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Abstract—This paper presents a new pattern discovery al-
gorithm for constructing probabilistic finite state automata
(PFSA) from symbolic sequences. The new algorithm, described
as Compression via Recursive Identification of Self-Similar
Semantics (CRISSiS), makes use of synchronizing strings for
PFSA to localize particular states and then recursively identifies
the rest of the states by computing the n-step derived frequencies.
We compare our algorithm to other existing algorithms, such as
D-Markov and Casual-State Splitting Reconstruction (CSSR) and
show both theoretically and experimentally that our algorithm
captures a larger class of models.

I. INTRODUCTION & MOTIVATION

The principal focus of this work is the development of an
efficient algorithm for discovering patterns in symbolic data
streams, within the framework of Probabilistic Finite State
Automata (PFSA) over pre-defined symbolic alphabets.

A finite state automaton (FSA) is essentially a finite graph
where the nodes are known as states and the edges are known
as transitions, which are labeled with letters from an alphabet.
A string or a symbol string generated by a FSA is a sequence
of symbols belonging to an alphabet, which are generated
by stepping through a series of transitions in the graph.
Probabilistic finite state automata, considered in this paper,
are finite state machines with probabilities associated with the
transitions. The PFSA formalism has been extensively studied
as an efficient framework for learning the causal structure
of observed dynamical behavior [1]. This is an example of
inductive inference [2], defined as the process of hypothesizing

a general rule from examples. In this paper, we are concerned
with the special case, where the inferred general rule takes
the form of a PFSA, and the examples are drawn from a
stochastic regular language. Conceptually, in such scenarios,
one is trying to learn the structure inside of some black box,

which is continuously emitting symbols [1]. The system of
interest may emit a continuous valued signal; which must be
then adequately partitioned to yield a symbolic stream. Note
that such partitioning is merely quantization and not data-

labeling, and several approaches for efficient symbolization
have been reported [3].

Probabilistic automata are more general compared to their
non-probabilistic counterparts [4], and are more suited to
modeling stochastic dynamics. It is important to distinguish
between the PFSA models considered in this paper, and the
ones considered by Paz [5], and in the detailed recent review
by Vidal et al. [6]. In the latter framework, symbol generation
probabilities are not specified, and we have a distribution
over the possible end states, for a given initial state and an
observed symbol. In the models considered in this paper,
symbol generation is probabilistic, but the end state for a given
initial state, and a generated symbol is unique. Unfortunately,

authors have referred to both these formalisms as probabilistic

finite state automata in the literature. The work presented here
specifically considers the latter modeling paradigm considered
and formalized in [1], [7], [8], [9].

The case for using PFSA as pattern classification tools is
compelling. Finite automata are simple, and the sample and
time complexity required for learning them can be easily
characterized. This yields significant computational advan-
tage in time constrained applications, over more expressive
frameworks such as belief (Bayesian) networks [10], [11] or
Probabilistic Context Free Grammars (PCFG) [12], [13] (also
see [14] for a general approach to identifying PCFGs from
observations) and hidden Markov models (HMMs) [15]. Also,
from a computational viewpoint, it is possible to come up with
provably efficient algorithms to optimally learn PFSA, whereas
“optimally learning HMMs is often hard” [1]. Furthermore,
most reported work on HMMs [15], [16], [17] assumes the
model structure or topology is specified in advance, and the
learning procedure is merely training, i.e., finding the right
transition probabilities. For PFSA based analysis, researchers
have investigated the more general problem of learning the
model topology, as well as the transition probabilities, which
implies that such analysis can then be applied to domains
where there is no prior knowledge as to what the correct
structure might look like [18].

The basic algorithmic scheme for constructing a PFSA
based description of hidden dynamics from physical obser-
vations proceeds as follows: A symbol string is obtained
from the output of the dynamical system of interest, either
directly or through proper symbolization of the time-series
data [3]. Thereafter, an irreducible PFSA is constructed from
the symbol sequence via some proper construction algorithms
reported in the literature. The key of such a construction
algorithm is to find the correct notion of states from the symbol
string. It has been shown in [9] that a state in a PFSA is
nothing but an equivalence class of strings over the alphabet
under the Nerode equivalence relation.

Among these PFSA construction algorithms, D-Markov [19]
algorithm can capture all D-Markov machines, which is es-
sentially Markov chains of any finite order, with a correct
choice of depth d. The Causal-State Splitting Reconstruction
(CSSR) [8] starts with assuming that the process is an indepen-
dent, identically-distributed (i.i.d.) sequence, with one causal
state and then split it to a probabilistic suffix tree of depth
Lmax. Each node on the tree defines a state labeled with a
suffix and any two nodes (or states) are merged if their next-
symbol generating probabilities are the same by use of the χ2

(or Kolmogorov-Smirnov) hypothesis testing, no matter where
the nodes are located on the tree. Finally, the transitions are
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Fig. 1. An example of Synchronizable Machines

checked to maintain deterministic. CSSR is shown to be able
to identify the even process, which is not a Markov chain
of any finite order. Therefore, it is claimed that the class of
PFSA that CSSR can capture strictly includes those captured
by D-Markov algorithm.

In this paper, we define a class of PFSA, called synchro-
nizable machines, which contains all D-Markov machines.
We show that although the even process is in the class of
synchronizable machines, CSSR cannot in general capture the
structure of a synchronizable machine efficiently. However, the
proposed CRISSiS algorithm, that we develop in this paper,
can identify all synchronizable machines.

The rest of the paper is organized as follows. In section
II we give the preliminary of the formal language theory.
In section III we present in detail the three steps of the
CRISSiS algorithm. In section IV, an example is used to
illustrate the CRISSiS algorithm. In section V, we discuss the
effect of the parameters on the algorithm and we compare
CRISSiS with CSSR. The paper is concluded in section VI,
with recommendations for future work.

II. PRELIMINARY

In the formal language theory [20], an alphabet Σ is a (non-
empty finite) set of symbols. A string x over Σ is a finite-length
sequence of symbols in Σ. The length of a string x, denoted by
|x|, represents the number of symbols in x. The Kleene closure
of Σ, denoted by Σ⋆, is the set of all finite-length strings of
events including the null string ǫ. All strings of length d ∈ N is
denoted by Σd

⊂ Σ⋆. The string xy is called the concatenation
of x and y.

Definition 1 (PFSA): A probabilistic finite state automaton
is a tuple G = (Q,Σ, δ, q0, π̃), where

• Q is a (nonempty) finite set, called set of states;
• Σ is a (nonempty) finite set, called input alphabet;
• δ : Q× Σ→ Q is the state transition function;
• q0

∈ Q is the start state;
• π̃ : Q×Σ→ [0, 1] is an output mapping which is known as

the probability morph function and satisfies the condition∑
τ∈Σ π̃(qj, τ) = 1 for all qj ∈ Q.

The transition map δ naturally induces an extended transi-
tion function δ⋆ : Q × Σ⋆ → Q such that δ⋆(q, ǫ) = q and
δ⋆(q,ωτ) = δ(δ⋆(q,ω), τ) for q ∈ Q, ω ∈ Σ⋆ and τ ∈ Σ.

Definition 2 (Synchronizing String): Given a PFSA G =

(Q,Σ, δ, q0, π̃), a string ω ∈ Σ⋆ is called a synchronizing
string for a particular state q ∈ Q if δ⋆(qi,ω) = q for all
qi ∈ Q.

Synchronizing strings allow us to localize the states in a PFSA
even if the initial condition of the process is unknown. A PFSA
is called synchronizable if there exists a synchronizing string.

Definition 3 (Irreducibility): A PFSA G = (Q,Σ, δ, q0, π̃)

is called irreducible if for any qi, qj ∈ Q, there exits a string
ωij ∈ Σ⋆ such that δ(qi,ωij) = qj.

Given a PFSA G = (Q,Σ, δ, q0, π̃), it is easy to generate
a random symbol sequence X = {Xk}∞k=0, where Xk ∈ Σ. Let
qk ∈ Q denote the state of X at time k after symbol the Xk−1

is generated. A future symbol Xk is generated based on the
next symbol distribution at state qk, namely, π̃(qk, ·) and the
state transition follows qk+1 = δ(qk, Xk).

III. THE CRISSIS ALGORITHM

Consider a stationary symbol sequence S of length N, which
is generated by a synchronizable and irreducible PFSA G. We
wish to find out G by looking at the sequence S. We have the
following assumptions on G.

• G is irreducible;
• G is a minimal realization;
• G is a synchronizable machine.

The CRISSiS algorithm consists of three steps.

A. Identification of a Shortest Synchronizing String

Proposition 1: ω is a synchronizing string for a state q ∈ Q

if and only if q contains the language {Σ⋆ω}.

In other words, if ω is a synchronizing string, then ∀v ∈ Σ⋆

and ∀u ∈ Σ⋆,

Pr(u|ω) = Pr(u|vω) (1)

Theoretically speaking, Equation 1 can be used to check
if a particular string ω is a synchronizing string. However,
in reality, we need to resolve the following two issues. The
first one is how to obtain the estimation of the conditional
probabilities from the symbolic sequence S. The second issue
is that it is impossible to check Equation 1 for all v ∈ Σ⋆ and
u ∈ Σ⋆.

Definition 4 (Count Function): Given a symbolic sequence
S over the alphabet Σ, the count function, # : Σ⋆

→ N ∪ {0},
of a sub-string ω ∈ Σ⋆, is defined as the integer count of the
number of possible overlapping occurrences of ω in S.

Simply put, to find out #ω, we fix a window of size |ω|,
slide the window over S by one symbol at a time, and count
how many times ω occurs.

Definition 5 (d-th Order Derived Frequency): For a sym-
bolic sequence S, the d-th derived frequency of a string
ω ∈ Σ⋆, denoted by ϑd(ω), is the probability mass function
over the space Σd such that ∀σ1σ2 . . . σd ∈ Σd,

ϑd(ω) =
#(ωσ1σ2 . . . σd)

∑
τ1τ2...τd∈Σd #(ωτ1τ2 . . . τd)

(2)

Clearly,∀σ ∈ Σ and ∀ω ∈ Σ∗,

P̂r(σ|ω) =
#(ωσ)

∑
τ∈Σ #(ωτ)

= ϑ1(ω)
∣∣
σ

(3)

We have introduced the derived frequencies as estimates of
the conditional probabilities. For the second issue, we check
Equation 1 up to only L1-step history and L2-step future rather
than all Σ⋆. In other words, for a symbolic sequence S and a
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sub-string ω, the null hypothesis for w being a synchronizing
string is

ϑd(ω) = ϑd(uω),∀u ∈

L1⋃

i=1

Σi,∀d = 1, 2, . . . , L2 (4)

where L1 and L2 are two parameters for the algorithm. In D-
Markov or CSSR algorithm, both L1 and L2 are taken to be
one.

We use χ2 test to check this null hypothesis (Equation 4)
for each u and d. If one of these tests is rejected, then ω is
not a synchronizing string. Otherwise, ω is considered as a
synchronizing string. Algorithm 2 described the procedure of
checking if ω is a synchronizing string.

The procedure of step 1 is to search for a shortest synchro-
nizing string ωsyn by checking all the L1-step histories and
L2-step futures. We start with all strings of length one and
see whether a particular string ω is a synchronizing string
according to statistical test on Equation 4. If ω passes the
statistical test, then we find a synchronizing string ω and then
go to step 2. Otherwise, we increase the length of the strings
and do this check for these longer strings again and this routine
repeats until we find a synchronizing string. The pseudo-code
of step 1 is shown in Algorithm 1.

B. Recursive Identification of States

States are equivalence class of strings under Nerode equiv-
alence class. For any two strings ω1 and ω2 in a state q,

Pr(ω|ω1) = Pr(ω|ω2). (5)

Each state q is uniquely identified with these future conditional
probabilities. Therefore, Equation 5 can be applied to check if
two states q1 and q2 are the same states provided that ω1 ∈ q1

and ω2 ∈ q2. Note that we have the similar issues in Equation
5 as the ones in Equation 1. Similarly we can use the derived
frequencies to estimate the conditional probabilities and also
introduce a parameter L2. Then Equation 5 becomes

ϑd(ω1) = ϑd(ω2),∀d = 1, 2, . . . , L2 (6)

We only check the L2-step future of the conditional probabil-
ities to distinguish two states.

To be able to use Equation 6 for discovering the states,
ω1 and ω2 must be synchronizing strings. For D-Markov
machines with certain depth d, every sufficiently long string
(of length no less than d) is a synchronizing string for a
particular state. In other words, after observing the long string,
we know which state the PFSA is. This is generally not true for
synchronizable machines because there exists some infinite-
length strings which are not synchronizing strings because the
initial condition of the process is unknown to us. For example,
for the PFSA in Figure 1, the infinite string of all one’s is not
a synchronizing string.

The follow proposition says that any string with a synchro-
nizing string as its prefix is also a synchronizing string.

Proposition 2: If ω is a synchronizing string for qi ∈ Q,
then ωτ is also a synchronizing string for qj = δ(qi, τ) where
τ ∈ Σ.

The procedure of step 2 (Algorithm 1) is described as
follows. Let Q denote the set of states to be discovered for

PFSA. Initialize Q to contain only one state defined by the
synchronizing string ωsyn found in step 1. The construct a
tree with ωsyn as the root node and split the root node to |Σ|

children. The child nodes are regarded as candidate states with
representation ωsynσ for σ ∈ Σ. Start with any child node and
use Equation 6 to check if this node matches with any states
in Q (Algorithm 3). If it does, then remove this child node and
the original transition from its parent to itself with symbol σ

and add a new transition from its parent node to the matched
state with the same symbol σ. Do not further split this branch
any more. If the child node does not match with any states in
Q, then it is considered as a new state. The set of states Q is
updated with this new state added. Furthermore, the new state
split into its |Σ| children (candidate states) by adding one extra
symbol to the string that represents the new state. Finally, go to
another untouched candidate states and repeat this procedure
until there is no more candidate states to visit.

Step 2 must terminate since G has only finite number of
states. The node of the tree corresponds to the states of the
PFSA and the edges of the tree are exactly the state transition
function δ of the PFSA.

C. Estimation of Morph Probabilities

We obtained the set of states and the state transition map
δ from step 2. We need to compute the probability morph
function δ. The idea is to feed the symbolic sequence S through
the structure δ. Let Ni denote how many times S visits a state
qi ∈ Q and Nij denotes how many times a symbol σj ∈ Σ

is generated from a state qi in S. Note that the distribution
of the outgoing symbols at a particular state follows a multi-
nominal distribution of dimension |Σ| − 1. We can simply use
its maximum likelihood estimator (MLE) to compute π̃, i.e.

ˆ̃π(qi, σj) =
Nij

Ni

(7)

However, we do not know which state to start from. Again
we can make use of the synchronizing string we found in the
first step. We first search for the first occurrence of ωsyn in
the symbol sequence S and localize the state. Then we can
count all the N ′

ijs and N ′

is afterwards. This simple routine is
described in Algorithm 1.

IV. AN EXAMPLE

To illustrate how the CRISSiS algorithm works, let us
consider an simple example, the three-state synchronizable
machine over the binary alphabet in Figure 1. Let us denote
this machine by H. We simulate a binary symbolic sequence
of length ten thousand from H. Table I gives the frequency
counting of some strings occurred in the sample. For simplicity
of the argument, Let us select both L1 and L2 to be one, which
means we only check one-step both in history and in future
for the derived frequencies.

The first step is to find a synchronizing string by checking
Equation 4. We start with checking shortest strings and then
to longer strings. In this example, we check 0, 1, 00 and so
on. Table II lists the derived frequencies of the strings 0, 1, 00

and their 1-step history. For 0, we find neither ϑ1(0) = ϑ1(00)

nor ϑ1(0) = ϑ1(10) can pass the χ2 test. We move on to the
symbol 1 and it fails the test again. We then check the string
00 and since the derived frequencies in the third column are
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Algorithm 1 Main Algorithm

Inputs: Symbolic string X, Σ, L1, L2, significance level α;
Outputs: PFSA Ĝ = {Q,Σ, δ, π̃};
/ ∗ ∗ Step 1: find the synchronizing string ωsyn ∗ ∗ /

ωsyn ← null;
d← 0;
while ωsyn is null do

Ω← Σd;
for all ω ∈ Ω do

if (isSynString(ω,L1)) then
ωsyn ← ω;
break;

end if
end for

d← d + 1;
end while
/ ∗ ∗ Step 2: find the states Q and the structure δ ∗ ∗ /

Q← {ωsyn};

Q̃← {};

Add ωsynσi to Q̃ and δ(ωsyn, σi) = ωsynσi for all σ ∈ Σ;

for all ω ∈ Q̃ do
if ω occurs in X then

ω⋆
← matchStates(ω,Q, L2)

if ω⋆ is null then
Add ω to Q;
Add ωσi to Q̃ and δ(ω,σi) = ωσi for all σ ∈ Σ;

else

Replace all ω by ω⋆ in δ;
end if

end if

end for

/ ∗ ∗ Step 3: find the morph function π̃ ∗ ∗ /

Find k such that Xk is the symbol after the 1st occurrence
of ωsyn in X;
Initialize π̃ to zero;
state← ωsyn;
for all i > k in X do

π̃(state, Xi)← π̃(state, Xi) + 1;
state← δ(state, Xi)

end for

Normalize π̃ for each state;

very close to each other, it passes the χ2 test and 00 is the
synchronizing string. This completes the first step.

In the second step, we start with the synchronizing string 00,
which defines a state, and 00 is split into two candidate states
000 and 001, where the single circles denote the candidates
states and the double circles denote the identified states. We
compare the derived frequencies of each candidate states to all
the identified states according to Equation 6. Since ϑ1(000) =

[0.494 0.506] is quite close to ϑ1(00) = [0.500 0.500], we
consider 000 and 00 are the same states. We remove the state
000 and its transition from 00 and put a self-loop on the state
00. Now we look at another candidate state 001 and find that
ϑ1(001) = [0.800 0.200] is not close to ϑ1(00), so 001 is
identified as a new state and is further split into two candidate
states 0010 and 0011. We repeat this same procedure for states
0010 and 0011. ϑ1(0010) = [0.703 0.297] does not match with

Algorithm 2 isSynString(ω,L1)

Outputs: true or false;
for D = 0 to L1 do

for all s ∈ ΣD do

if ϑd(ω) = ϑd(sω) fails the χ2 test for some d 6 L2

then
return false;

end if

end for
end for

return true

Algorithm 3 matchStates(ω,Q, L2)

for all i ∈ Q do
if ϑd(ω) = ϑd(Q(i)) (Eq. 6) passes the χ2 test for all d

then

return Q(i), the i-th element of Q;
end if

end for

return null;

either 00 or 001, and therefore is identified as a new state
and is split to 00100 and 00101. ϑ1(0011) = [0.500 0.500] is
close to ϑ1(00), and hence 0011 is considered the same as 00.
The state 0011 is removed and a new transition is added from
001 to 00 with symbol 1. Finally, after computing the derived
frequencies for 00100 and 00101 (ϑ1(00100) = [0.505 0.495]

and ϑ1(00101) = [0.7000.300]), they are identified to the
existing states 00 and 0010, respectively. The graph does not
contain any more candidate states and step 2 is completed.
Note that this graph gives us the states and the structures of
the PFSA, which is the same as the model H we started with.

In the last step, feeding the sampled string through the graph
allows us to compute the MLE of the morph probabilities by
Equation 7.

V. PERFORMANCE OF CRISSIS

A. Time Complexity

Suppose the length of the input symbolic sequence S over
alphabet Σ is N and the underlying unknown PFSA G, which
generates S, has |Q| number of states.

TABLE I
COUNT STATISTICS OF THE STRINGS FROM TEN THOUSAND SAMPLE

POINTS FROM THE PFSA IN FIGURE 1

ω #ω ω #ω ω #ω

0 62711 0000 8673 00100 9881
1 37291 0001 8892 00101 4181
00 35164 0010 14062 001000 4990
01 27546 0011 3536 001001 4891
10 27545 0100 14206 001010 2926
11 9745 0101 7245 001011 1255
000 17565 1000 8892
001 17599 1001 8707
010 21451 1100 3393
011 6094 1101 2701
100 17599
101 9946
110 6094
111 3651
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TABLE II
DERIVED FREQUENCIES OF SOME STRINGS FROM THE SAMPLE OF H

ω ϑ1(ω) ω ϑ1(ω) ω ϑ1(ω)

0 [ 0.561 0.439 ] 1 [ 0.739 0.261 ] 00 [ 0.500 0.500 ]
00 [ 0.500 0.500 ] 01 [ 0.779 0.221 ] 000 [ 0.494 0.506 ]
10 [ 0.639 0.361 ] 11 [ 0.625 0.375 ] 100 [ 0.505 0.495 ]

TABLE III
DERIVED FREQUENCIES OF THE SIMULATED SEQUENCE FROM THE

3D-MARKOV MODEL

ω ϑ1(ω) ω ϑ1(ω)

0 [ 0.538 0.462 ] 000 [ 0.914 0.086 ]
00 [ 0.538 0.462 ] 010 [ 1 0]
10 [ 0.539 0.463 ] 100 [ 0.100 0.900]

110 [0.400 0.600]

In step 1, we search for a shortest synchronizing string. It
is reported in [21] that the length of a shortest synchronizing
string is on the order of |Q|3. Therefore, the number of strings

we need to check is |Σ|O(|Q|3). To test each string, we need
to go to L1-step history and L2-step history to compute the
derived frequencies from S, which gives O(|Σ|L1+L2 ·N). The

running time for step 1 is |Σ|O(|Q|3)+L1+L2 · O(N). In step
2, the number of candidate states we check is O(|Q|). For
each candidate state, we need to check its L2-step future with
all the existing states, which gives O(|Q||Σ|L2N). In the final
step, searching for the synchronizing string and compute the
estimates both take O(N). Hence, the time complexity of the

CRISSiS algorithm is O(N) ·
(
|Σ|O(|Q|3)+L1+L2 + |Q||Σ|L2

)
.

It is still linear in the input N. We also note that it is
exponential in the length of the synchronizing string (or |Q|),
L1 and L2. Both L1 and L2 are usually quite small. Then main
computational burden lies in the first step, especially when the
length of the synchronizing string is very large.

B. Choice of the Parameters

In step 1, we introduced a parameter L1 in Equation 4. A
small L1 may render a wrong identification of a synchroniz-
ing string. We simulated a symbolic sequence from a 3D-
Markov machine, where any string of length 3 is a shortest
synchronizing string. Table III listed the derived frequencies
of the simulated sequence. Consider the string 0, it turns
out that ϑ(0), ϑ(00), and ϑ(10) are very close. If L1 = 1,
the algorithm would think 0 as a synchronizing string and
terminate the step 1. The output model is not irreducible and
contains three transient states q0,q1, and q2. Although in
this particular example, it seems that we can still recover the
model by removing the transient states, the mis-identification
of the synchronizing string will cause a wrong identification
of the structure if some states are accidentally merged with
those transient states in step 2. We can avoid this mistake by
increasing L2 to 2. Table III clearly shows 0 cannot pass the
test in Equation 4 with L1 = 2.

In step 2, we introduced another parameter L2 to simplify
Equation 5 to Equation 6 where we only distinguish states up
to their L2-step future. This may lead to a wrong identification
of the states and structure in PFSA if there are two states
that have exactly the same L2-step future but different after
that. Note that in this model, the 1-step derived frequencies of
the state 00 and 11 are the same. We run CRISSiS algorithm

on this sequence with L2 = 1 and L2 = 2, respectively. We
observe that the algorithm merged the two states 00 and 11

into a single state since only 1-step derived frequencies are
checked for identifying the states.

We have demonstrated that the performance of the CRISSiS
algorithm highly depends on the choice of L1 and L2. Smaller
L1 and L2 may lead to a wrong identification of the system

model. Theoretically, L1 =
|Q|3−|Q|

6
[21] and L2 = |Q|

would guarantee the algorithm to identify any synchronizable
machines as long as the symbolic sequence is sufficiently long
because PFSA has only finite number of states. However, we
do not know the number of states of the true model and even
if we know, the running time of CRISSiS goes exponentially
as one increases L1 and L2. Instead, a more systematic way is
that we start with smaller values of L1 and L2 (L1 = L2 = 1)
and identify a model. Then we gradually increases L1 and
L2 and see whether the new identified model matches with
the previous model. By this means, one can roughly find out
the smallest L1 and L2 that gives the correct model. In many
practical problems, L1 = L2 = 2 is sufficient for identification
of the dynamical system.

C. Comparison with CSSR

The CSSR algorithm is primarily designed to capture the
sufficient statistics of a process up to an order Lmax by finding
out the casual states. In contrast to D-Markov algorithm [19]
and variable-length Markov models (VLMMs) algorithm [22],
each state in CSSR can contain multiple suffixes and this
is achieved by some state merging procedure based on the
1st-order derived frequencies of the suffixes in CSSR. Hence,
CSSR is nothing but a generalized D-Markov algorithm with
some state merging procedure. CSSR is shown to be efficient
in capturing the D-Markov machines of some particular order
L as long as the parameter Lmax is no less than L. However,
we shall show that for those synchronizable machines that are
not D-Markov models of any finite order, CSSR cannot obtain
a compact representation in general but CRISSiS can.

For the three-state synchronizable model, which is an in-
finite order D-Markov model with finite representation in
PFSA, we simulated 20 symbolic sequences of length N =

104, 105, and 106, respectively. The CSSR algorithm is ap-
plied to each simulated sequence with a different parameter
Lmax varying from 3 to 8. For comparison, the CRISSiS
algorithm is also applied to the same sequences with L1 =

L2 = 1. The χ2 hypothesis testing method with confidence
level 0.95 is used in both algorithms. We compute the average
number of states for each data length as a measure of model
complexity. Furthermore, to measure the prediction error of
the model, we introduce the total-variation error, which is
the L∞ distance between the actual distribution of strings of
length 10 and that from the constructed model. Table V-B
gives the results from both algorithms. We observe that CSSR
is not able to discover the minimal casual states. As Lmax

becomes large, the constructed machine by CSSR contains
more and more number of states and the prediction error
for strings of length 10 decreases. The reason is that each
state contains infinite number of suffixes in the actual model.
Although the prediction error gets improved as Lmax increases
but the constructed model becomes too complex to be useful in
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TABLE IV
COMPARISON BETWEEN CRISSIS AND CSSR

CSSR CRISSiS
Lmax = 3 Lmax = 4 Lmax = 5 Lmax = 6 Lmax = 7 Lmax = 8 L1 = L2 = 1

N = 104

Averaged Number of States 7 10 13 17 24 35 4

Averaged Total-variation Error(×10−3) 2.9 2.2 2.2 1.8 1.7 1.6 1.9

N = 105

Averaged Number of States 7 12 18 28 39 57 3

Averaged Total-variation Error(×10−3) 2.1 1.5 1.5 0.7 0.6 0.5 0.5

N = 106

Averaged Number of States 7 12 20 32 49 74 3

Averaged Total-variation Error(×10−3) 2.1 1.5 1.4 0.7 0.5 0.3 0.2

practice. On the contrary, CRISSiS gives much better results.
Except for N = 104 possibly due to the lack of data, CRISSiS
successfully discovers the casual states. The prediction error
is also very close to or better than that of CSSR with large
Lmax. Ideally, if we had access to the infinite length sequence,
we would expect CRISSiS to recover the model perfectly.

VI. CONCLUSION & FUTURE WORK

This paper presents a new PFSA construction algorithm
for symbolic sequences. The proposed CRISSiS algorithm
searches for a synchronizing string for state localization and
recursively identifies the structure of the unknown PFSA
from the localized state. The algorithm is linear in the data
length. The algorithm is shown to be able to capture the
structure of all synchronizable machines, whose structures
cannot be correctly discovered by CSSR or D-Markov. Hence,
the CRISSiS algorithm is a more general approach than CSSR
or D-Markov algorithms for PFSA construction.

A. Future Work

In the future, the following issues will be investigated:

1) Relaxation of the condition of having a synchroniz-
ing string for computation of PFSA descriptions from
observed symbolic streams. This extension will allow
the compression algorithm to capture all finite memory
models that can possibly arise.

2) Apply the proposed construction in pattern recognition
problems arising in sensing scenarios. Particularly, the
problems of multi-modal sensing with heterogeneous
sensing suites will be investigated in the context of
identifying relevant patterns in the framework of proba-
bilistic automata.

3) Generalization of the proposed algorithm to allow dis-
tributed computation of emergent patterns in data col-
lected from possibly non-colocated sensors.

4) Develoment of rigorous methodologies and results to
estimate the amount of data required to construct a valid
PFSA model.
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