1 = −L−1PH2
(zL−∗P ∗

12
P11E1)

= −L−1(zW
1

2 K(zI − A)−1E1H1)

from which (13) follows. For condition (ii), we must find
Q̂22 ∈ RH2 satisfying

ET

2
P ∗

12
P11P

∗
21

G−∗E2 + ET

2
P ∗

12
P12E2Q̂22 ∈ H⊥

2
(16)

From Lemma 8, we have P ∗
21

G−∗E2 = E2(P21)
∗
22

G−∗
22

.
This time, we let R2 = C12(zI − A22)

−1B22 + D2, and
now define L ∈ RH∞ according to Lemma 7, via (4).
Then, (16) is equivalent to

L−∗(P ∗
12

P11)22(P21)
∗
22

G−∗
22

+ LQ̂22 ∈ H⊥
2

Projecting this expression onto H2 follows from Lem-
mas 7 and 8; the details are omitted due to space con-
straints.

PH2
(L−∗(P ∗

12
P11)22(P21)

∗
22

G−∗
22

)

= W
1

2 J(I + (zI − A22)
−1A22)NV

1

2

The result follows by left-multiplying this expression with
L−1.

Having found the Q̂ ∈ S which satisfies (12), we can
now prove our main results.
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Proof of Theorem 1. From Lemmas 3 and 4,
K ∈ lower(RL2) is optimal for (2) if and only if Q =
K(I − P22K)−1 ∈ S satisfies (11). Spectral factorizing
P21P

∗
21

according to Lemma 5, the optimality condition
is equivalent to (12), where Q̂ = QG. The unique Q̂ sat-
isfying this expression was found in Lemma 9. Thus, the
optimal K is given by

K = Q̂G−1(I + P22Q̂G−1)−1

from which it follows that

K =









(AK)22 0
ANNC22 AN

(AK)21 0
ANNC21 −ANN

−K12 0
−K22 + JNC22 J

−K11 0
−K21 + JNC21 −JN









(17)
In state-space this corresponds to the controllers in the
theorem.

6 Estimation

We end our analysis of this problem by discussing the
structure of the optimal controller. To begin, we see that
the order of the optimal controller in (17) is equal to
twice the state dimension of player 2.

Corollary 10. The optimal controller K ∈ lower(RL∞)
for (2) has order equal to twice the state dimension of

x2.

This is reasonable since, as we will show next, the dy-
namics associated with the controller correspond to each
player’s estimate of x2.

Recalling our definitions from Theorem 1, let η1 and η2

be the states of the optimal controller in (17). Combining
this with the dynamics in (1), and letting e1 = x2 − η1

and e2 = η2 + (I − NC22)e1, the closed-loop dynamics
mapping (w1, w2, v) 7→ (x1, y2) become













AK 0 0
0 AJ B22J

0 0 MA22

E1H1 0 0
0 H2 −B22JNHv

0 MH2 −MA22NHv

ET
1

0 0
C2 C22 0

0 0 0
0 0 Hv













(18)
where M = (I−NC22), C2 =

[

C21 C22

]

, and the states
are (x1, η1, e1, e2). As a result, we obtain a very simple
interpretation for η1.

Lemma 11. Suppose x1, η1, e1, e2 are the states of the

autonomous system in (18), and w1, w2, v are indepen-

dent, zero mean random processes. Then,

η1(t) = E
(

x2(t) | x1(0), . . . , x1(t)
)

(19)

Proof. For notational convenience, let x(0 : t) =
x(0), . . . , x(t).

From the independence of the noises and the block
diagonal structure of the dynamics, it is clear that x1, η1

evolve independently of e1 = x2 − η1. Consequently,

E
(

x2(t)−η1(t) | x1(0 : t), η1(0 : t)
)

= E
(

x2(t)−η1(t)
)

= 0

Thus,

E
(

x2(t)|x1(0 : t), η1(0 : t)
)

= E
(

η1(t)|x1(0 : t), η1(0 : t)
)

(20)
Note that the expected value of η1(t), conditioned on
itself, is just equal to η1(t). Moreover, since η1 is a deter-
ministic function of x1, conditioning on x1(0 : t), η1(0 : t)
is equivalent to conditioning on just x1(0 : t). As a re-
sult, (20) is equivalent to (19).

To gain intuition into the second controller state η2,
we must similarly find player 2’s estimate for x2. This
estimate is chosen as the transfer function F ∈ RH∞

which minimizes

min
F∈RH∞

∥

∥

∥
x2 − F

[

x1

y2

]

∥

∥

∥

2

(21)

It is well-known that this estimate comes from the steady-
state Kalman filter for the autonomous system in (18),
as seen in the following lemmas.

Lemma 12. For the system in (18), suppose (AK)22
and AN are stable matrices. Then, the estimator ê1 =

G

[

x1

y2

]

, G ∈ RH∞, which minimizes

min
G∈RH∞

∥

∥

∥
e1 − G

[

x1

y2

]

∥

∥

∥

2

(22)

is given by

ê1 =
(

N + (zI − AN )−1ANN
)

(

y2 − C2

[

x1

η1

])

(23)

Proof. This result is the standard steady-state Kalman
filter and is the dual of the classic LQR problem. The
proof is omitted here due to space constraints.

Note that the conditions (AK)22 and AN being stable
are simply employed so that the solution for the under-
lying Riccati equation in the optimization problem (22)
reduces to solving the Riccati equation (5).

Theorem 13. Suppose the conditions of Lemma 12 hold.

Then, the controller state η2 is given by

η2 = −x̂2|12 + η1 + N

(

y2 − C2

[

x1

η1

])

where x̂2|12 = F

[

x1

y2

]

, F ∈ RH∞, is the estimator of x2

which minimizes (21).
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Proof. It is clear that the two norm optimizations
in (22) and (21) are equivalent, if we let F = G+

[

Φ 0
]

,
where η1 = Φx1. Thus, x̂2|12 = ê1 + η1.

From (17), we can write the dynamics of η2 as

η2 = −(zI − AN )−1ANN

(

y2 − C2

[

x1

η1

])

Combining this with (23), we see that

ê1 + η2 = x̂2|12 − η1 + η2 = N

(

y2 − C2

[

x1

η1

])

from which the result follows.

Letting x̂2|1 = η1 from Lemma 11 and x̂2|12 as defined
in Theorem 13, it is now straightforward to show that
the optimal policy can be written as shown in (9).

7 Conclusions

In this paper, we considered a two-player decentralized
control problem, with communication allowed in only one
direction. In addition, the problem imposed a partial
output feedback structure, in which one player measures
his state directly and the other player is limited to a
noisy measurement of his own state. The optimal H2

norm controller was found via a spectral factorization ap-
proach. The optimal controller involves dynamics which
were shown to be associated with estimation processes
for each player. Moreover, the order of the optimal con-
troller was established and is equal to twice the state
dimension of subsystem 2.

This work extended the results for the full state feed-
back problem in [18] to the partial output feedback case.
Though omitted here for space, this work extends natu-
rally to more general networks which have a particular
partial output feedback structure. Our future work will
continue to extend our methodology to more general net-
works and output feedback problems.
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