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Abstract— The problem of partitioning a building
into clusters is considered in this paper, with refe-
rence to its decentralized thermal control. Optimal
control schemes for these systems are often centralized
and address both the thermal comfort and energy
efficiency requirements. However, due to robustness
considerations, a decentralized architecture may be
preferred for large scale systems, which is at best
sub-optimal. Therefore, the ‘degree of decentraliza-
tion’ governs the trade-off between optimality and
robustness. This paper proposes a combinatorial opti-
mization based systematic methodology for obtaining
an optimal degree of decentralization on the basis of
two metrics - one for optimality (defined as Coupling
Loss Factor) and one for robustness (defined as Mean
Cluster Size). The methodology was evaluated on
a building model and results were found to be in
agreement with the physics of the underlying thermal
interactions.

I. INTRODUCTION

The building sector accounts for around 41% of the
annual energy consumption and almost the same share
of greenhouse gas emissions in the United States [1].
This has motivated the use of advanced control tech-
niques, e.g. model predictive control (MPC) [2], [3] and
hardware, e.g. BACnet [4] for the intelligent control
of buildings. In particular, the control of the heating,
ventilation and air-conditioning (HVAC) systems has
received much attention [5], [6], because more than one-
third energy usage in buildings can be attributed to zone
heating and cooling.

For large scale systems, such as buildings, the per-
formance of the control system is correlated with the
choice of the control architecture. In theory, a centra-
lized controller, with knowledge of a perfect model of
the system and access to building-wide sensor data,
could control the building optimally. A key limitation
of centralized decision making, however, is its potentially
inferior robustness to sensor and communication network
failures.

Decentralized control is more resilient to such failures
and also easier to design and tune [7]. However, a de-
centralized controller ignores any coupling between the
particular subsystem that it controls and the rest of
the plant. This may result in suboptimal performance.
Therefore, it is imperative to choose a control architec-
ture which lies between the two extremes of completely
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centralized control and fully decentralized control. In this
regard, multi-agent distributed and decentralized control
architectures, which provide limited or no communica-
tion among the controllers has been advocated for buil-
dings [8], [9], [10], [11], [12], [13]. However, the underlying
control architecture is chosen in a somewhat heuristic
manner, on the basis of the building topology or functio-
nal separation of the building subsystems. In the present
work, we propose a systematic methodology to determine
the control clusters in a building for implementing a
control architecture, which is decentralized with respect
to the clusters. The choice of the appropriate clusters
is based on the afore-mentioned trade-off between opti-
mality and robustness as characterized by appropriate
metrics, and involves combinatorial optimization. The
proposed approach relies on an MPC framework, because
MPC has been studied extensively for the control of
building systems [2], [3], [14].

The organization of this paper is as follows. Some
preliminaries are discussed in Section II. Section III des-
cribes the proposed clustering procedure. A simulation
case study is provided in Section IV where the clustering
technique is implemented on a building model. Lastly,
the conclusions are summarized in Section V.

II. PRELIMINARIES

A. Open Loop Model

A resistive-capacitive (RC) network is typically used to
represent a lumped model of building thermal dynamics
[15], [16], [17]. The ensuing linear state space model in
discrete time is of the following form :

x(k + 1) = Ax(k) +Buu(k) +Bww(k) (1)

y(k) = Cx(k) (2)

In this model, x =
(
Tw

T Tz
T
)T

is the state vector
consisting of the building wall and zone-air temperatures.
The vectors u and w represent control inputs and distur-
bances respectively. The control inputs consist of energy
transfer rates (positive for heating) between the air-
conditioning system and the zones. The unmodeled ther-
mal loads in the zones and the ambient air temperature
are treated as disturbances. The outputs are the zone-air
temperatures, i.e. y = Tz, which can be measured using
thermostats. The number of control inputs and controlled
outputs are denoted by Nu and Ny respectively. In this
work, both these quantities equal the number of rooms
in the building.
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B. MPC Framework

The objective function for optimal building thermal
control is usually a weighted sum of objectives repre-
senting thermal comfort and air conditioning power
consumption [5]. With reference to the model described
above, we use the following objective function 1 to be
minimized at each time instant k, for a discrete-time
MPC implementation :

Jk =

N−1∑
j=0

αTu (k + j|k)︸ ︷︷ ︸
Power consumption term

+ α2

N∑
j=1

||y (k + j|k)− yref (k)||22︸ ︷︷ ︸
Thermal comfort term

(3)

Here N is the number of samples in the prediction
and control horizon ; {y (k + j|k)}Nj=1 is the predicted
output sequence over the prediction horizon, based on
the model ((1) and (2)), when the control sequence
{u (k + j|k)}N−1j=0 is applied ; yref (k) is the desired (refe-
rence) value of the output at the current time instant, k.
The purpose of the optimization is to find the optimal
control sequence {u∗ (k + j|k)}N−1j=0 that minimizes Jk.

C. Coupling between inputs and clusters of inputs

Jk can be expresssed as a quadratic function of the
control sequence {u (k + j|k)}N−1j=0 , by successive substi-
tution of (1) and (2) in (3) [18].

Jk = vk
THkvk + fk

T vk (4)

Where :

vk =
(
ūT1 ū

T
2 .... ū

T
Nu

)T
,

ūi = (ui (k|k)ui (k + 1|k) .... ui (k +N − 1|k))
T
,

i = 1, 2, .... Nu

Here, ui denotes the ith component of u. The quadratic
part, vk

THkvk, can be written in the expanded form as :

ū1

ū2

.

.

.

ūNu



T 

H1,1 H1,2 . . H1,Nu

H2,1 H2,2 . . H2,Nu

. . . . .

. . . . .

. . . . .

HNu,1 HNu,2 . . HNu,Nu





ū1

ū2

.

.

.

ūNu


Each off-diagonal term, Hi,j ∈ RN×N , i 6= j represents

the coupling between ui and uj in Jk. Therefore, we use

1. It is assumed that all rooms of the building are simultaneously
under heating or cooling. This allows the representation of the
power consumption term using a linear function of the control
inputs.

||Hi,j ||2 as a measure of coupling 2 between ui and uj and
extend this to define coupling between between a pairs
of input clusters.

Consider a pair of input clusters, C1 and C2. The
coupling matrix between these clusters, HC1,C2

is defined
as :

HC1,C2
=


Hp1,q1 Hp1,q2 . . .

Hp2,q1 Hp2,q2 . . .

. . . . .

. . . . .

. . . . .

 (5)

Where,

p1, p2 ... ∈ C1 and q1, q2 ... ∈ C2

The coupling C (C1, C2), between C1 and C2, is then
defined as :

C (C1, C2) = ||HC1,C2 ||2 (6)

III. CLUSTERING PROCEDURE

The clustering procedure is carried out in a divisive
sequence as illustrated in Fig. 1. The input to each stage
is a set of parent clusters, and the output is a set of
child clusters. The child clusters are obtained from the
parent clusters via combinatorial analysis. The input to
the first stage is the root cluster containing all the control
inputs, which represents the completely centralized case.
The output of the last stage is a set where each control
input is a cluster by itself and hence represents a fully
decentralized architecture. For any intermediate stage
Si, the input (set of parent clusters) is the same as the
output (set of child clusters) of the previous stage Si−1.
Two metrics representing optimality and robustness are
computed for each stage. A plot of one metric versus the
other is then used to identify the stage which results in a
satisfactory tradeoff between robustness and optimality.

A. Optimality and robustness metrics

Two dimensionless metrics - Coupling Loss Factor
(CLF) and Mean Cluster Size (MCS) are computed for
each partitioning stage.

1) CLF: The CLF for stage Si is a normalized measure
of the inter-cluster coupling among its child clusters that
are denoted by Cji , where j = 1, 2, ..., ni. Here, ni is the
total number of such child clusters. First, we introduce
the coupling loss vector µi for this stage Si as the vector
of the couplings C (Cpi , C

q
i ) for each pair of child clusters,

Cpi and Cqi , with p 6= q. More formally :

µi = (µi,1 µi,2 ... µi,ni)
T

(7)

where,

µi,p =
(
C
(
Cpi , C

p+1
i

)
C
(
Cpi , C

p+2
i

)
... C (Cpi , C

ni
i )
)
,

p = 1, 2, ...ni

2. It is important to scale the system first so that coupling values
corresponding to different pairs of input channels can be compared
with one another. For a discussion on scaling see [19].
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CLF vs. MCS Analysis PC : Parent Clusters
CC : Child Clusters

LEGEND

Fig. 1. Overview of clustering procedure.

The CLF for stage Si, CLFi is then defined as :

CLFi =
||µi||2
||Hk||2

(8)

The CLF for the parent cluster to stage 1, which
represents the fully centralized scenario, is clearly zero.
CLFi measures the coupling that is ignored if the system
were partitioned according to the child clusters of stage
Si. Therefore, it is desired to partition the system such
that the corresponding CLF is small, thus resulting in
small deviation in optimality from centralized control.

2) MCS: We use λji to denote the number of elements
in child cluster Cji . MCSi for stage Si is the average
number of elements per child cluster normalized with
respect to the total number of control inputs.

MCSi =

ni∑
j=1

λji

niNu
=

1

ni
(9)

It is clear that MCSi ∈ (0, 1]. In a decentralized control
architecture, the effect of a sensor or communication
related fault is confined to the cluster where it originates.
Therefore, the MCS is an indicator of robustness to such
faults - a small value indicates that the effect of failures
is less widespread. Hence, it is desired to partition the
system such that the corresponding MCS is small.

B. Stage-level combinatorial optimization

The objective of the stage level optimization (Fig. 1)
is to appropriately split the parent clusters to obtain
corresponding child clusters. This process is based on a
combinatorial procedure explained below and illustrated
in Fig. 2.

The parent clusters for stage Si are the child clusters,
Cji−1, (j = 1, 2, ..., ni−1) from its preceding stage Si−1.
An intermediate cluster pair for any parent cluster is
defined as a set of two non-empty and non-overlapping

1  2  3 4 5

1 2 3 2 1 3 3 1 2

2

PARENT CLUSTER 1 PARENT CLUSTER 2

4 5

ILF = 0.2 ILF = 0.03 ILF = 0.1 ILF = 0.05

4 51 3
CHILD  CLUSTER 1 CHILD  CLUSTER 2 CHILD  CLUSTER 3

} INTERMEDIATE
CLUSTER PAIRS

Fig. 2. Schematic of combinatorial optimization process for any
given stage.

clusters obtained by splitting it. Therefore, the number
of intermediate cluster pairs, ni,j,int obtained from the
parent cluster Cji−1 is given by the Stirling number of

the second kind [20], S(λji−1, 2) :

ni,j,int = S(λji−1, 2) = 2λ
j
i−1−1 − 1 (10)

The Intermediate Loss Factor (ILF) is then defined for
each such intermediate cluster pair,

{
Cli,j,int, C

∗l
i,j,int

}
as :

ILFli,j,int =
C
(
Cli,j,int, C

∗l
i,j,int

)
C
(
Cji−1, C

j
i−1

) , (11)

where, l = 1, 2, ...ni,j,int and j = 1, 2, ...ni−1.

The underlying optimization problem for the ith stage
Si is to find the parent cluster (indicated by j∗) and its
corresponding intermediate cluster pair (indicated by l∗)
which yield the smallest ILF :

{j∗, l∗} = argmin
{j,l}

ILFli,j,int (12)

The optimal parent cluster, Cj
∗

i−1 is then split
to create the optimal intermediate cluster pair,{
Cl

∗

i,j∗,int, C
∗l∗
i,j∗,int

}
whereas the other parent clusters are

retained. The result is a set of child clusters having one
more cluster than the set of parent clusters.

The ILFli,j,int defined in (11) measures the ‘amount’
of coupling ignored in the creation of the intermediate
cluster pair

{
Cli,j,int, C

∗l
i,j,int

}
from the parent cluster

Cji−1, normalized with respect to the coupling originally
present in the parent. Therefore, the optimization (12)
involves determination of the split with smallest resulting
loss of coupling, among all possible splits.

C. MINCUT approximation

The exponential computational complexity characteri-
zed by (10), of the combinatorial optimization, motivates
the development of a more tractable approach for the mi-
nimization problem (12). In what follows, for simplicity,
we denote the size λji−1 of the parent cluster Cji−1 by

n. The elements of Cji−1 are accordingly denoted by pr,
where r = 1, 2, ..., n.
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A matrix Hj is constructed for the jth parent cluster,
Cji−1, in a manner analogous to the construction of the
coupling matrix in (5) :

Hj =


Hp1,p1 Hp1,p2 . . . Hp1,pn

Hp2,p1 Hp2,p2 . . . Hp2,pn

. . . . . .

. . . . . .

Hpn,p1 Hpn,p2 . . . Hpn,pn

 (13)

For any given intermediate cluster pair,{
Cli,j,int, C

∗l
i,j,int

}
, a matrix, H l

j can be obtained
from Hj by setting to zero all blocks which correspond
to elements in one intermediate cluster only. More
precisely :

H l
j =


θp1,p1Hp1,p1 θp1,p2Hp1,p2 . . . θp1,pnHp1,pn

θp2,p1Hp2,p1 θp2,p2Hp2,p2 . . . θp2,pnHp2,pn

. . . . . .

. . . . . .

θpn,p1Hpn,p1 θpn,p2Hpn,p2 . . . . θpn,pnHpn,pn


(14)

Where,

θ(pr, ps) =

0 if r, s ∈ Cli,j,int or r, s ∈ C∗li,j,int
1 otherwise

(15)

Using the above definitions, ILFli,j,int defined in (11)
can be expressed as :

ILF li,j,int =

∣∣∣∣H l
j

∣∣∣∣
2

||Hj ||2
(16)

From the above expression, the problem of minimizing
ILFli,j,int, over intermediate cluster pairs indexed by l, for
a particular parent, denoted by a fixed j, corresponds to
the minimization of

∣∣∣∣H l
j

∣∣∣∣
2

over l. Assuming that H l
j is

sufficiently sparse, we now approximate
∣∣∣∣H l

j

∣∣∣∣
2

by the

2-norm of the vector vlj consisting of the elements of H l
j .

To make this more formal, we introduce a binary vector
x ∈ Rn whose elements, xr are defined as follows :

xr =

1 if pr ∈ Cli,j,int
−1 if pr ∈ C∗li,j,int

(17)

The square of the 2-norm of vlj can easily be stated
as : ∣∣∣∣vlj∣∣∣∣22 =

zTQTH .2
p Qz − xTQTH .2

p Qx

2
(18)

Here, H .2
p denotes the matrix obtained by taking

element-wise square of Hp. The quantities Q and z are
defined below :

Q =



e 0 . . . 0

0 e . . . 0

. . . . . .

. . . . . .

0 0 . . . e


N.n×n

(19)

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MCS

C
LF

Stage 1

Stage 6

Stage 5
Stage 4

Stage 3

Stage 2 (optimal)

Fig. 3. Illustrative example of CLF vs. MCS plot.

z = [1 1 . . . 1]Tn×1 (20)

Here, e = [1 1 . . . 1]TN×1
Hence, the problem of minimizing ILFli,j,int over l for a

particular parent j can be approximated by the following
Boolean maximization :

maximize xTQTH .2
p Qx

subject to xr ∈ {1,−1} (21)

The above maximization can be performed using nu-
merical techniques such as [21] available for solving the
MINCUT problem. In this way, for each parent j, the
minimum ILF can be found and compared across all
parents to solve the original minimization problem (12)

D. Optimal Stage Selection

Since it is desired to have both CLF and MCS small,
this problem is analogous to dual objective optmization
in a pareto-optimal setting [22]. Motivated by this, the
optimal stage Si∗ is obtained from a plot of CLFi versus
MCSi (Fig. 3).

The optimal stage should be a knee point. Therefore,
navigating along the curve about that point in either
direction would result in a large increase in one metric
but only a relatively small decrease in the other metric.
The plot must be studied in the ascending order of the
partitioning stages (right to left) for knee points. For
instance, if the first knee is not ‘sufficiently’ sharp, then
the second knee should be studied.

IV. Case Study

An example is presented in this section to demonstrate
the application of the proposed clustering procedure.

A. Test System Description

The layout of the building used in this example is
shown in Fig. 4. It consists of 3 floors, with a total of
9 rooms of equal dimensions (5 × 5 × 5 m3) numbered
as shown. The walls were modeled as RC circuits (Fig.
5) based on the accessibility factor method described in
[16], and the zones were modeled as isolated capacitors.
Each room has 6 walls - 4 side walls, 1 ceiling and 1 floor.
The construction details are presented in Table I, from
which the resistances and capacitance for each wall were
computed. The zonal thermal capacities were assumed

2074



Internal
walls

External
walls

Ambient

Fig. 4. Test building architecture (Side view).

TABLE I

Test Building Parameters [15]

Element Layering Thickness (m)

External walls Brick 0.122
Insulation 0.050
C-Block 0.112
Plaster 0.013

Internal walls Plaster 0.013
C-Block 0.122
Plaster 0.013

to be 250 kJ/K based on air at 25 C and 105 Pa. An
overall system model of the form (1) was obtained by
constructing an RC network using these details, followed
by discretization using the zero-order-hold method with
step size of 10 minutes (close to one-tenth of the smallest
time constant in the model).The Hessian Matrix, Hk was
then created with prediction horizon, N = 24 samples (4
hours).

int ext

wall

Fig. 5. Wall RC model depiction [16].

The inner and outer resistance values in Fig. 5 for all
horizontal and vertical internal walls were found to be the
same as expected due to symmetry. We denote this value
by Rnom. In the case study presented, the resistances of
the horizontal internal walls are altered by a factor of
ρ > 0, i.e. RH = ρRnom. Correspondingly, the resistances
of the vertical internal walls are scaled by a factor of
1/ρ, i.e. RV = Rnom/ρ. Therefore, the ratio RH/RV is
amplified by ρ2. The clustering methodology presented
in Section III was applied for various values of the factor
ρ.

B. Results

The CLF vs. MCS plots for some selected values of ρ
are shown in Fig. 6 to 8 . Key observations are as follows :

1) The CLF vs. MCS plots using the MINCUT pro-
cedure and the combinatorial procedure exactly
coincide in Fig. 7 and 8. However, they differ in Fig.

Stage 1

Stage 2

Stage 3

Higher 
stages

Fig. 6. CLF vs. MCS plot for ρ = 1

Stage 1
Stage 2Stage 3

Higher 
stages

Fig. 7. CLF vs. MCS plot for ρ = 2

6. This suggests that the MINCUT approximation
to the combinatorial optimization problem can be
potentially accurate in asymmetric situations. In
general, it trades accuracy for computational sim-
plicity as indicated by a run-time of 0.29 seconds
when compared to 4.92 seconds for the combinato-
rial procedure 3.

2) For the nominal case (ρ = 1), a knee point is not
immediately obvious in Fig. 6. Therefore, stage 3
was chosen to be the optimal clustering where both
CLF and MCS are satisfactorily small.

3) When ρ > 1, the optimal cluster set (child
clusters pertaining to stage 3 in Fig. 7 and
8) obtained is :{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}. When
ρ < 1, (resulting CLF vs. MCS plots not
shown) the corresponding optimal cluster set is :
{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}. This can be justified
on the basis of physical arguments. When ρ > 1,
the horizontal walls are more insulating than the
vertical walls, therefore the clusters must be sliced
horizontally. A similar explanation applies to the
case ρ < 1.

C. Discussion

The results of the clustering procedure were easily
explained on the basis of physical intuition for the chosen
case study. This encourages its implementation on more
complex cases in the future. Additionally, the approach
can work with existing system information, e.g. Building
Information Management (BIM) systems, to get physi-
cal information that can drive accurate analyses. The
computational complexity of the combinatorial optimiza-
tion algorithm is an important concern. The processing

3. Values are for the case ρ = 1, implemented on a 2.0 GHz, 960
MB, AMD Athlon machine
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Stage 1Stage 2
Stage 3

Higher 
stages

Fig. 8. CLF vs. MCS plot for ρ = 3

time would scale with the complexity of the system.
To address this problem, computationally tractable me-
thodologies which are more reliable than the presented
MINCUT approximation are required. This aspect is an
open question currently under study.

V. Conclusions

A combinatorial optimization based clustering pro-
cedure, together with its MINCUT approximation was
presented in this paper for the determination of appro-
priate decentralized control architectures in the context
of building thermal control. Optimality and robustness
were quantified in the form of CLF and MCS metrics, res-
pectively, and the partitoning process involved achieving
a tradeoff between these two objectives. Application of
this appoach on a medium-scale building system resulted
in physically justifiable choices of control clusters. Decen-
tralized control design based on the clusters obtained by
the method proposed in this paper will be undertaken in
future.

References

[1] EIA,“Annual energy outlook 2009,”2009. [Online]. Available :
http ://www.eia.doe.gov/oiaf/aeo/emission.html

[2] G. Huang, S. Wang, and X. Xu, “A robust model predictive
control strategy for improving the control performance of air-
conditioning systems,” Energy Conversion and Management,
vol. 50, no. 10, pp. 2650–2658, 2009.

[3] D. Kolokotsa, A. Pouliezos, G. Stavrakakis, and C. Lazos,
“Predictive control techniques for energy and indoor envi-
ronmental quality management in buildings,” Building and
Environment, vol. 44, no. 9, pp. 1850–1863, 2009.

[4] S. Bushby and H. Newman, “BACnet today,” ASHRAE Jour-
nal, vol. 10, pp. 10–18, 2002.

[5] S. Wang and Z. Ma, “Supervisory and optimal control of
building HVAC systems : A review,” HVAC&R Research,
vol. 14, no. 1, pp. 3–32, Jan 2008.

[6] E. Mathews, C. Botha, D. Arndt, and A. Malan, “HVAC
control strategies to enhance comfort and minimise energy
usage,”Energy and Buildings, vol. 33, no. 8, pp. 853–863, 2001.

[7] P. Campo and M. Morari, “Achievable closed-loop properties
of systems under decentralized control : Conditions involving
the steady-state gain,”Automatic Control, IEEE Transactions
on, vol. 39, no. 5, pp. 932–943, 1994.

[8] P. Davidsson and M. Boman, “Distributed monitoring and
control of office buildings by embedded agents,” Information
Sciences, vol. 171, no. 4, pp. 293–307, 2005.

[9] S. Sharples, V. Callaghan, and G. Clarke, “A multi-agent ar-
chitecture for intelligent building sensing and control,” Sensor
Review, vol. 19, no. 2, pp. 135–140, 1999.

[10] B. Huberman and S. Clearwater, “A multi-agent system for
controlling building environments,” in Proceedings of the First
International Conference on Multi-Agent Systems (ICMAS-
95), 1995, pp. 171–176.

[11] J. Sandhu et al., “Wireless sensor networks for commercial
lighting control : decision making with multi-agent systems,”
in AAAI workshop on sensor networks, 2004, pp. 131–140.

[12] W. Kastner, G. Neugschwandtner, S. Soucek, and H. New-
mann, “Communication systems for building automation and
control,” Proceedings of the IEEE, vol. 93, no. 6, pp. 1178–
1203, 2005.

[13] V. Chandan, S. Mishra, and A. Alleyne, “Predictive control of
complex hydronic systems,” in American Control Conference
(ACC), 2010. IEEE, 2010, pp. 5112–5117.

[14] G. Henze, D. Kalz, C. Felsmann, and G. Knabe, “Impact of
forecasting accuracy on predictive optimal control of active
and passive building thermal storage inventory,” HVAC & R
Research, vol. 10, no. 2, pp. 153–178, 2004.

[15] M. Gouda, S. Danaher, and C. Underwood, “Building thermal
model reduction using nonlinear constrained optimization,”
Building and Environment, vol. 37, no. 12, pp. 1255–1265,
2002.

[16] F. Lorenz and G. Masy, “Méthode d’évaluation de l’économie
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