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Abstract—A vibration suppression strategy is developed for

a flexible manipulator with a collocated piezoelectric sen-
sor/actuator pair. A control law is developed based upon positive

position feedback and is augmented with an adaptive parameter
estimator based on the recursive least squares method to update

the first two natural frequencies of the structure online. For the
positive position feedback control law, accurate targeting of the

modes is critical for vibration control. Experiments are then
conducted to show that the controller can be used to suppress

the vibrations of a structure with unknown natural frequencies.

I. INTRODUCTION

Flexible manipulator systems exhibit many advantages

over their rigid counterparts. They possess a higher load

ratio, and a large increase in the speed of the links is

possible. They require less power to produce the same

acceleration as the rigid links which have the same load

carrying capacity, hence inexpensive and smaller actuators

are sufficient. Because of the high performance requirements,

consideration of structural flexibility in robots arms is a real

challenge. Unfortunately, taking into account the flexibility

of the arm leads to the appearance of oscillations at the tips

of the links during the motion. These oscillations make the

control problems of such systems very difficult. There has

been extensive research on active vibration control of flexible

systems, see for example [1]. Many control strategies have

been used in the control of lightweight flexible structures.

These control strategies include, but are not limited to:

adaptive control [2], fuzzy logic control [3], H∞ control [4],

and time-optimal control [5].

With the developments in sensor/actuator technologies,

many researchers have concentrated on vibration control

using smart materials such as shape memory alloys (SMA)

and piezoelectric transducers among others. Piezoelectric

materials have been applied in structural vibration control

as well as in structural acoustics because of their advantages

of fast response, large force output and the fact that they

generate no magnetic field in the conversion of electrical

energy into mechanical motion. A significant number of

papers have been written on positive position feedback (PPF)

[6], [7], [8], [9]. It has been shown to be a solid vibration

control strategy for flexible systems with smart materials,

particularly with the PZT (lead zirconium titanate) type of

piezoelectric material. However, the effectiveness of PPF
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deteriorates when the natural frequencies of the structure

are poorly known or changing due to, for example, the

presence of a tip mass. There has been significantly less

work done on adaptive PPF than there has been on just PPF.

Kwak et al. [10] presented a method for adaptively tuning

the controller frequency of the PPF controller for a single

mode of a cantilever beam using a gradient update law, and

also illustrate their implementation of a real-time controller.

Rew et al. [11] proposed an adaptive PPF controller for a

plate in a fixed-free configuration in which estimated natural

frequencies are adjusted at every time step. Baz and Hong

[12] presented an adaptive modal PPF controller where the

AMPPF controller parameters are adjusted in an adaptive

manner in order to follow the performance of an optimal

reference model (for a cantilever beam). In previous work

by the authors, simulations were conducted for two mode

APPF [13] and in [14] experiments were carried out for a

single mode APPF controller.

The first two sections provide general derivations of

the positive position feedback controller and the adaptive

estimator for any number of modes. PPF control is then

designed to damp the first two modes of the constrained

beam with frequency estimates provided by the adaptive

online parameter estimator based upon the recursive least

squares method with forgetting factor. Next, the experimental

setup is briefly outlined and the experimental results of the

controller are shown. Finally, a brief discussion is given and

conclusions are given.

II. CONTROLLER DEVELOPMENT

A. Positive Position Feedback

Positive Position Feedback (PPF) was devised by Goh and

Caughey in 1985 and is an appropriate control method for

an active structure equipped with strain actuators and sensors

such as PZT or PVDF. PPF is essentially a second order

filter that is used to apply high frequency gain stabilization

by improving the frequency roll-off of the system [15].

Alternatively, PPF works by using a second-order system

which is forced by the position response of the structure.

This response is then fed back to give the force input to the

structure.

Considering the scalar case first, PPF can be described

by the two coupled differential equations where the first

equation describes the structure, and the second describes

the compensator [6] as

ξ̈ +2ζ ωξ̇ +ω2ξ = gω2η

η̈ +2ζ f ω f η̇ +ω2
f η = ω2

f ξ
(1)
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where ξ is the modal coordinate, η is the filter coordinate, ζ
and ζ f are the structural damping and filter damping ratios,

ω and ω f are the structural natural frequency and filter

frequency, and g is the scalar gain. It is shown in [6] that

the necessary and sufficient condition for stability is

0 < g < 1 (2)

The next major advantage of PPF is that the transfer

function of the controller rolls off quickly (as can be seen

from its Bode plot). This is good because it makes the PPF

controller well-suited for control of low-frequency modes

of a structure with well-separated modes. This is also a

major advantage due to the fact that the system will not

be influenced by unmodeled high frequency dynamics.

There are three possible output conditions for a PPF

controller based upon the choice of controller frequency ωc

[7]:

(1) if ω ≪ ω f this is termed active flexibility;

(2) if ω ≈ ω f this is termed active damping;

(3) if ω ≫ ω f this is termed active stiffness

In order to effectively damp out a structural mode, ob-

viously the case of active damping is required. Thus the

controller frequency should be selected to be close to the

modal frequency.

More than one mode of vibration in a beam can be damped

at a time. In order to damp the first two modes of a vibrating

cantilever beam, two PPF controllers are required in parallel

where each is tuned to the natural frequency of the mode it

is to damp. This means that the frequency of η1 is chosen

to be close to that of ξ1 while the frequency of η2 is chosen

to be close to that of ξ2.

For the general multivariable case, the system equations

become

ξ̈ +Dξ̇ +Ωξ = CT Gη

η̈ +D f η̇ +Ω f η = Ω fCξ
(3)

where G is the diagonal gain matrix, C is the participation

matrix, Ω and Ω f are the diagonal modal and filter frequency

matrices, and D and D f are the diagonal modal and filter

damping matrices. In this case, stability can be guaranteed

[6] if and only if

Ω−CT GC > 0 (4)

where greater than zero means positive definite. Another im-

portant property of PPF, is that all spillover into uncontrolled

or unmodelled modes is stabilizing [6].

A positive position feedback controller is developed in

this section for the beam using a single collocated PZT

sensor/actuator pair. The dynamic equation of the structure

in modal coordinates is

ẍ +Zsẋ+Ωsx = ST
mhu (5)

where x is the vector of modal coordinates, Zs is the damping

matrix, Ωs is the frequency matrix, ST
m is the matrix of

mass normalized eigenvectors of the system, h is the actuator

influence matrix, and u is the input to the actuator (voltage

in this case). The sensor (or output) equation can be seen as

y = pT Smx (6)

where p is the sensor influence matrix.

The equation describing the controller is given as

η̈ +Z f η̇ +Ω f η = Ω f Ey (7)

where η is the vector of controller coordinates, Z f is the

controller damping matrix, Ω f is the controller frequency

matrix, and E is the modal participation factor matrix, which

will be defined shortly. The actuator input equation is given

as

u = ET Gη (8)

where G is the gain matrix.

Since ST
m is the matrix of mass normalized eigenvectors,

the modal participation factor matrix can be defined as

E = ST
mMr (9)

where M is the global mass matrix of the system, and r is

a matrix of ones with the same number of rows as M, and

the number of columns equal to the number of collocated

sensor/actuator pairs.

The four equations describing the system, Eqs. (5-8) can

be combined into two second order differential equations as

ẍ+Zsẋ+Ωsx = ST
mhET Gη (10)

η̈ +Z f η̇ +Ω f η = Ω f E pT Smx (11)

Now the structure and controller equations will be placed

into state space (or first order form) for ease of analysis. The

structural equations become

˙̂x = Ax̂+Bu (12)

y = Cx̂ (13)

where

A =

[

0 I

−Ωs −Zs

]

B =

[

0

ST
mh

]

C =
[

pT Sm 0
]

and the controller equations become

˙̂η = Âη̂ + B̂y

u = Ĉη̂

where

Â =

[

0 I

−Ω f −Z f

]

B̂ =

[

0

Ω f E

]

Ĉ =
[

ET G 0
]

3316



B. Adaptive Parameter Estimation

Since the structural transfer function is SISO, it can be

put in transfer function form through

G(s) =
Z(s)

R(s)
= C(sI −A)B (14)

where

R(s) = sn +an−1sn−1 + ...+a1s+a0 (15)

Z(s) = bmsm + ...+b1s+b0 (16)

which allows the adaptive law to be developed generically.

Now the system is of the form

y = G(s)u =
Z(s)

R(s)
u (17)

where y, u are the output and input of the plant which can

also be expressed as [16]

y(n) +an−1y(n−1) + ...+a1ẏ +a0y = bmu(m) + ...+b1u̇ +b0u

(18)

Lumping all of the unknown parameters into the vector

θ ∗ =
[

bm ... b0 an−1 ... a0

]T
(19)

and filtering both sides of Eq. (18) with a monic Hurwitz

polynomial [16] given by

1

Λ(s)
=

1

sn +λn−1sn−1 + ...+λ1s+λ0
(20)

the static parametric model can be obtained as [16]

z = θ ∗T φ (21)

where

z =
sn

Λ(s)
y (22)

θ ∗ =
[

bm ... b0 an−1 ... a0

]T
(23)

φ =
[

sm

Λ(s)u ...
1

Λ(s)u − sn−1

Λ(s)y ... − 1
Λ(s)y

]T

(24)

The estimation model can now be defined as

ẑ = θ T φ (25)

where ẑ and θ is the estimate of z and θ ∗ at each time t .

The estimation error can then be defined as

ε =
z− ẑ

m2
s

=
z−θ T φ

m2
s

(26)

where m2
s is referred to as the normalizing signal and is

designed to bound φ from above [16]. A typical choice for

the normalizing signal is

m2
s = 1 +αφ T φ (27)

where α > 0.

The cost function is a convex function of θ with a global

minimum and is given by

J(θ ) = 1
2

∫ t
0 e−β (t−τ) [z(τ)−θ T (t)φ(τ)]2

m2
s (τ)

dτ

+ 1
2

e−β t(θ −θ0)
T Q0(θ −θ0)

(28)

where Q0 = QT
0 > 0, β > 0 are design constants, and θ0 =

θ (0) is the initial parameter estimates of the unknowns. This

cost function serves to deweight previous data and includes

a penalty on the error in the initial guess.

Following the derivation presented by Ioannou et.al. [16],

the recursive least squares algorithm with forgetting factor is

obtained as

θ̇ = Pεφ (29)

Ṗ =

{

β P−P
φφT

m2
s

P ||P|| ≤ R0

0 otherwise
(30)

where P(0) = P0 = Q−1
0 . Here, R0 is a scalar that serves as

an upper bound for ||P||, since in this case, with β > 0, P(t)
may grow without bound.

III. EXPERIMENTAL RESULTS

The experimental setup is shown in Fig. 1 where the flexi-

ble manipulator has a collocated piezoelectric sensor/actuator

pair. The two piezoelectrics are MIDE QP10W that have

been bonded to the beam. One PZT patch can be seen as the

sensor, and will output a voltage when the beam undergoes

deformation, the other patch will act as the actuator, and

will strain based upon the voltage supplied to it by the

control system. The sensor data can be acquired from the

PZT without any additional circuitry, however, the actuator is

driven by the QPA200 high voltage amplifier. This amplifier

accepts signals between +/- 10 V and can amplify them to an

output range of +/- 200 V. A sample rate is chosen as 1 kHz

and the entire process is controlled from Simulink through

Quanser’s Q8 data acquisition board and QuaRC interface

which allows for real-time control.

Fig. 1: Single-link flexible manipulator at SDCNLab of York

University

From the FFT of the open loop response, the actual natural

frequencies of the first two modes can be found as 10.0091

and 60.4882 rad/s respectively, although they are assumed

unknown. To excite vibrations in a repeatable manner, the

piezoelectric actuator is used to excite vibration using the
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addition of two sinusoidal signals at the beam’s first two

natural frequencies along with a noise component for 10

seconds (not shown in the plots). The three parameters for

the estimation algorithm are chosen to be: β = 5, Q0 = 109 I,

and the initial paramter estimate is taken as a vector of

ones implying no prior knowledge of the system. During

the control run, the estimator finds the first two natural

frequencies to be 10.0246 and 60.0935 rad/s respectively,

which are very close to the true values. It takes the estimator

approximately three seconds to converge on the correct

frequency values as can be seen in Figs. 4 and 5.
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Fig. 2: Piezoelectric sensor voltage due to vibration
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Fig. 3: Voltage supplied by control to amplifier

The PPF control takes approximately 25 seconds to damp

out the vibrations as can be seen in Fig. 2, with the cor-

responding control voltage seen in Fig. 3. This is relatively

quick due to the beam’s extremely small intrinsic damping

and given that free vibration would continue in time into

the minute range. One important effect should be discussed

in Fig. 2: When the control comes online at approximately
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Fig. 4: Estimation of the first natural frequency in rad/s
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Fig. 5: Estimation of the second natural frequency in rad/s

3 seconds it can be seen that the voltage detected by the

piezoelectric sensor rises before being damped out by the

PPF control. This is due to the effect of feedthrough, which

collocated piezoelectric sensor/actuator pairs are particularly

susceptible to [15]. From a mathematical point of view, for

the first three seconds, when the control is off, the tranfer

function is simply that of a monic vibrating system subjected

to an arbitrary impulse. When the control comes on, the

transfer function that describes the input-output relationship

between the sensor and actuator takes over, however, its

denominator remains the same, while its numerator will be

altered [17], [18]. Physically, this is due to the fact that

for the collocated sensor/actuator pair there will be some

direct energy transmission from the actuator to the sensor.

Thus the sensor voltage is made up of two components,

that of the beam response due to the actuator, and some

direct transmission of the force due to the collocation of the

actuator [18]. However, this is not a problem for the PPF

control law, as it was proven to be stable even in the presence
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of feedthrough in [19].

IV. CONCLUSIONS

A positive position feedback controller with an adaptive

parameter estimator is developed to estimate the first two

natural frequencies of a beam with a collocated piezoelectric

sensor/actuator pair. With the proposed adaptive PPF con-

troller, control of the vibrations can be achieved without

accurate knowledge of the structure’s natural frequencies

beforehand. An experimental study of the controller is

conducted and the results verified the effectiveness of the

proposed approach.
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