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Abstract— This work builds upon a framework for improving
trajectory flexibility in systems controlled by Iterative Learning
Control (ILC). Here we focus on positioning systems, decompos-
ing a class of trajectories into motion primitives, termed basis
tasks. The correct input signal for each basis task is identified
in a training routine with ILC. The main development of this
paper is a framework to intelligently apply these basis task
specific input signals using an adaptation of bumpless trans-
fer techniques. Bumpless transfer is reoriented to seamlessly
transition between open-loop ILC signals without attenuating
signal content away from the transition points. Experimental
results display the effectiveness of the proposed approach on
a serial planar positioning robot. Two conditions on basis task
sequencing are tested. One which satisfies constraints imposed
by previous work, and a relaxed trajectory constraint case
designed to further explore trajectory flexibility. Bumpless
transfer recovers some of the performance lost by constraint
relaxation.

I. INTRODUCTION

Iterative Learning Control (ILC) is an effective method-
ology for precision control for systems that track repeated
trajectories [1]. Input signals generated by ILC are applied in
open-loop or as a supplement to feedback control, typically
achieving performances beyond what is capable by feedback
alone. The ILC algorithm relies on trajectory repetition
to learn an approximate inverse signal of the dynamics,
disturbances, and unmodeled dynamics [2]. Therein lies a
primary limitation of ILC. If the trajectory changes, the ILC
algorithm must be reinitiated.

The targeted applications for this work are advanced
manufacturing systems or material interrogation systems that
require both high precision and process flexibility. Appli-
cations include micro-Robotic Deposition [3], electrohydro-
dynamic jet printing [4], and atomic force microscopy [5].
These systems are versatile in that they require no tooled
setups, having little impedance from concept to product
so that designs can be flexibly interchanged. However, the
reliance of ILC on process repetition is not well aligned with
these applications, inhibiting efficient implementation. The
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objective of this research is to explore adaptations of ILC
that are as flexible as these applications.

The development of trajectory flexibility within the ILC
framework has been stated previously as an objective in
ILC research [1], [6]. Previous attempts at adding trajectory
flexibility have de-emphasized the time specificity of ILC,
instead focusing on learning a set of dynamics, and applying
learned signals to a similar set of dynamics [6]–[10].

Recent work by the authors developed a very different
adaptation of ILC from those listed above, maintaining the
time specificity of ILC [3]. [3] focused on learning a set
of tasks, termed basis tasks, through a training routine,
and investigating effective methods to apply this basis task
information to construct complex trajectories. This approach,
termed the basis task approach to ILC (BTILC), orchestrates
a tradeoff between trajectory flexibility and some perfor-
mance degradation. For flexible manufacturing systems, this
tradeoff may allow for improved trajectory tracking over
feedback control alone, without sacrificing the innate flex-
ibility of these systems.

This work builds on the BTILC framework. Importantly,
it investigates a relaxed trajectory constraint where the basis
tasks learned in a training routine do not have similar initial
conditions when applied in a new trajectory. This constraint
relaxation allows for a larger set of operation trajectories
to be accomplished with the same training information,
although tracking performance is lost. A novel bumpless
transfer scheme for open-loop signals is presented that re-
gains some lost performance.

The paper is organized as follows. BTILC definitions,
implementation, and performance information is given in
Section II. Section III introduces the bumpless transfer
scheme. The experimental setup and results are given in
Sections IV and V, respectively. Section VI gives concluding
remarks and discusses future directions.

II. SYSTEM SETUP

This section briefly introduces BTILC. Explicit details can
be found in [3].

A. System

Consider the single-input single-output (SISO) linear time-
invariant (LTI) operator, Hd, represented in discrete-time
state-space form in:

Hd ,

{
xd(k + 1) = Adxd(k) + Bdud(k)

yd(k) = Cdxd(k) + Ddud(k)
. (1)
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Fig. 1. Visual depiction of BTILC. Basis tasks are learned in a training
routine and the corresponding basis signal information is stored in the basis
signal library. In the operation set, basis signals are applied as specified
by logic applied to a schedule of basis tasks.

yd(k) ∈ RK , and ud(k) ∈ RK where K is the signal
length. Ad ∈ Rρ×ρ, Bd ∈ Rρ×1, Cd ∈ R1×ρ, and Dd ∈
R1×1 are appropriately sized state-space system matrices and
xd(k) ∈ Rρ×K is a vector of the operator states where ρ is
the number of states. Hd can be either an open-loop stable
plant or the plant sensitivity function of a stabilizable plant
with stabilizing feedback. That is, maxi | λi |< 1 where λi
is an eigenvalue of Ad. k is the discrete-time index and ts
is the sample period. Subscript d denotes a specific operator.
For the serial robot used in Section IV, d denotes either the
x or y axes.

B. Definitions

Definition 1: Training, Operation, and Learning Sets. All
signals belong to a specific set, Fig. 1. The training set
corresponds to signals applied or measured during the train-
ing routine; denoted by the superscript T . The operation
set corresponds to signals specific to the manufacturing
operation; denoted by the superscript O. Learning set signals
are analogous to the common implementation of ILC where
ILC is applied at each trial; given the superscript L(j) where
j is the iteration index.

Definition 2: Basis Task , rn(k). Each basis task is
defined by the reference signal designed to complete the
given task, rn(k), where subscript n is the task index. Basis
tasks are defined on the domain k ∈ [0,Kn − 1] where Kn

is the basis task signal length.
Definition 3: RO , Operation Space. The operation

space is the set of all basis tasks which constitute an
operation. In general, a given operation is comprised of N
basis tasks.

Definition 4: y(k) , Hd (u(k)) ; e(k) , r(k) − y(k).
Standard controls notation is used for the operator output,
y(k), input, u(k), and error signal, e(k). Input signals un(k)
corresponding to a basis task n are termed basis signals.

Definition 5: Adjacency Matrix. The sequence of basis
tasks in either the training set or operation set is given by
its binary adjacency matrix, T ∈ ZN×N2 or O ∈ ZN×N2 ,

respectively. Given an entire trajectory r(k) ∈ RK , a matrix
entry ci,j = 1 if ∃ a r(∆mj +Kj−1) and r(∆mi) such that

r(k) = {. . . , rj(Kj − 1)︸ ︷︷ ︸
r(∆mj

+Kj−1)

, ri(0)︸︷︷︸
r(∆mi

)

, . . .} (2)

where ∆mn is the basis task transition time index at a given
multiplicity of that task mn. Else, ci,j = 0. In words, ci,j = 1
if there exists a transition from basis task j to i.

Definition 6: Set Equivalence. The training set and the
operation set are equivalent if T + O = T, where + is the
logical OR operator for matrices; ai,j + bi,j = ci,j for all
i = {0, . . . , N−1} and j = {0, . . . , N−1}. In words, every
basis task transition in the operation set has been learned in
the training set.

C. Basis Task Approach to ILC

1) Training Set: BTILC is given schematically in Fig. 1.
Essentially, a training routine is selected such that all basis
tasks are contained within the training routine.

rT (k) =

N−1∑
n=0

Mn−1∑
mn=0

rn(k −∆mn)

(s(k −∆mn)− s(k −∆mn −Kn))

(3)

where s is the unit step function. There may be multiplicities
of a given task, mn = 0, . . . ,Mn − 1. The constraint

∆i+1 ≥ ∆i +Ki (4)

is applied so that basis tasks do not overlap in time. Here,
i = {a, b, . . .} are ordered basis task indices in the training
set. ILC, [1], is applied to system (1) using the reference
signal in (3) until a desired performance is achieved. Given
(4), the basis tasks and the corresponding basis signals are
separated in time, (5).

uT (k) =

N−1∑
n=0

Mn−1∑
mn=0

un(k −∆mn)

(s(k −∆mn)− s(k −∆mn −Kn))

(5)

Individual basis signals, un(k), are stored in memory to be
extracted during the operation set. The structured database
for basis signal storage is termed the basis signal library.

2) Operation Set: Basis signals are extracted from the
basis signal library based on logic applied to the set of
instructions dictating the trajectory. Basis signal extraction
is shown schematically in Fig. 1. Given an instructed basis
task, the corresponding basis signal is applied to the plant
with the appropriate time shift.

uO(k) =
∑
i=0

ui(k −∆i)

(s(k −∆i)− s(k −∆i −Ki))

(6)

where u = {ua(k), ub(k), . . .} and ∆ = {∆a,∆b, . . .} are
appropriately designed ordered vectors of basis signals and
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time shifts, respectively. Important considerations for basis
signal extraction are given in [3].

D. Performance

Consider the training set rT (k). rT (k) is comprised of
temporally sequenced basis tasks, (3), where each basis task
is active over an interval starting at a task-transition index
∆i. ILC is applied, converging to a uT (k) that gives the
performance

eT (k) = rT (k)−Hd

(
uT (k)

)
(7)

where uT (k) and eT (k) can be decomposed temporally. At
the task-transition indices, ∆i, operator Hd has the following
states, XT = {xTa , xTb , . . .}, that effectively give the initial
conditions for each task.

In the operation set, however, the sequence of basis tasks
in rO(k) is different than the sequence in rT (k). The states
at the transition indices, xOn , will be different because of
historical sequencing differences or because there is not set
equivalence, as described in Definition 6.

xOn = xTn + δxn (8)

where δxn is the difference in states between the training and
operation sets at each task transition. Therefore, there will
be performance degradation because each uT (k) is identified
for the training set transition states xTn not the operation set
transition states xOn . The resultant error signal will be

eOn (k) = eTn (k) + CdAd
kδxn (9)

which can be easily shown by properties of linear systems.
Remark: Performance degradation at the transition indices

is discussed in greater detail in [3]. The salient point from
this discussion is that performance degradation is minimized
when there is set equivalence, as given in Definition 6.
However, this condition may be restrictive in some cases.
To weaken this condition, we can neglect set equivalence
and only impose a trajectory smoothness condition

rOi (Ki − 1) = rOi+1(0)

(q−1 − 1)rOi (Ki − 1) = (1− q)rOi+1(0)
(10)

where i = {a, b, . . .} are consecutive basis tasks in the
operation set, ∆i + Ki = ∆i+1, and q is the forward shift
operator, qx(k) = x(k+1). Consider the positioning system
in Fig. 2 tracking an arbitrary trajectory that satisfies the
weakened condition (10). The lack of set equivalence leads
to performance degradation, Fig. 3, where the performance
degrades immediately after the transition indices, approach-
ing feedback control performance, eL(0)

d (k).

III. BUMPLESS TRANSFER

ILC produces a supplemental signal that is an inverse of
the system dynamics, repeated disturbances, and uncertain-
ties [2]. Smoothness constraints such as (10) do not account
for higher order derivatives in the reference signal. Given that
the ILC input signal achieves an inverse of the dynamics and

x

y

z

Fig. 2. Diagram of a serial positioning system tracking an arbitrary
trajectory that satisfies (10). Highlighted are the x and y axes.
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Fig. 3. Axes error signals during a task transition without set equiva-
lence. After basis task transition points, operation set performance, eOd (k),
transiently degrades, approaching feedback control performance, eL(0)

d (k).

other factors and that basis task sequence affects transition
states, xOn , there will be basis signals, uOn (k), that are
not appropriate for the instantaneous state conditions at the
transitions. Consequently, performance will degrade.

Here, we borrow the concept of bumpless transfer from the
feedback control community [11]. Systems with a switched
control scheme will have transient performance degradation
after a controller switch because the two controllers have
different objectives and therefore different input magnitudes
at the transition time. The idea in bumpless transfer is that
transition performance can be improved by forcing the latent
control signal to emulate the active signal at the instant of
transition. After transition, control action converges to that
of the new controller at a rate given by the bumpless transfer
weighting filters.

We have modified the bumpless transfer algorithm for use
on open-loop signals, Fig. 4. Prior to a basis task transition,
each basis signal in the operation set is applied to a cascade
of filters where the latent signal, ul(k), tracks the filtered
input signal of the ith basis signal. At the transition, switches
s2 and s3 flip. The tunable parameter is the digital filter
b(q)/a(q) where the polynomials a(q) and b(q) are designed
to reject a constant ui+1(0) and pass the signal u(k) before
the transition index ∆i+1.
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ul(k) =

reject︷ ︸︸ ︷
a(q)

a(q) + b(q)
ui+1(0) +

pass︷ ︸︸ ︷
1

a(q) + b(q)
u(k) for k < ∆i+1

a(q) + b(q)

a(q) + b(q)
u∆(k) for k ≥ ∆i+1

(11)

where

u∆(k) ={u(∆i+1 − δ), u(∆i+1 − δ + 1),

. . . , u(∆i+1 − 1), ui+1(0), . . .}
(12)

and δ is the order of the polynomial a(q) + b(q).
Stability is guaranteed when the roots of polynomial

a(q)+b(q) are contained within the unit disk. Critically, this
filter does not modify ui+1(k) at time indices away from
∆i+1. That is

u(k)→ ui+1(k) as k → (∆i+1 +Ki+1) . (13)

b(q)

Hd

+

-

+
+

ui(k)

ui+1(k)

y(k)

s1

s3

u(k)

+

-

+
+s2

B

ul(k)

a(q)

b(q)
a(q)

Fig. 4. Section of a block diagram of the bumpless transfer filter B (u(k))
in a cascade of subfilters.

IV. EXPERIMENTAL SETUP

A. System Description

BTILC with and without bumpless transfer is tested ex-
perimentally on a serial positioning system. The positioning
system, shown in Fig. 2, is used to position a micro-extrusion
system for fabricating micro-sized structures [3]. Dynamic
models of each axes were identified in [12]. Parameter values
for the axes plant models, Hd, and stabilizing feedback
controllers, kd, can be found in the Appendix. All results
were acquired with a sampling rate, 1/ts, of 1kHz.

Hd(z) =
K(z + α1)(z2 + α2z + α3)(z2 + α4z + α5)

(z + β1)(z − 1)(z2 + β2z + β3)(z2 + β4z + β5)
(14)

kd(z) =
K(z2 + α1z + α2)

(z − 1)(z + β1)
(15)

B. Training Set

The training set is designed to include linear motion primi-
tives and circular motion (clockwise (CW) and counterclock-
wise (CCW)) primitives. Fig. 5 shows the designed training
routine. The training set trajectory consists of six circuits
around a perimeter in the same plane, rz(k) = 0, with
each circuit designed to identify different task information.

x y

Circuit

Linear

Linear
CCW
CCW

CW
CW

Rad = 1 
Rad = 4 
Rad = 1 
Rad = 4

r r

Fig. 5. Training set. All six circuits are in the same plane with each circuit
designed to identify different basis task information. Training set contains
the basis tasks {linear, linear start, linear stop, CCW, CW, and dwell}.

Descriptively, there are six basis tasks types in the operation
space:

RO ={linear, linear start, linear stop,
CCW,CW, dwell}

(16)

where each type has classifiers, giving 49 unique basis tasks.
Classifiers are given in Table I. The adjacency matrix for the
training set is given in the Appendix, (20).

TABLE I
BASIS TASKS CLASSIFIERS IN TRAINING SET

Circuit Type Vel [mm/s] Rad [mm] Dir/Quad
1 Linear 10 0 +x,+y,-x,-y
2 Linear 20 0 +x,+y,-x,-y
3 CCW 20 1 3,4,1,2
4 CCW 20 4 3,4,1,2
5 CW 20 1 3,4,1,2
6 CW 20 4 3,4,1,2

ILC is applied to the systems given in (14) and (15) with
the reference trajectory in Fig. 5 and with a standard update
law, (17) [1].

uT (j+1)(k) = Q(q)
[
uT (j)(k) + L(q)eT (j)(k + 1)

]
(17)

In (17), Q(q) is a filter for robustness termed the Q-filter and
L(q) is the learning filter. Q(q) is chosen to be a Gaussian
filter and L(q) a standard PD-type learning law, however,
other filter choices are feasible. Filter details are provided in
(21) and (22) in the Appendix. ILC is run for 30 iterations.
The identified basis signals are considered to be the best
input to achieve their respective basis tasks. Each basis signal
is stored in the basis signal library for application in the
operation set.

C. Operation Set

Four different operation set trajectories are tested. The
two in the top row of Fig. 6, have an operation set
that is equivalent to the training set: T + O = T. The
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two in the bottom row of Fig. 6, violate set equivalence,
satisfying only the weakened constraint in (10). Namely,
these trajectories contain direct CCW ↔ CW , CCW ↔
CCW , and CW ↔ CW basis task transitions. Therefore,
O (25 : 32, 25 : 32) 6= 016×16 and T + O 6= T. A three
way comparison is made for each operation set trajectory:
(a) trajectory tracking for a typical ILC algorithm run to 30
iterations, yL(30)(k), (b) BTILC, yO(k), (c) and BTILC with
bumpless transfer, B

(
yO(k)

)
. The bumpless transfer filter is

chosen heuristically

b(z)

a(z)
=

0.0117z + 0.0195

z2 − 1.819z + 0.8187
. (18)

Three of the trajectories {(1, 1), (1, 2), (2, 1)} are moti-
vated by the raster patterns used in micro-scale fabrication
processes [4] or material interrogation processes [5]. (2, 2) is
arbitrarily chosen to explore the flexibility limits of BTILC.

0

10

20

r y [m
m

]

(1,1) (1,2)

0 10 20

0

10

20

r y [m
m

]

rx [mm]

(2,1)

0 10 20
rx [mm]

(2,2)

Fig. 6. Operation set trajectories to test in simulation. Operation sets
in the top row have set equivalence, T+O = T. Operation sets in the
bottom row do not have set equivalence, T+O 6= T.

V. EXPERIMENTAL RESULTS

The y-axis is capable of more accurately tracking ref-
erence trajectories than the x-axis because the x-axis has
relatively more inertia. Consequently, error signals in the y-
axis are smaller in magnitude and have higher signal-to-noise
ratios. ILC is most effective in decreasing error in the x-axis
and therefore this section will focus on x-axis results. y-axis
results follow the same trends, however to a lesser degree.
All BTILC data is an average of five trials with the same
input, uOd (k) or B

(
uOd (k)

)
.

A. Operation Set: T + O = T

For operations sets chosen such that T + O = T, the
BTILC input signal, uO(k), is almost identical to the input
signal from a typical implementation of ILC, uL(30)(k), Fig.
7. This is because the transition sequencing has been main-
tained and therefore the state dissimilarities at the transitions,
δxn in (8), are minimal. Fig. 10 displays that the RMS, (19),
of the entire error signal degrades less than 21% in the x-axis
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V
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ns

Fig. 7. Operation set basis task sequences that have set equivalence have
smooth transitions. Bumpless transfer filtering has only a small affect at
transitions.

by using BTILC for control. Details are found in Table II.
In fact, BTILC has a RMS error tracking performance better
than RMS

(
eL(10)(k)

)
on average for the x-axis.

RMS (e(k)) =

√∑
K

e2(k)/K (19)

Since the state dissimilarities are small, (8), the transitions
between basis signals are smooth and therefore bumpless
transfer modifies the input signal minimally. Fig. 7 demon-
strates that bumpless transfer input signal, B

(
uO(k)

)
, is

almost identical to the operation set input signal, uO(k).
Bumpless transfer reduces RMS of the x-axis error by 4%,
Table III.

B. Operation Set: T + O 6= T

When there is not set equivalence, T + O 6= T, the
state dissimilarity, (8), is large. Therefore, the identified
basis signals are not properly designed for the given basis
task states, xOn . This result is demonstrated in Fig. 8 in
which the ideal ILC signal, uL(30)(k), has a considerably
different signal shape than the concatenated basis signals,
uO(k). Bumpless transfer helps bridge the gap between
basis signals, better approximating uL(30)(k) at the tran-
sition points. The influence of bumpless transfer can be
seen in Fig. 9 where the tracking error for B

(
eO(k)

)
is

comparatively less than eO(k); whereas BTILC approaches
feedback performance following transition indices, BTILC
with bumpless transfer performs significantly better than
feedback. Tracking performance does degrade, as given by
Table II and Fig. 10, however bumpless transfer does regain
some performance losses. Applying bumpless transfer to
BTILC gains a performance improvement of over 12% on
average in the x-axis, Table III, in terms of the RMS error.
Even with T + O 6= T, Fig. 10 shows that bumpless
transfer provides tracking performance that is better than
RMS

(
eL(14)(k)

)
on average, in the x-axis.
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Fig. 8. Operation set basis task sequences without set equivalence,
T+O 6= T, have discontinuous transitions. Bumpless transfer filtering
modifies transitions, smoothing out input signal and better approximating
the ILC input signal, uL(30)(k).

TABLE II

COMPARISON:
RMS(B(eOd (k)))−RMS

(
e
L(30)
d

(k)
)

RMS
(
e
L(30)
d

(k)
) × 100%

T+O = T T+O 6= T
Axis (1,1) (1,2) (2,1) (2,2)
x 19.34 22.15 57.83 30.58
y 79.55 41.61 -9.52 48.46

C. Discussion

The results display a marked improvement over feed-
back control. Depending on the application performance
requirements, BTILC presents a viable option for control
improvement for operation sets that have weakened trajectory
constraints. Furthermore, performance can be improved at
instances where there is a basis task transition that is not
equivalent to the training set by applying bumpless transfer.
The results display how BTILC is capable of significant
tracking performance improvements over feedback with a
wide variety of operation set reference signals without
retraining the system for a new trajectory. In both axes,
RMS

(
B
(
eOd (k)

))
< RMS

(
e
L(11)
d (k)

)
on average; there-

fore 11 iterations of tracking performance is achievable just
by intelligently using information already on-hand.

The design of the bumpless transfer filter b(z)/a(z)
presents a tradeoff between a fast response with minimal
signal attenuation and a slow response so that large signal
discontinuities can be bridged. A key example of this tradeoff
can be seen in Figs. 7 and 8. The fast filter response ensures
a smooth transition with quick convergence to the subsequent
basis signal when T + O = T. However, the system reacts
too quickly when T + O 6= T and does not fully attenuate
the transient. Future work will investigate this tradeoff and
filters designed to account for transition characteristics.
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Fig. 9. Error signal comparison. Compared to BTILC, eOd (k), applying
bumpless transfer for BTILC reduces error transients at the task transitions.
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Fig. 10. RMS error for each operation set simulated. All data is normalized
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(
RMS

(
e
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d (k)

))
= 1.B

(
eOd (k)

)
data represents mean

performance for 5 trials. This data spans the Iteration axis for the sake of
comparison.

TABLE III
COMPARISON:

RMS(eOd (k))−RMS(B(eOd (k)))
RMS(eOd (k))

× 100%

T+O = T T+O 6= T
Axis (1,1) (1,2) (2,1) (2,2)
x 0.37 7.64 5.03 19.59
y 2.82 1.24 2.69 -3.84

VI. CONCLUSION

Previous work has shown that the basis task approach
to ILC is an effective method of improving tracking per-
formance over typical feedback schemes, while critically
alleviating the trajectory invariance constraint of ILC. This
works builds on this effort, further enhancing trajectory
flexibility by regaining performance with bumpless signal
transfer. Current results show that bumpless transfer modifies
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the supplementary input signal so that it better approximates
signals identified by standard ILC algorithms. However,
there is a trade-off between achieving seamless basis signal
transitions and attenuating important signal characteristics.
Future work will explore more advanced bumpless transfer
algorithms that better balance the trade-offs of the filter.

APPENDIX

A. Plant and Controller Parameters

Plant Parameter
Den β1 β2 β3 β4 β5
Hx -0.9994 -1.978 0.9894 -1.738 0.8672
Hy -0.9994 -1.983 0.9911 -1.87 0.9539
kx -0.7408
ky -0.7408

Num α1 α2 α3 α4 α5

Hx 0.9604 -1.981 0.9918 -1.874 0.9747
Hy 1 -1.983 0.9912 -1.873 0.9547
kx -1.941 0.9423
ky -1.949 0.9506

Gain K
Hx 8.3315× 10−4

Hy 1.8506× 10−3

kx 38
ky 27.375

B. Adjacency Matrix

T =



0 I8×8 0

[
0 0

I4×4I4×4

][
0 0

I⊥4×4I
⊥
4×4

]
0

0 0 0 0 0 I8×1

I8×8 0 0 0 0 0[
0 I⊥4×4

0 I⊥4×4

]
0 0 0 0 0[

0 I4×4

0 I4×4

]
0 0 0 0 0

0 0 I1×8 0 0 0


(20)

where
[
a b
c d

]⊥
=

[
b a
d c

]

C. ILC Learning Filters

Ld (ed(k)) = kP,ded(k) + kD,d (ed(k)− ed(k − 1)) (21)

Qd (x(k), k∗) =
1∑L

i=0 e
− (ts(k∗−i))2

2σ2

L∑
i=0

x(k∗−i)e−
(ts(k∗−i))2

2σ2

(22)

d kP kD σ
x-axis 1.2 25 1.02× 10−2

y-axis 1 10 7.36× 10−3
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